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§1. One dimensional case

G: group, M : left G-module

C0(G, M) = M ,

Cn(G, M) = {f : Gn −→ M}, n ≥ 1.

d : Cn(G, M) −→ Cn+1(G, M)

(df)(g1, . . . ,gn+1) = g1f(g2, . . . , gn+1) + (−1)n+1f(g1, . . . , gn)

+
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

The cohomology group Hn(G, M) is that of the complex

{C∗(G, M), d}: Hn(G, M) = Zn(G, M)/Bn(G, M).
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For 0 ≤ l ∈ Z and

[
u
v

]
∈ C2, put

[
u
v

]l

= t(ul ul−1v . . . uvl−1 vl).

Define a representation ρl : GL(2,C) −→ GL(l + 1,C) by

ρl(g)

[
u
v

]l

= (g

[
u
v

]
)l.

Γ ⊂ SL(2,R): Fuchsian group

Ω ∈ Sk(Γ), k ≥ 2. Put l = k − 2, ρ = ρl.

d(Ω) = Ω(z)

[
z
1

]l

dz, z ∈ H.

(V -valued differential form, V = Cl+1)
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d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.

z0 ∈ H: a base point. Put

f(γ) =
∫ γz0

z0
d(Ω).

Then

f(γ1γ2) = f(γ1) + ρ(γ1)f(γ2) (1-cocycle).

The class of f ∈ H1(Γ, V ) doen’t depend on z0.

γ ∈ Γ: parabolic, z′0: cusp

z0 7→ z′0:

f(γ) = (ρ(γ)− 1)
∫ z0

z′0
d(f).
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Let Ω ∈ Sk(SL(2,Z)).

Put z0 = i∞, σ =

(
0 1
−1 0

)
, τ =

(
1 1
0 1

)
.

f(στ) = −
( ∫ i∞

0
Ω(z)ztdz

)
0≤t≤l

= −
(
it+1R(t + 1,Ω)

)
0≤t≤l

where R(s,Ω) = (2π)−sΓ(s)L(s,Ω).

(στ)3 = 1 implies

(1 + ρ(στ) + ρ((στ)2))f(στ) = 0.

Take k = 12, Ω = ∆.

R(8) =
5

4
R(6), R(10) =

12

5
R(6), etc.
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Shimura: “Sur les intégrales attachées aux formes automorphes ”

(J. Math. Soc. Japan, 1959)

Problem: In higher dimensional cases, can we calculate L-values

using cohomology in a similar manner?

Another method:

Shimura, The special values of the zeta functions associated with

cusp forms (Comm. pure and applied Math., 1976)

Shimura, The special values of the zeta functions associated with

Hilbert modular forms (Duke Math. J., 1978)

I will compare two methods at the end of my talk.
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§2. Hilbert modular case

F : totally real, [F : Q] = n ≥ 2

OF : ring of intergers, EF = O×F

σ1, . . ., σn: all isomorphisms of F into R, ξ(i) = ξσi

Γ ⊂ SL(2,OF ), γ =

(
a b
c d

)
∈ Γ, γ(i) =

(
a(i) b(i)

c(i) d(i)

)
.

A holomorphic function Ω on Hn is called a Hilbert modular form of

weight k = (k1, . . . , kn) ∈ Zn with respect to Γ if Ω satisfies

Ω(γz) = f(γ(1)z1, . . . , γ(n)zn) = Ω(z)
n∏

i=1

(c(i)zi + d(i))ki

for all γ ∈ Γ, where z = (z1, . . . , zn) ∈ Hn.
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Assume ki ≥ 2, 1 ≤ i ≤ n. Put li = ki − 2.

ρ = ρl1 ⊗ · · · ⊗ ρln, V = Cl1+1 ⊗ · · · ⊗Cln+1 (rep. space of ρ)

Define a V -valued differential n-form on Hn by

d(Ω) = Ω(z)

[
z1
1

]l1

⊗ · · · ⊗
[
zn

1

]ln

dz1 · · · dzn, z ∈ Hn.

d(Ω) ◦ γ = ρ(γ)d(Ω), γ ∈ Γ.

We have an explicit procedure

Ω −→ f(Ω) ∈ Zn(Γ, V ) (n-cocycle).

