Geometric Norm Equality Related to

 the Harmonicity of the Poisson-Hua Kernel for Homogeneous Siegel DomainsTakaaki NOMURA

(Kyoto University)

Twente
December 18, 2001

Motivation of this work

D : a Homogeneous Siegel domain
Σ : the Shilov boundary of D
$P(z, \zeta)(z \in D, \zeta \in \Sigma):$
the Poisson kernel of D defined à la Hua
\mathscr{L} : the Laplace-Beltrami operator of D
(with respect to the Bergman kernel)

Theorem (Hua-Look ('59), Korányi ('65), Xu ('79))
$\mathscr{L} P(\cdot, \zeta)=0 \forall \zeta \in \Sigma \Longleftrightarrow D:$ symm.
D : symmetric

$$
\begin{aligned}
& \Longleftrightarrow \Longleftrightarrow \forall z \in D, \exists \sigma_{z} \in \operatorname{Hol}(D) \text { s.t. } \\
&\left\{\begin{array}{l}
\sigma_{z}^{2}=\text { identity }, \\
z \text { is an isolated fixed point of } \sigma_{z} .
\end{array}\right.
\end{aligned}
$$

$[\Leftarrow] \quad$ well known

- Hua-Look : direct and case-by-case computation for 4 classical domains
- Korányi : stronger result for general symmetric domains $P(\cdot, \zeta)$ is annihilated by any $\operatorname{Hol}(D)^{\circ}$-invariant differential operator without const. term $\left(\operatorname{Hol}(D)^{\circ}\right.$ is semisimple for symmetric $\left.D\right)$
$[\Rightarrow$] less known
- Lu Ru-Qian : An example of non-symmetric Siegel domain for which $P(\cdot, \zeta)$ is not killed by \mathscr{L} (Chinese Math. Acta, $\mathbf{7}$ (1965))
- Xu Yichao : though the proof is hardly traceable at least for me
(1) Needs to understand his own theory of " N-Siegel domains",
(2) Some of cited papers of his are written in Chinese not available in English.

The purpose of this talk (my contribution)
Wants to know a geometric reason that the theorem is true
(\rightarrow geometric relationship with a Cayley transform)

- Connection with a geometric property of a bounded model of homogeneous Siegel domains

Validity of some norm equality
\Longleftrightarrow Symmetry of the domain

Specialists' folklore

There is no canonical bounded model for non-(quasi)symmetric Siegel domains.

My standpoint
Appropriate bounded model varies with problems one treats.

- Canonical bounded model for symmetric Siegel domains Harish-Chandra model
of a Hermitian symmetric space $\binom{$ Open unit ball of a positive Hermitian JTS }{ w.r.t the spectral norm }
- Canonical bounded model for quasisymmetric Siegel domains by Dorfmeister (1980)

Image of a Siegel domain under the Cayley transform naturally defined in terms of Jordan algebra structure (requires a proof for the bddness of the image, of course)

- For general homogeneous Siegel domains We can consider
- Cayley transf. assoc. to the Szegö kernel
(N, today's talk)
- Cayley transf. assoc. to the Bergman kernel
(N, JLT, 2001)
- Cayley transf. assoc. to the char. ftn of the cone
(R. Penney, 1996)
etc...
\& More generally, one can define a family of Cayley transform parametrized by admissible linear forms
(N , to appear in Diff. Geom. Appl.)

Siegel Domains

V : a real vector space

\cup
Ω : a regular open convex cone $(\underset{\text { def }}{\Longleftrightarrow}$ contains no entire line)
$W:=V_{\mathbb{C}} \quad\left(w \mapsto w^{*}:\right.$ conjugation w.r.t. $\left.V\right)$
U : another complex vector space
$Q: U \times U \rightarrow W$, Hermitian sesquilinear Ω-positive

$$
\text { i.e., }\left\{\begin{array}{l}
Q\left(u^{\prime}, u\right)=Q\left(u, u^{\prime}\right)^{*} \\
Q(u, u) \in \bar{\Omega} \backslash\{0\}(0 \neq \forall u \in U)
\end{array}\right.
$$

$$
D:=\left\{(u, w) \in U \times W ; w+w^{*}-Q(u, u) \in \Omega\right\}
$$

Siegel domain (of type II)

