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Motivation of this work

D : a Homogeneous Siegel domain

Σ : the Shilov boundary of D

P(z,ζ ) (z ∈ D, ζ ∈ Σ) :

the Poisson kernel of D defined à la Hua

L : the Laplace–Beltrami operator of D

(with respect to the Bergman kernel)

Theorem (Hua-Look (’59), Korányi (’65), Xu (’79))

L P(·,ζ ) = 0 ∀ζ ∈ Σ ⇐⇒ D : symm.

D : symmetric

⇐⇒
def

∀z ∈ D, ∃σz ∈ Hol(D) s.t.{
σ 2

z = identity,

z is an isolated fixed point of σz.
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[⇐] well known

• Hua-Look : direct and case-by-case computation
for 4 classical domains

• Korányi : stronger result for general symmetric

domains

P(·,ζ ) is annihilated by any Hol(D)◦-invariant

differential operator without const. term

(Hol(D)◦ is semisimple for symmetric D)

[⇒] less known

• Lu Ru-Qian : An example of non-symmetric Siegel
domain for which P(·,ζ ) is not killed by L

(Chinese Math. Acta, 7 (1965))

• Xu Yichao : though the proof is hardly traceable
at least for me

(1) Needs to understand his own theory of “N-Siegel domains”,

(2) Some of cited papers of his are written in Chinese

not available in English.



The purpose of this talk (my contribution)

Wants to know a geometric reason that the
theorem is true

(→ geometric relationship with a Cayley transform)

• Connection with a geometric property of a
bounded model of homogeneous Siegel
domains

Validity of some norm equality
⇐⇒ Symmetry of the domain

Specialists’ folklore

There is no canonical bounded model for
non-(quasi)symmetric Siegel domains.

My standpoint

Appropriate bounded model varies with
problems one treats.



• Canonical bounded model for symmetric Siegel domains

· · · · · · Harish-Chandra model

of a Hermitian symmetric space(
Open unit ball of a positive Hermitian JTS
w.r.t the spectral norm

)
• Canonical bounded model for quasisymmetric Siegel domains

· · · · · · by Dorfmeister (1980)

Image of a Siegel domain under the Cayley transform

naturally defined in terms of Jordan algebra structure

(requires a proof for the bddness of the image, of course)

• For general homogeneous Siegel domains
We can consider

• Cayley transf. assoc. to the Szegö kernel
(N, today’s talk)

• Cayley transf. assoc. to the Bergman kernel
(N, JLT, 2001)

• Cayley transf. assoc. to the char. ftn of the cone
(R. Penney, 1996)

etc. . .

♣ More generally, one can define a family of Cayley transform
parametrized by admissible linear forms

(N, to appear in Diff. Geom. Appl.)



Siegel Domains

V : a real vector space
∪
Ω : a regular open convex cone

( ⇐⇒
def

contains no entire line)

W := V
C

(w �→ w∗ : conjugation w.r.t. V )

U : another complex vector space

Q : U ×U →W , Hermitian sesquilinear Ω-positive

i.e.,

{
Q(u′,u) = Q(u,u′)∗

Q(u,u) ∈Ω\{0} (0 �= ∀u ∈U)

D := {(u,w) ∈U ×W ; w+w∗−Q(u,u) ∈Ω}
Siegel domain (of type II)

Assume that D is homogeneous

i.e., Hol(D) � D transitively

• If U = {0}, then D = Ω+ iV .
(tube domain or type I domain)



∃G : split solvable � D simply transitively

g := Lie(G) has a structure of normal j-algebra.
(Pjatetskii-Shapiro)


∃J : integrable almost complex structure on g

∃ω : admissible linear form on g, i.e.,

〈x |y〉ω := 〈[Jx,y],ω〉 defines a J-invariant

inner product on g.

Example (Koszul ’55). Koszul form.

〈x,β 〉 := tr
(
ad(Jx)− J ad(x)

)
(x ∈ g).

β is admissible

• In fact, 〈x |y〉β is the real part of the Hermitian

inner product defined by the Bergman metric

on D ≈ G (up to a positive scalar multiple).