(Absolute CM-periods, 2003, AMS, Chapter V, §5)

w = (w1, . . . , wn) ∈ Hn: a base point. Put
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I(z) =
∫ z1

w1

· · ·
∫ zn

wn

d(Ω).

Then

ρ(γ)I(γ−1z) =
∫ z1

γ(1)w1

· · ·
∫ zn

γ(n)wn

d(Ω).

H: vector space of all V -valued holomorphic functions on Hn

(γϕ)(z) = ρ(γ)ϕ(γ−1z), ϕ ∈ H.

H: left Γ-module
∂

∂z1
· · · ∂

∂zn
(γI − I) = 0.

Assume n = 2:

γI − I = g(γ; z1) + h(γ; z2), g, h ∈ C1(Γ,H).

dg(γ1, γ2; z1) + dh(γ1, γ2; z2) = 0.
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f(Ω) = dg(γ1, γ2; z1) ∈ Z2(Γ, V ) (2-cocycle).

The cohomology class of f(Ω) doesn’t depend on w and the choice

of g(γ; z1).

Explicitly (n = 2, f = f(Ω))

f(γ1, γ2) =
∫ γ

(1)
1 w1

γ
(1)
1 γ

(1)
2 w1

∫ γ
(2)
1 w2

w2

d(Ω).

Assume Ω ∈ Sk(SL(2,OF )), l1 ≡ l2 mod 2.

Ω(z) =
∑

0¿ξ∈d−1
F

a(ξ)eF (ξz), (Fourier expansion)

where eF (ξz) = exp(2πi
∑n

i=1 ξ(i)zi).
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k0 = max(k1, . . . , kn), k′i = k0 − ki.

L(s,Ω) =
∑

ξE2
F

a(ξ)
n∏

i=1

(ξ(i))k′i/2N(ξ)−s.

R(s,Ω) = (2π)2ns
n∏

i=1

Γ(s− k′i
2
)L(s,Ω).

∫

Rn
+/E2

F

Ω(iy1, . . . , iyn)
n∏

i=1

y
s−k′i/2−1
i dyi = (2π)

∑n
i=1 k′i/2R(s,Ω).

R(s,Ω) = i
∑n

i=1 kiR(k0 − s,Ω).

Assume n = 2, k1 ≥ k2 and the narrow class number of F is one. If
Ω is a Hecke eigen form then

L(s,Ω) = const ·Ds
F

∏

p
(1− λ(p)N(p)−s + N(p)k1−1−2s)−1.

The Ramanujan conjecture for this Euler profuct is proved by Blasius
(Aspects Math. 37 (2006)).
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Assume that Ω is a primitive Hecke eigenform. The nature of the
critical values L(m,Ω) is well understood. Put k0 = min(k1, . . . , kn),
JF = Hom(F,R). Let ϕ be a Hecke character of finite order of F×A .
Let m be an integer such that

k0 − k0

2
< m <

k0 + k0

2
.

Assume that ki mod 2 is independent of i. Then for every ε ∈
(Z/2Z)JF , there exists a constant u(ε,Ω) such that

L(m,Ω⊗ ϕ) ∼ πmnu(ε,Ω)

if ϕ satisfies

ϕ(x) =
∏

τ∈JF

sgn(xτ)
ε(τ)+m, x ∈ F×∞.

(Shimura, Duke Math. J. 1978). There exist 2n constants c±τ (Ω)
such that (if ki > 2, ∀i)

u(ε,Ω) ∼
∏

τ∈JF

c
ε(τ)
τ (Ω).

(Yoshida, Amer. J. Math. 1995. Duke Math. J. 1994.)
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§3. Elimination of the effect of coboundary

Assume n = 2, Γ = PSL(2,OF ), k1 ≡ k2 mod 2, k1 ≥ k2.

ε: fundamental unit

Ω ∈ Sk(Γ), k = (k1, k2), l1 = k1 − 2, l2 = k2 − 2.

Take w = (iε−1, i∞) as a base point. Then

f(γ1, γ2) =
∫ γ

(1)
1 iε−1

γ
(1)
1 γ

(1)
2 iε−1

∫ γ
(2)
1 i∞

i∞
d(Ω).