Assume that D is homogeneous
i.e., $\operatorname{Hol}(D) \curvearrowright D$ transitively

- If $U=\{0\}$, then $D=\Omega+i V$.
(tube domain or type I domain)
$\exists G$: split solvable $\curvearrowright D$ simply transitively
$\mathfrak{g}:=\operatorname{Lie}(G)$ has a structure of normal j-algebra.
(Pjatetskii-Shapiro)
$(\exists J$: integrable almost complex structure on \mathfrak{g}
$\exists \omega$: admissible linear form on \mathfrak{g}, i.e., $\langle x \mid y\rangle_{\omega}:=\langle[J x, y], \omega\rangle$ defines a J-invariant inner product on \mathfrak{g}.

Example (Koszul '55). Koszul form.

$$
\langle x, \beta\rangle:=\operatorname{tr}(\operatorname{ad}(J x)-J \operatorname{ad}(x)) \quad(x \in \mathfrak{g}) .
$$

β is admissible

- In fact, $\langle x \mid y\rangle_{\beta}$ is the real part of the Hermitian inner product defined by the Bergman metric on $D \approx G$ (up to a positive scalar multiple).

Pseudoinverse assoc. with the Szegö kernel
S : the Szegö kernel of D (= reprod. kernel of the Hardy space)

Hardy space $H^{2}(D)$
holomorphic functions F on D such that

$$
\sup _{t \in \Omega} \int_{U} \int_{V}\left|F\left(u, t+\frac{1}{2} Q(u, u)+i x\right)\right|^{2} d x d m(u)<\infty
$$

$\exists \eta$: holomorphic on $\Omega+i V$ such that

$$
\begin{aligned}
& S\left(z_{1}, z_{2}\right)=\eta\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right) \\
& \quad\left(z_{j}=\left(u_{j}, w_{j}\right) \in D\right)
\end{aligned}
$$

In more detail

$\exists H \subset G$: s.t. $H \curvearrowright \Omega$ simply transitively
$E \in \Omega$ (base point; virtual identity matrix)
Then $H \approx \Omega$ (diffeo) by $h \mapsto h E$.
For each $\chi: H \rightarrow \mathbb{R}_{+}^{\times}$one dim. repre. define Δ_{χ} on Ω by

$$
\Delta_{\chi}(h E):=\chi(h) \quad(h \in H)
$$

- Δ_{χ} extends to a holomorphic function on $\Omega+i V$ as the Laplace transform of the Riesz distribution on the dual cone Ω^{*} (Gindikin, Ishi (J. Math. Soc. Japan, 2000)), where

$$
\Omega^{*}:=\left\{\xi \in V^{*} ;\langle x, \xi\rangle>0 \forall x \in \bar{\Omega} \backslash\{0\}\right\} .
$$

- $\exists \chi, \exists c>0$ s.t. $\eta=c \Delta_{\chi}$

Cayley transform

If one puts in a complex semisimple Jordan algebra

$$
z=\frac{e+w}{e-w}, \quad w=\frac{z-e}{z+e},
$$

then the above figure is the case for symmetric tube domains.

- In general, if one can define something like $(z+1)^{-1}$ (denominator), one has a Cayley transform by $1-2(z+1)^{-1} \quad$ for tube domains.

For each $x \in \Omega$, define $\mathscr{I}(x) \in V^{*}$ by

$$
\begin{aligned}
& \langle v, \mathscr{I}(x)\rangle:=-D_{v} \log \eta(x) \\
& \quad\left(D_{v} f(x):=\left.\frac{d}{d t} f(x+t v)\right|_{t=0}\right)
\end{aligned}
$$

- $\mathscr{I}(\lambda x)=\lambda^{-1} \mathscr{I}(x) \quad(\lambda>0)$

Prop. (1) $\mathscr{I}(x) \in \Omega^{*}$ and $\mathscr{I}: \Omega \rightarrow \Omega^{*}$ is bij.
(2) \mathscr{I} extends analytically to a rational map $W \rightarrow W^{*}$.
(3) One also has an explicit formula for $\mathscr{I}^{-1}: \Omega^{*} \rightarrow \Omega$, which continues analytically to a rational map $W^{*} \rightarrow W$.
Thus \mathscr{I} is birational.
(4) $\mathscr{I}: \Omega+i V \rightarrow \mathscr{I}(\Omega+i V)$ is biholo.