Pseudoinverse assoc. with the Szegö kernel

S : the Szegö kernel of D
(= reprod. kernel of the Hardy space)

Hardy space H2(D)
holomorphic functions F on D such that

sup
t∈Ω

∫
U

∫
V

∣∣F(
u, t + 1

2Q(u,u)+ ix
)∣∣2

dxdm(u) <∞

∃η : holomorphic on Ω+ iV such that

S(z1,z2) = η
(
w1 +w∗

2−Q(u1,u2)
)

(z j = (u j,wj) ∈ D)



In more detail

∃H ⊂ G : s.t. H � Ω simply transitively

E ∈Ω (base point; virtual identity matrix)

Then H ≈Ω (diffeo) by h �→ hE.

For each χ : H → R
×
+ one dim. repre.

define ∆χ on Ω by

∆χ(hE) := χ(h) (h ∈ H)

• ∆χ extends to a holomorphic function on
Ω+ iV as the Laplace transform of the
Riesz distribution on the dual cone Ω∗

(Gindikin, Ishi (J. Math. Soc. Japan, 2000)), where

Ω∗ := {ξ ∈V ∗ ; 〈x,ξ 〉 > 0 ∀x ∈Ω\{0}}.

• ∃χ , ∃c > 0 s.t. η = c∆χ



Cayley transform
Rez > 0 |w| < 1

•0 •1• −1•0 •1

•∞

z =
1+w
1−w

= −1+
2

1−w
w =

z−1
z+1

= 1− 2
z+1

If one puts in a complex semisimple Jordan algebra

z =
e+w
e−w

, w =
z− e
z+ e

,

then the above figure is the case for symmetric tube
domains.

• In general, if one can define something like (z+1)−1

(denominator), one has a Cayley transform by
1−2(z+1)−1 for tube domains.



For each x ∈Ω, define I (x) ∈V ∗ by

〈v,I (x)〉 := −Dv logη(x)(
Dv f (x) := d

dt f (x+ tv)
∣∣
t=0

)
• I (λx) = λ−1I (x) (λ > 0)

Prop. (1) I (x) ∈Ω∗ and I : Ω�Ω∗ is bij.

(2) I extends analytically to a rational map
W →W ∗.

(3) One also has an explicit formula for
I −1 : Ω∗�Ω, which continues analytically
to a rational map W ∗ →W .
Thus I is birational.

(4) I : Ω+ iV �I (Ω+ iV ) is biholo.

Remark. If χ : H → R
×
+ is defined in a natural way by

an admissible linear form, then the above proposition

holds for I = Iχ [N, to appear in Diff. Geom. Appl.].



Cayley transform

E∗ := I (E) ∈Ω∗.

C(w) := E∗−2I (w+E) for tube domains

C (u,w) := 2〈Q(u, ·),I (w+E)〉⊕C(w)
∈U† ∈W ∗

U† : the space of antilinear forms on U

Prop. (1) C : D� C (D) is birational
and biholomorphic.

(2) C −1 can be written explicitly.

Theorem [N]. C (D) is bounded
(in U†⊕W ∗).

Remark. (1) Cχ and Cχ can be defined similarly from

Iχ . One can prove that Cχ(D) is bounded [N].

(2) For general χ , Cχ(D) for symmetric D is not the

standard Harish-Chandra model of a Hermitian

symmetric space.



Norm equality

e := (0,E) ∈ D : base point

〈x |y〉ω : J-inv. inner prod. on g

� Upon G ≡ D by g �→ g · e, we have
Hermitian inner prod. on Te(D) ≡U ⊕W

� Herm. inner prod. (· | ·)ω and norm ‖ · ‖ω
on the ‘dual’ vector space U†⊕W ∗.

Σ : the Shilov boundary of D
Σ =

{
(u,w) ∈U×W ; 2Rew = Q(u,u)

}
• Ψω ∈ g : trad(x) = 〈x |Ψω 〉ω (∀x ∈ g)

S(z1,z2) = η(w1 +w∗
2−Q(u1,u2)) with η = c∆χ

∆χ(hE) = χ(h) = e−〈logh,α〉 (α ∈ h∗ ⊂ g∗).