Let

P =

{(
t u

0 t−1

) ∣∣∣ t ∈ EF , u ∈ OF

}
/{±12}.
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p · i∞ = i∞, p ∈ P implies the parabolic condition

(P) f(pγ1, γ2) = pf(γ1, γ2), p ∈ P.

Let

σ =

(
0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
.

Then

f(σ, µ) = −
∫ iε

iε−1

∫ i∞
0

d(Ω) = (−Ps,t)0≤s≤l1,0≤t≤l2,

Ps,t =
∫ iε

iε−1

∫ i∞
0

Ω(z)zs
1zt

2dz1dz2.

Pm,m−(k1−k2)/2
= (−1)m+1i−(k1−k2)/2(2π)(k1−k2)/2R(m + 1,Ω).
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All critical values L(m,Ω)

l1 − l2
2

+ 1 ≤ m ≤ l1 + l2
2

+ 1

appear as the components of f(σ, µ).

f(σ, µ) has (l1 + 1)(l2 + 1)-components.

Only l2 + 1 components among them are related to critical values.

{e1, . . . , el1+1}: the standard basis of Cl1+1

{e′1, . . . , e′l2+1}: the standard basis of Cl2+1

The coefficient of el1+2−m ⊗ e′(l1+l2)/2+2−m
in f(σ, µ) is

−Pm−1,m−1−(l1−l2)/2
.
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ρ(

(
a 0
0 a−1

)
)(el1+2−m ⊗ e′(l1+l2)/2+2−m)

=N(a)2m−2−l1(el1+2−m ⊗ e′(l1+l2)/2+2−m).

We define the parabolic cohomology group as follows:

Z2
P (Γ, V ) = {f ∈ Z2(Γ, V ) | f is normalized and satisfies (P)},

B̄2(Γ, V ) = {f = db | b ∈ C1(Γ, V ), b(1) = 0},

B2
P (Γ, V ) = B̄2(Γ, V ) ∩ Z2

P (Γ, V ),

H2
P (Γ, V ) = Z2

P (Γ, V )/B2
P (Γ, V ).

Theorem 1. Let i = 1 or 2. Then

dimHi(P, V ) =




0 if l1 6= l2 or N(ε)l1 = −1,

1 if l1 = l2 and N(ε)l1 = 1.
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Now suppose

f 7→ f ′, f, f ′ ∈ Z2
P (Γ, V ),

f ′(γ1, γ2) = f(γ1, γ2) + b(γ1γ2)− γ1b(γ2)− b(γ1).

Then

b(pγ) = pb(γ) + b(p), p ∈ P, γ ∈ Γ.

b|P ∈ Z1(P, V ).

f ′(σ, µ) = f(σ, µ) + b(σµ)− σb(µ)− b(σ).

Suppose l1 6= l2. Then

b(µ) = (µ− 1)b, ∃b ∈ V.

b(σµ)− σb(µ)− b(σ) = (µ−1 − 1)[b(σ) + (1− σ)b].

µ−1 − 1 kills the components related to critical values.
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Theorem 2. If l1 6= l2, then H2(Γ, V ) = H2
P (Γ, V ).

Conclusion: Suppose l1 6= l2. Then we can deduce information

on critical values of L(s,Ω) once we know a parabolic 2-cocycle

attached to Ω. Suppose l1 = l2. The same conclusion holds except

for that we may lose information on L(1,Ω) and L(l1 + 1,Ω), the

critical values at edges.
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§4. Generators and relations

Write Γ = F/R, F is a free group. We have the exact sequence

0 −→ H1(Γ, V ) −→ H1(F , V ) −→ H1(R, V )Γ −→ H2(Γ, V ) −→ 0.

Hence

H2(Γ, V ) ∼= H1(R, V )Γ/Im(H1(F , V )).

Let

OF = Z + Zω

and put

σ =

(
0 1
−1 0

)
, µ =

(
ε 0
0 ε−1

)
, τ =

(
1 1
0 1

)
, η =

(
1 ω
0 1

)
.

It is known (Vaseřstein) that Γ is generated by σ, µ, τ and η. Fur-

thermore we have the relations
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(i) σ2 = 1.

(ii) (στ)3 = 1.

(iii) (σµ)2 = 1.

(iv) τη = ητ.