Remark. If $\chi: H \rightarrow \mathbb{R}_{+}^{\times}$is defined in a natural way by an admissible linear form, then the above proposition holds for $\mathscr{I}=\mathscr{I}_{x}[\mathrm{~N}$, to appear in Diff. Geom. Appl.].

Cayley transform

$E^{*}:=\mathscr{I}(E) \in \Omega^{*}$.
$C(w):=E^{*}-2 \mathscr{I}(w+E) \quad$ for tube domains
$\mathscr{C}(u, w):=\frac{2\langle Q(u, \cdot), \mathscr{I}(w+E)\rangle}{\in U^{\dagger}} \oplus \frac{C(w)}{\in W^{*}}$
U^{\dagger} : the space of antilinear forms on U

Prop. (1) $\mathscr{C}: D \rightarrow \mathscr{C}(D)$ is birational and biholomorphic.
(2) \mathscr{C}^{-1} can be written explicitly.

Theorem [N]. $\mathscr{C}(D)$ is bounded

$$
\text { (in } U^{\dagger} \oplus W^{*} \text {). }
$$

Remark. (1) C_{χ} and \mathscr{C}_{χ} can be defined similarly from \mathscr{I}_{χ}. One can prove that $\mathscr{C}_{x}(D)$ is bounded [N].
(2) For general $\chi, \mathscr{C}_{\chi}(D)$ for symmetric D is not the standard Harish-Chandra model of a Hermitian symmetric space.

Norm equality

$\mathrm{e}:=(0, E) \in D$: base point
$\langle x \mid y\rangle_{\omega}: J$-inv. inner prod. on \mathfrak{g}
\rightsquigarrow Upon $G \equiv D$ by $g \mapsto g \cdot \mathrm{e}$, we have Hermitian inner prod. on $T_{\mathrm{e}}(D) \equiv U \oplus W$
\rightsquigarrow Herm. inner prod. $(\cdot \mid \cdot)_{\omega}$ and norm $\|\cdot\|_{\omega}$ on the 'dual' vector space $U^{\dagger} \oplus W^{*}$.
Σ : the Shilov boundary of D
$\Sigma=\{(u, w) \in U \times W ; 2 \operatorname{Re} w=Q(u, u)\}$

- $\Psi_{\omega} \in \mathfrak{g}: \operatorname{trad}(x)=\left\langle x \mid \Psi_{\omega}\right\rangle_{\omega}(\forall x \in \mathfrak{g})$
$S\left(z_{1}, z_{2}\right)=\eta\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)$ with $\eta=c \Delta_{\chi}$

$$
\Delta_{\chi}(h E)=\chi(h)=e^{-\langle\log h, \alpha\rangle}\left(\alpha \in \mathfrak{h}^{*} \subset \mathfrak{g}^{*}\right)
$$

Theorem [N].
$\|\mathscr{C}(\zeta)\|_{\omega}^{2}=\left\langle\Psi_{\omega}, \alpha\right\rangle$ for $\forall \zeta \in \Sigma$
$\Longleftrightarrow D$ is symm. and $\left.\omega\right|_{[g, \mathfrak{g}]}=\left.\gamma \cdot \beta\right|_{[g, \mathfrak{g}]}(\gamma>0)$.
$\langle x, \beta\rangle=\operatorname{tr}(\operatorname{ad}(J x)-J \operatorname{ad}(x))$: Koszul form
$\langle x \mid y\rangle_{\omega}$ inner prod. on \mathfrak{g}
\rightsquigarrow left invariant Riemannian metric on G
\rightsquigarrow Laplace-Beltrami operator \mathscr{L}_{ω} on G
Upon $G \equiv D$ by $g \mapsto g \cdot \mathrm{e}$,
we have, for $\omega=\beta, \mathscr{L}_{\beta}=c^{\prime} \mathscr{L}\left(c^{\prime}>0\right)$
(LL : Laplace-Beltrami operator $\not \rightsquigarrow \rightsquigarrow$ the Bergman metric of D).