Theorem [N].

‖C (ζ )‖2
ω = 〈Ψω,α〉 for ∀ζ ∈ Σ

⇐⇒ D is symm. and ω|[g,g] = γ ·β |[g,g] (γ > 0).

〈x,β 〉 = tr(ad(Jx)− J ad(x)) : Koszul form



〈x |y〉ω inner prod. on g

� left invariant Riemannian metric on G

� Laplace–Beltrami operator Lω on G

Upon G ≡ D by g �→ g · e,
we have, for ω = β , Lβ = c′L (c′ > 0)

(L : Laplace–Beltrami operator� the Bergman metric of D).

Prop (Urakawa ’79). Lω = −Λ+Ψω.

• Λ := X2
1 + · · ·+X2

dimg ∈U(g),

• {X1, . . . ,Xdimg
} is an ONB of g w.r.t. 〈 · | · 〉ω

(Λ is independent of choice of ONB.)

• 〈 · |Ψω 〉ω = trad(·),
• Elements of U(g) are regarded as left invariant

differential operators on G — thus if X ∈ g,

X f (x) = d
dt f (xexp tX)

∣∣
t=0.



Poisson kernel
S(z1,z2) : the Szegö kernel of the Siegel domain D

We know

S(z1,z2) = η(w1 +w∗
2−Q(u1,u2)), η = c∆χ .

S(z,ζ ) for z ∈ D and ζ ∈ Σ has a meaning.

P(z,ζ ) :=
|S(z,ζ )|2
S(z,z)

(z ∈ D, ζ ∈ Σ) :

the Poisson kernel of D

PG
ζ (g) := P(g · e, ζ ) (g ∈ G).

Theorem [N].

LωPG
ζ (e) = (−‖C (ζ )‖2

ω + 〈Ψω,α〉)PG
ζ (e),

where α is related to χ by χ(expT ) = e−〈T,α〉.

Remark. By P(g · z, ζ ) = χ(g)P(z, g−1 ·ζ ) (g ∈ G),
LωPG

ζ = 0 ∀ζ ∈ Σ ⇐⇒ LωPG
ζ (e) = 0 ∀ζ ∈ Σ.

Theorem. LωPG
ζ = 0 for ∀ζ ∈ Σ

⇐⇒ D is symm. and ω|[g,g] = γ ·β |[g,g] (γ > 0).



Validity of the norm equality for symmetric D (ω = β )

D : symmetric =⇒ D := C (D) is the Harish-Chandra
model of a Hermitian symmetric space

In particular, D is circular (Note C (e) = 0).

G := Hol(D)◦ : semisimple Lie gr. (with trivial center)

K := StabG(0) : maximal cpt subgr. of G

Circularity of D ( =⇒ K is linear)
+ K-inv. of the Bergman metric
=⇒ K ⊂ Unitary group{

C : Σ � 0 �→ −E∗,

Shilov boundary ΣD of D = K · (−E∗).

Since ΣD is also a G-orbit ΣD = G · (−E∗) and since
Σ is an orbit of a nilpotent subgroup of G ⊂ Hol(D)◦,
we get

C (Σ) ⊂ G · (−E∗) = ΣD

= K · (−E∗)
⊂ {z ; ‖z‖β = ‖E∗‖β}.

We see easily that ‖E∗‖2
β = 〈Ψβ ,α〉 in this case.



Norm equality =⇒ symmetry of D

Assumption : ‖C (ζ )‖2
ω = 〈Ψω,α〉 for ∀ζ ∈ Σ.

(1) Reduction to a quasisymmetric domain

κ : the Bergman kernel of D
 κ(z1,z2) = η0(w1 +w∗

2−Q(u1,u2)),
∃χ0 : H → R

×
+, ∃c0 > 0 s.t. η0 = c0∆χ0

,

∆χ0
(hE) = χ0(h): ∆χ0

� hol. ftn on Ω+ iV

〈x |y〉κ := DxDy log∆χ0
(E) : inner prod. of V

Def. D = D(Ω,Q) is quasisymmetric

⇐⇒
def

Ω is selfdual w.r.t. 〈 · | · 〉κ .