(v) µτµ−1 = τAηB.

(vi) µηµ−1 = τCηD.

Here we put

ε2 = A + Bω, ε2ω = C + Dω.

The relation (ii) follows from

(vii) σ

(
1 t
0 1

)
σ =

(
1 −t−1

0 1

)
σ

(
−t 1
0 −t−1

)
, t ∈ EF .
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We call the relation group R minimal if it is generated by the cor-

responding elements to (i) ∼ (vii) and their conjugates.

Theorem 3. Let F = Q(
√

5), Γ = PSL(2,OF ). Then R is minimal.

We can prove Theorem 3 by using a theorem of Macbeath.

(Macbeath, Ann. of Math. 1964)

Swan, Advances Math. 1971:

He generalized the theorem of Macbeath and gave explicit gener-

ators and relations for SL(2,OK) when K are imaginary quadratic

fields with small discriminants.
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§5. The action of Hecke operators

We assume that l1 and l2 are even.

Change ρ to ρ′l1 ⊗ ρ′l2 where ρ′l(g) = ρl(g) det(g)−l/2.

Let Γ = PSL(2,OF ) as before.

V is a PGL(2,OF )-module. Let

ν =

(
ε 0
0 1

)
, δ =

(
−1 0
0 1

)
.

ν and δ act on H2(Γ, V ).

Let Γ∗ be the subgroup of PGL(2,OF ) generated by Γ and ν.

Then [Γ∗ : Γ] = 2.
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Let f ∈ Z2
P (Γ, V ), f∗ ∈ Z2(Γ∗, V ): the tranfer of f .

f+ ∈ Z2(Γ, V ): the restriction of f∗.

f∗(σ, µ) = f+(σ, µ) = (1 + ν)f(σ, µ).

Assume OF = Z + Zε. Then

Γ∗ = 〈σ, ν, τ〉.

F∗: the free group on three letters σ̃, ν̃, τ̃ .

π∗ : F∗ −→ Γ∗: the homomorphism such that π∗(γ̃) = γ, γ = σ, ν,

τ .

Γ∗ = F∗/R∗, R∗ = Ker(π∗).
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We have the relations

(i) σ2 = 1, (ii) (στ)3 = 1, (iii) (σν)2 = 1, (iv) τντν−1 = ντν−1τ ,

(v) ν2τν−2 = τA(ντν−1)B. (Here ε2 = A + Bε.)

We have

(∗) H2(Γ∗, V ) ∼= H1(R∗, V )Γ
∗
/Im(H1(F∗, V )),

H1(R∗, V )Γ
∗
= {ϕ ∈ Hom(R∗, V ) | ϕ(grg−1) = gϕ(r), g ∈ F∗, r ∈ R∗}.

Let ϕ ∈ H1(R∗, V )Γ
∗

be a corresponding element to f∗ ∈ Z2(Γ∗, V ).

π∗(g) = ḡ. For f∗ ∈ Z2(Γ∗, V ) (normalized), ∃a ∈ C1(F∗, V ),

f∗(ḡ1, ḡ2) = a(g1) + g1a(g2)− a(g1g2), g1, g2 ∈ F∗.

Z2(Γ∗, V ) 3 f −→ ϕ = a|R∗ ∈ H1(R∗, V )Γ
∗

induces the isomorphism (∗).
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For every γ ∈ Γ∗, we choose γ̃ ∈ F∗ such that π∗(γ̃) = γ and fix it.

We may assume

f∗(γ1, γ2) = −ϕ(γ̃1γ̃2( ˜γ1γ2)
−1).

(iv) and (v) are defining relations for P ∗ = 〈P, ν〉.

By the parabolic condition we may assume that ϕ takes value 0 on

the corresponding elements to (iv) and (v). We may also assume

ϕ(σ̃2) = 0.

Two quantities

A = ϕ((σ̃ν̃)2), B = ϕ((σ̃τ̃)3)

remain to be determined. We have

f∗(σ, µ) = −(1 + ν−1)A. (related to L-values)
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We need to find constraints on A and B. If f∗ is in the plus space

under the action of δ, then

(σν − 1)A = 0, (δ − 1)A = 0.