Prop (Urakawa '79). $\quad \mathscr{L}_{\omega}=-\Lambda+\Psi_{\omega}$.

- $\Lambda:=X_{1}^{2}+\cdots+X_{\text {dimg }}^{2} \in U(\mathfrak{g})$,
- $\left\{X_{1}, \ldots, X_{\text {dim } \mathfrak{g}}\right\}$ is an ONB of \mathfrak{g} w.r.t. $\langle\cdot \mid \cdot\rangle_{\omega}$
(Λ is independent of choice of ONB.)
- $\left\langle\cdot \mid \Psi_{\omega}\right\rangle_{\omega}=\operatorname{trad}(\cdot)$,
- Elements of $U(\mathfrak{g})$ are regarded as left invariant differential operators on G - thus if $X \in \mathfrak{g}$,

$$
X f(x)=\left.\frac{d}{d t} f(x \exp t X)\right|_{t=0} .
$$

Poisson kernel

$S\left(z_{1}, z_{2}\right)$: the Szegö kernel of the Siegel domain D
We know
$S\left(z_{1}, z_{2}\right)=\eta\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right), \quad \eta=c \Delta_{\chi}$.
$S(z, \zeta)$ for $z \in D$ and $\zeta \in \Sigma$ has a meaning.
$P(z, \zeta):=\frac{|S(z, \zeta)|^{2}}{S(z, z)} \quad(z \in D, \zeta \in \Sigma):$
the Poisson kernel of D
$P_{\zeta}^{G}(g):=P(g \cdot \mathrm{e}, \zeta) \quad(g \in G)$.

Theorem [N].

$$
\mathscr{L}_{\omega} P_{\zeta}^{G}(e)=\left(-\|\mathscr{C}(\zeta)\|_{\omega}^{2}+\left\langle\Psi_{\omega}, \alpha\right\rangle\right) P_{\zeta}^{G}(e)
$$

where α is related to χ by $\chi(\exp T)=e^{-\langle T, \alpha\rangle}$.
Remark. By $P(g \cdot z, \zeta)=\chi(g) P\left(z, g^{-1} \cdot \zeta\right)(g \in G)$,

$$
\mathscr{L}_{\omega} P_{\zeta}^{G}=0 \forall \zeta \in \Sigma \Longleftrightarrow \mathscr{L}_{\omega} P_{\zeta}^{G}(e)=0 \forall \zeta \in \Sigma .
$$

Theorem. $\quad \mathscr{L}_{\omega} P_{\zeta}^{G}=0$ for $\forall \zeta \in \Sigma$
$\Longleftrightarrow D$ is symm. and $\left.\omega\right|_{[\mathfrak{g}, \mathfrak{g}]}=\left.\gamma \cdot \beta\right|_{[\mathfrak{g}, \mathfrak{g}]}(\gamma>0)$.

Validity of the norm equality for symmetric $D(\omega=\beta)$
D : symmetric $\Longrightarrow \mathscr{D}:=\mathscr{C}(D)$ is the Harish-Chandra model of a Hermitian symmetric space
In particular, \mathscr{D} is circular $($ Note $\mathscr{C}(\mathrm{e})=0)$.
$\mathrm{G}:=\operatorname{Hol}(\mathscr{D})^{\circ}$: semisimple Lie gr. (with trivial center)
$\mathrm{K}:=\operatorname{Stab}_{\mathrm{G}}(0):$ maximal cpt subgr. of G
Circularity of $\mathscr{D}(\Longrightarrow \mathrm{K}$ is linear $)$

+ K-inv. of the Bergman metric
$\Longrightarrow K \subset$ Unitary group

$$
\left\{\mathscr{C}: \Sigma \ni 0 \mapsto-E^{*},\right.
$$

$\left\{\right.$ Shilov boundary $\Sigma_{\mathscr{D}}$ of $\mathscr{D}=\mathrm{K} \cdot\left(-E^{*}\right)$.
Since $\Sigma_{\mathscr{D}}$ is also a G-orbit $\Sigma_{\mathscr{D}}=\mathrm{G} \cdot\left(-E^{*}\right)$ and since Σ is an orbit of a nilpotent subgroup of $G \subset \operatorname{Hol}(D)^{\circ}$, we get

$$
\begin{aligned}
\mathscr{C}(\Sigma) & \subset \mathrm{G} \cdot\left(-E^{*}\right)=\Sigma_{\mathscr{D}} \\
& =\mathrm{K} \cdot\left(-E^{*}\right) \\
& \subset\left\{z ;\|z\|_{\beta}=\left\|E^{*}\right\|_{\beta}\right\} .
\end{aligned}
$$

We see easily that $\left\|E^{*}\right\|_{\beta}^{2}=\left\langle\Psi_{\beta}, \alpha\right\rangle$ in this case.