Define a non-associative prod. xy in V by

〈xy |z〉κ = −1
2DxDyDz log∆χ0

(E).

Prop. (Dorfmeister, D’Atri, Dotti, Vinberg).

D is quasisymmetric ⇐⇒ prod. xy is Jordan.

In this case, V is a Euclidean Jordan algebra.



g = a�n

a : abelian, n : sum of a-root spaces
(positive roots only)

Possible forms of roots:
1
2(αk ±α j) ( j < k), αk,

1
2αk

Always dimgαk
= 1 (∀k).

Prop. (D’Atri and Dotti ’83; D : irred.)

D is quasisymmetric

⇐⇒




(1) dimg(αk+α j)/2 is indep. of j,k,

(2) dimgαk/2 is indep. of k.

Extend 〈 · | · 〉κ to a C-bilinear form on W ×W .

(u1 |u2)κ := 〈Q(u1,u2) |E 〉κ
defines a Hermitian inner product on U .

For each w ∈W , define ϕ(w) ∈ End
C
(U) by

(ϕ(w)u1 |u2)κ = 〈Q(u1,u2) |w〉κ.

Clearly ϕ(E) = identity operator on U .



Prop. (Dorfmeister). D is quasisymmetric

=⇒ w �→ ϕ(w) is a Jordan ∗-repre. of W = V
C{ ϕ(w∗) = ϕ(w)∗,

ϕ(w1w2) = 1
2

(
ϕ(w1)ϕ(w2)+ϕ(w2)ϕ(w1)

)
.

(2) Reduction : quasisymm =⇒ symm

Quasisymmetric Siegel domain

↔
{

Euclidean Jordan algebra V and

Jordan ∗-representation ϕ of W = V
C
.

Symmetric Siegel domain

↔ Positive Hermitian JTS

The following strange formula fills the gap:

ϕ(w)ϕ(Q(u,u′))u = ϕ(Q(ϕ(w)u,u′))u,

where u,u′ ∈U and w ∈W .



W U W U

Z = W ⊕ U �

natural action

complex semisimple Jordan algebra ∗-repre. of W

Jordan algebra

W = V
C

with V Euclidean JA

Prop. (Satake). Quasisymm. D is symm.

⇐⇒ V and ϕ come from a positive Hermitian

JTS this way.

Definition of triple product: z j = (u j,w j) ( j = 1,2,3),
{z1,z2,z3} := (u,w), where

u := 1
2ϕ(w3)ϕ(w∗

2)u1 + 1
2ϕ(w1)ϕ(w∗

2)u3

+ 1
2ϕ(Q(u1,u2))u3 + 1

2ϕ(Q(u3,u2))u1,

w := (w1w∗
2)w3 +w1(w

∗
2w3)−w∗

2(w1w3)

+ 1
2Q(u1,ϕ(w∗

3)u2)+ 1
2Q(u3,ϕ(w∗

1)u2).



Prop. (Dorfmeister).

Irreducible quasisymmetric D is symmetric

⇐⇒ ∃ f1, . . . , fr: Jordan frame of V s.t.
with Uk := ϕ( fk)U we have

ϕ(Q(u1,u2))u1 = 0

for ∀u1 ∈U1 and ∀u2 ∈U2.

In a similar way

Theorem [N; Diff. Geom. Appl., 15-1 (2001)].
Berezin transforms on D commute with Lω
⇐⇒ D is symmetric and

ω|[g,g] = γ ·β[g,g] (γ > 0).

Related norm equality

CB : Cayley transf. assoc. to the Bergman kernel.

Theorem [N; Transform. Groups, 6-3 (2001)].

‖CB(g · e)‖ω = ‖CB(g
−1 · e)‖ω holds for ∀g ∈ G

⇐⇒ D is symmetric and
ω|[g,g] = γ ·β[g,g] (γ > 0).