Let 0 ¿ $ ∈ OF , p = ($),

Γ∗
(
1 0
0 $

)
Γ∗ = td

i=1Γ
∗βi.

Then the action of the Hecke operator T (p) on ϕ is given by the

following formula.
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Let ψ = T (p)ϕ. Suppose γ1γ2 · · · γm = 1 and γj = σ or γj ∈ P ∗.
Then ψ(γ̃1γ̃2 · · · γ̃m) is equal to

c
d∑

i=1

β−1
i ϕ( ˜βiγ1β−1

q1(i)
˜βq1(i)

γ2β−1
q2(i)

· · · ˜βqm−1(i)
γmβ−1

qm(i)(
˜βiγ1γ2 · · · γmβ−1

qm(i))
−1).

Here

βiγjβ
−1
pi(j)

∈ Γ∗, 1 ≤ i ≤ d, pi ∈ Sd,

q1 = p1, qk = pkqk−1, 2 ≤ k ≤ m.

c = $2l1($′)l2.

This is compatible with

f(Ω) 7→ f(Ω|T (p)).
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§6. Numerical examples

Let F = Q(
√

5). Then (i) ∼ (v) are the fundamental relations for

Γ∗ = 〈σ, ν, τ〉.

We consider T (2). We have

Γ∗
(
1 0
0 2

)
Γ∗ = t5

i=1Γ
∗βi,

β1 =

(
1 0
0 2

)
, β2 =

(
1 1
0 2

)
, β3 =

(
1 ε
0 2

)
,

β4 =

(
1 ε2

0 2

)
, β5 =

(
2 0
0 1

)
.

(ε = (1 +
√

5)/2.)

28



Let ϕ ∈ H1(R∗, V )Γ
∗

and put ψ = T (2)ϕ. Then

ψ((σ̃τ̃)3) = c(β−1
3 Z3 + β−1

4 Z4),

where

Z3 = ϕ((
˜(
ε −ε2

2 −ε2

)
τ̃)3), Z4 = ϕ((

˜(
ε2 −ε2

2 −ε

)
)3).

ψ vanishes on the elements corresponding to (iv) and (v) and ψ(σ̃2)

and ψ((σ̃ν̃)2) can be calculated similarly.

Fact 1. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then adding h|R∗, h ∈ H1(F∗, V )

to ϕ (keeping ϕ in the plus space under the action of δ), we may

assume B = 0.
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Therefore our task is to find constraints on A = ϕ((σ̃ν̃)2). Note

that (σν − 1)A = 0. We put x =

(
ε −ε2

2 −ε2

)
τ , and

Z+
A = {v ∈ V | (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3}.

The meaning of xZ3 = Z3:

(i) we must have xZ3 = Z3. (ii) Z3 can be expressed by A.

A linear mapping

ζ+ : Z+
A −→ Cl2+1.

Let v ∈ Z+
A . We let the coefficient of el1+2−m ⊗ e′(l1+l2)/2+2−m

in

(1+ν−1)v be equal to the (l1+l2)/2+2−m-th coefficient of ζ+(v),

for (l1 − l2)/2 + 1 ≤ m ≤ (l1 + l2)/2 + 1.
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Example 1. We take l1 = 8, l2 = 4. Then dimS10,6(Γ) = 1. We
find ζ+(Z+

A ) is one dimensional and consists of scalar multiples of
t(4,0,1,0,4). Hence we obtain

R(7,Ω)/R(5,Ω) = 4, Ω ∈ S10,6(Γ).

My computer calculates this example in 6 seconds.

Example 2. In the same way as in Example 1, we obtain the
following numerical values.

R(9,Ω)/R(7,Ω) = 6, Ω ∈ S14,6(Γ).

R(6,Ω)/R(4,Ω) =
25

6
, Ω ∈ S8,8(Γ).

R(8,Ω)/R(6,Ω) = 7, Ω ∈ S12,8(Γ).

R(10,Ω)/R(8,Ω) =
720

11
, Ω ∈ S12,10(Γ).

The spaces of cusp forms appearing in this example are all one
dimensional.
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Let B+
A be the subspace of Z+

A which represents the contribution

from Im(H1(F∗, V )).

Fact 2. Suppose 0 ≤ l2 ≤ l1 ≤ 20. Then

dimSl1+2,l2+1(Γ) = dimZ+
A /B+

A .