Norm equality \Longrightarrow symmetry of D

Assumption : $\|\mathscr{C}(\zeta)\|_{\omega}^{2}=\left\langle\Psi_{\omega}, \alpha\right\rangle$ for $\forall \zeta \in \Sigma$.
(1) Reduction to a quasisymmetric domain
κ : the Bergman kernel of D
$\left(\begin{array}{l}\kappa\left(z_{1}, z_{2}\right)=\eta_{0}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right), \\ \exists \chi_{0}: H \rightarrow \mathbb{R}_{+}^{\times}, \exists c_{0}>0 \text { s.t. } \eta_{0}=c_{0} \Delta_{\chi_{0}}, \\ \Delta_{\chi_{0}}(h E)=\chi_{0}(h): \Delta_{\chi_{0}} \rightsquigarrow \text { hol. ftn on } \Omega+i V\end{array}\right.$
$\langle x \mid y\rangle_{\kappa}:=D_{x} D_{y} \log \Delta_{\chi_{0}}(E)$: inner prod. of V

Def. $D=D(\Omega, Q)$ is quasisymmetric \Longleftrightarrow def Ω is selfdual w.r.t. $\langle\cdot \mid \cdot\rangle_{\kappa}$.

Define a non-associative prod. $x y$ in V by

$$
\langle x y \mid z\rangle_{\kappa}=-\frac{1}{2} D_{x} D_{y} D_{z} \log \Delta_{\chi_{0}}(E)
$$

Prop. (Dorfmeister, D'Atri, Dotti, Vinberg).

D is quasisymmetric \Longleftrightarrow prod. $x y$ is Jordan.
In this case, V is a Euclidean Jordan algebra.
$\mathfrak{g}=\mathfrak{a} \ltimes \mathfrak{n}$
\mathfrak{a} : abelian, \mathfrak{n} : sum of \mathfrak{a}-root spaces
(positive roots only)
Possible forms of roots:

$$
\frac{1}{2}\left(\alpha_{k} \pm \alpha_{j}\right)(j<k), \quad \alpha_{k}, \quad \frac{1}{2} \alpha_{k}
$$

Always $\operatorname{dim} \mathfrak{g}_{\alpha_{k}}=1(\forall k)$.

Prop. (D'Atri and Dotti '83; D : irred.)

D is quasisymmetric
$\Longleftrightarrow\left\{\begin{array}{l}(1) \operatorname{dim} \mathfrak{g}_{\left(\alpha_{k}+\alpha_{j}\right) / 2} \text { is indep. of } j, k, \\ (2) \operatorname{dim},\end{array}\right.$
(2) $\operatorname{dim} \mathfrak{g}_{\alpha_{k} / 2}$ is indep. of k.

Extend $\langle\cdot \mid \cdot\rangle_{\kappa}$ to a \mathbb{C}-bilinear form on $W \times W$.

$$
\left(u_{1} \mid u_{2}\right)_{\kappa}:=\left\langle Q\left(u_{1}, u_{2}\right) \mid E\right\rangle_{\kappa}
$$

defines a Hermitian inner product on U.
For each $w \in W$, define $\varphi(w) \in \operatorname{End}_{\mathbb{C}}(U)$ by

$$
\left(\varphi(w) u_{1} \mid u_{2}\right)_{\kappa}=\left\langle Q\left(u_{1}, u_{2}\right) \mid w\right\rangle_{\kappa} .
$$

Clearly $\varphi(E)=$ identity operator on U.