This fact means that the constraints posed on A = ϕ((σ̃ν̃)2) is

enough. (We expect that Fact 1 and Fact 2 always hold.)
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Example 3. We take l1 = 12, l2 = 8. We have dimS14,10(Γ) =

2. Calculating the action of T (2) on Z+
A /B+

A , we find that the

eigenvalues are −2560± 960
√

106. Take an eigenvector in Z+
A /B+

A

and map it by ζ+. Then we find

R(11,Ω)/R(7,Ω) = 1616− 76
√

106,

R(9,Ω)/R(7,Ω) =
58

3
− 5

6

√
106

if 0 6= Ω ∈ S14,10(Γ) satisfies Ω|T (2) = (−2560 + 960
√

106)Ω.

A calculation for the minus space (under ν) yields

R(10,Ω)/R(8,Ω) = 50−
√

106.
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Example 4. We take l1 = l2 = 18. We have dimS20,20(Γ) =

7. Calculating the action of T (2) on Z+
A /B+

A , we find that the

characteristic polynomial of T (2) is (we can use Z−A/B−A which gives

the same result)

(X − 97280)2(X + 840640)(X4 − 1286780X3 + 19006483200X2

+ 27181090390835200X − 22979876427231395840000).

The irreducible factor of degree four corresponds to the base change

part from S20(Γ0(5), (5)); X + 840640 corresponds to the base

change part from S20(SL2(Z)); the factor (X−97280)2 corresponds

to the non base change part. Let Ω ∈ dimS20,20(Γ) be a Hecke

eigenform in the non base change part. A calculation for the plus

part yields the result
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R(18,Ω)/R(10,Ω) = 39355680000,

R(16,Ω)/R(10,Ω) = 33163650,

R(14,Ω)/R(10,Ω) =
1266460

27
,

R(12,Ω)/R(10,Ω) =
26075

216
.

A calculation for the minus part yields the result

R(17,Ω)/R(11,Ω) =
111006792000

803
,

R(15,Ω)/R(11,Ω) =
54618434

365
,

R(13,Ω)/R(11,Ω) =
453159

1606
.
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Here it is remarkable that the denominators are simple.

We note that though there are two Hecke eigenforms in the non

base change part, these ratios are the same for them.

We can show that the L-functions are the same for two Hecke

eigenforms in the non base change part. In fact, let Ω 6= 0 be a

Hecke eigenform in the non base change part and let λ(m) be the

eigenvalue of T (m) for Ω. For the nontrivial automorphism σ of

F , there exists a Hecke eigenform Ωσ 6= 0 such that Ωσ|T (m) =

λ(mσ)Ωσ (cf. my paper in Amer. J. Math. 1995). Since Ω is not a

base change, we have λ(m) 6= λ(mσ) for some m. Hence Ωσ is not

a constant multiple of Ω. On the other hand, L(s,Ωσ) is equal to

L(s,Ω).
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Let F = Q(
√

13). We have 3 = (4 +
√

13)(4−√13).

Put p = (4−√13), $ = 4−√13.

We consider T (p).

Γ∗
(
1 0
0 $

)
Γ∗ = t4

i=1Γ
∗βi,

β1 =

(
1 0
0 $

)
, β2 =

(
1 1
0 $

)
, β3 =

(
1 ε
0 $

)
,

β4 =

(
$ 0
0 1

)
.

(ε = (3 +
√

13)/2.)
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Put ψ = T (p)ϕ. We have

ψ((σ̃τ̃)3) = cβ−1
3 Z3,

where

Z3 = ϕ((σ̃
˜(

ε−1 2ε− 7
0 ε

)
σ̃

˜(
1 −2ε
0 1

)
)3).

Let

x = σ

(
ε−1 2ε− 7
0 ε

)
σ

(
1 −2ε
0 1

)

Z+
A = {v ∈ V | (σν − 1)v = 0, (δ − 1)v = 0, xZ3 = Z3}.
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Example 5. We take l1 = l2 = 10. We have dimS12,12(Γ) = 11.

We find that the characteristic polynomial of T (p) is

(X − 252)(X4 + 252X3 − 496198X2 − 116604684X + 25202349477)

(X6 + 244X5 − 665334X4 − 129598956X3 + 109163403621X2

+ 14522233287672X − 255121008509808).

The irreducible factor of degree four corresponds to the non base

change part; X − 252 corresponds to the base change part from

S12(SL2(Z)) and the irreducible factor of degree six corresponds to

the base change from S12(Γ0(13), (13)). Put

f(X) = X4 + 252X3 − 496198X2 − 116604684X + 25202349477.

Let θ be a root of f(X) and put K = Q(θ). We find that K contains

a quadratic subfield F = Q(
√

7 · 5167). Put d = 7 · 5167. Then a

root of f(X) is given by

ψ = −(63 +
√

d) +
√

223837− 360
√

d.
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We have

N(223837− 360
√

d) = 13 · 563 · 6205151.

This number is consistent with the table given in a paper of Doi-

Hida-Ishii (Inv. Math. 134 (1998)).

For the Hecke eigenform Ω ∈ S12,12(Γ) such that Ω|T (p) = ψΩ, we

find

R(10,Ω)/R(6,Ω) =
3732099 + 18663

√
d

5
,

R(8,Ω)/R(6,Ω) =
24367 + 121

√
d

20
.
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§7. Comparison of two methods

Method A: The method initiated by Shimura’s 1976 paper.

Method B: The cohomological method initiated by Shimura’s 1959

paper.

Method A is conceptually simpler and more general. For example if

[F : Q] > 2, B can’t be used at present.

Suppose [F : Q] = 2. In a well worked out case, F = Q(
√

5) for

example, we can get many examples by a single program rather

quickly by method B. It can also be used to compute characterictic

polynomials of Hecke operators.

Suppose F = Q. I don’t know which is faster. But modular symbols

(method B) are now used by many people.
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§8. A remark on periods unrelated to critical values

We can deduce some information on the components of the cocycle

f(Ω) which are not related to critical values in certain cases. We

use the notation of section 6 assuming F = Q(
√

5). For simplicity,

we consider the plus space assuming l1 6= l2.

Let us recall

(8.1) H2(Γ∗, V )+ ∼= Z+
A /B+

A ,

which is verified for 4 ≤ l2 < l1 ≤ 20. We assume that (8.1) always

holds.
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ζ+ : Z+
A −→ Cl2+1.

ζ+ picks up information on critical values.

ζ+(B+
A ) = 0: A crucial point of our calculation of L-values

ζ+ consists of (at most) [l2/4]+1 linearly independent linear forms

on Z+
A .

We have

Z+
A ⊃ Ker(ζ+) ⊃ B+

A , dim ζ+(Z+
A ) = dimZ+

A /Ker(ζ+).

Put

g+ = dimKer(ζ+)/B+
A , L = Hom(Z+

A /B+
A ,C).

We regard an element of L as a linear form on Z+
A which is trivial

on B+
A . Let L0 be the subspace of L spanned by the components

of ζ+.
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Now our idea is very simple:

Fix l2.

We have g+ > 0 when l1 is sufficiently large by the dimensionality

reason.

(For example, g+ = 1 when (l1, l2) = (12,6), (18,6), (18,8).)

Hence there exists l ∈ L which does not belong to L0. In view of

(8.1), l defines the linear form of Z2(Γ∗, V )+ which is trivial on the

coboundary space. Considering the image under l of the cocycle

obtained from Ω, we can deduce information on periods which are

not related to critical values.
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More concretely:

χ: the system of eigenvalues of Hecke operators attached to Ω.

(Z+
A /B+

A )(χ): the χ-isotypic component of Z+
A /B+

A .

Z+
A (χ): its pull back under the canonical homomorphism Z+

A −→
Z+

A /B+
A .

By the method of section 6, we can calculate (Z+
A /B+

A )(χ) alge-

braically. Take ϕ ∈ Z+
A (χ) whose components are in Q. On the

other hand, we can calculate the corresponding element ψ ∈ Z+
A (χ)

from values of the cocycle f(Ω). We have ψ ≡ cϕ mod B+
A with

c ∈ C× and therefore

(8.2) l(ψ) = cl(ϕ).

The equation (8.2) contains information on the values of f(Ω) un-

related to the critical values.
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