Prop. (Dorfmeister). D is quasisymmetric
$\Longrightarrow w \mapsto \varphi(w)$ is a Jordan $*$-repre. of $W=V_{\mathbb{C}}$

$$
\left\{\begin{aligned}
\varphi\left(w^{*}\right) & =\varphi(w)^{*} \\
\varphi\left(w_{1} w_{2}\right) & =\frac{1}{2}\left(\varphi\left(w_{1}\right) \varphi\left(w_{2}\right)+\varphi\left(w_{2}\right) \varphi\left(w_{1}\right)\right)
\end{aligned}\right.
$$

(2) Reduction: quasisymm \Longrightarrow symm

Quasisymmetric Siegel domain
$\leftrightarrow\left\{\begin{array}{l}\text { Euclidean Jordan algebra } V \text { and } \\ \text { Jordan } * \text {-representation } \varphi \text { of } W=V_{\mathbb{C}} .\end{array}\right.$

Symmetric Siegel domain \leftrightarrow Positive Hermitian JTS

The following strange formula fills the gap:

$$
\varphi(w) \varphi\left(Q\left(u, u^{\prime}\right)\right) u=\varphi\left(Q\left(\varphi(w) u, u^{\prime}\right)\right) u,
$$

where $u, u^{\prime} \in U$ and $w \in W$.

$Z=W \oplus U$

W	U

complex semisimple Jordan algebra

$W=V_{C}$

with V Euclidean JA

Prop. (Satake). Quasisymm. D is symm. $\Longleftrightarrow V$ and φ come from a positive Hermitian JTS this way.

Definition of triple product: $z_{j}=\left(u_{j}, w_{j}\right)(j=1,2,3)$, $\left\{z_{1}, z_{2}, z_{3}\right\}:=(u, w)$, where

$$
\begin{aligned}
u:= & \frac{1}{2} \varphi\left(w_{3}\right) \varphi\left(w_{2}^{*}\right) u_{1}+\frac{1}{2} \varphi\left(w_{1}\right) \varphi\left(w_{2}^{*}\right) u_{3} \\
& +\frac{1}{2} \varphi\left(Q\left(u_{1}, u_{2}\right)\right) u_{3}+\frac{1}{2} \varphi\left(Q\left(u_{3}, u_{2}\right)\right) u_{1} \\
w:= & \left(w_{1} w_{2}^{*}\right) w_{3}+w_{1}\left(w_{2}^{*} w_{3}\right)-w_{2}^{*}\left(w_{1} w_{3}\right) \\
& +\frac{1}{2} Q\left(u_{1}, \varphi\left(w_{3}^{*}\right) u_{2}\right)+\frac{1}{2} Q\left(u_{3}, \varphi\left(w_{1}^{*}\right) u_{2}\right) .
\end{aligned}
$$

Prop. (Dorfmeister).

Irreducible quasisymmetric D is symmetric
$\Longleftrightarrow \exists f_{1}, \ldots, f_{r}$: Jordan frame of V s.t. with $U_{k}:=\varphi\left(f_{k}\right) U$ we have

$$
\varphi\left(Q\left(u_{1}, u_{2}\right)\right) u_{1}=0
$$

$$
\text { for } \forall u_{1} \in U_{1} \text { and } \forall u_{2} \in U_{2} \text {. }
$$

In a similar way
Theorem [N; Diff. Geom. Appl., 15-1 (2001)].
Berezin transforms on D commute with \mathscr{L}_{ω} $\Longleftrightarrow D$ is symmetric and

$$
\left.\omega\right|_{[\mathfrak{g}, \mathfrak{g}]}=\gamma \cdot \beta_{[\mathfrak{g}, \mathfrak{g}]}(\gamma>0) .
$$

Related norm equality

\mathscr{C}_{B} : Cayley transf. assoc. to the Bergman kernel.
Theorem [N; Transform. Groups, 6-3 (2001)].
$\left\|\mathscr{C}_{B}(g \cdot \mathrm{e})\right\|_{\omega}=\left\|\mathscr{C}_{B}\left(g^{-1} \cdot \mathrm{e}\right)\right\|_{\omega}$ holds for $\forall g \in G$
$\Longleftrightarrow D$ is symmetric and

$$
\left.\omega\right|_{[\mathfrak{g}, \mathfrak{g}]}=\gamma \cdot \beta_{[\mathfrak{g}, \mathfrak{g}]}(\gamma>0) .
$$

