Right Multiplication Operators in the Clan Structure of a Euclidean Jordan Algebra

Takaaki NOMURA

(Kyushu University)

Tambov University, Russia
April 22, 2009

Homogeneous Open Convex Cones

V : a real vector space with an inner product
$V \supset \Omega$: a regular open convex cone (contains no entire line)

- $G(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: linear automorphism group of Ω This is a Lie group as a closed subgroup of $G L(V)$.
- Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G(\Omega) \curvearrowright \Omega$ is transitive

Example: $V=\operatorname{Sym}(r, \mathbb{R}) \supset \Omega:=\operatorname{Sym}(r, \mathbb{R})^{++}$:
$G L(r, \mathbb{R}) \curvearrowright \Omega \quad$ by $G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$
This is a selfdual homogeneous open convex cone (symmetric cone).
Ω is selfdual $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ s.t. $\Omega=\{y \in V ;\langle x \mid y\rangle>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\}$ (the RHS is the dual cone taken relative to $\langle\cdot \mid \cdot\rangle$)

Symmetric Cones \rightleftarrows Euclidean Jordan Algebras
$\Omega \rightleftarrows V$: algebraic str. in the ambient VS (\equiv tangent space at a ref. pt.)

- V with a bilinear product $x y$ is called a Jordan algebra if for all $x, y \in V$
(1) $x y=y x$,
(2) $x^{2}(x y)=x\left(x^{2} y\right)$.
- A real Jordan algebra is said to be Euclidean if $\exists\langle\cdot \mid \cdot\rangle$ s.t.

$$
\langle x y \mid z\rangle=\langle x \mid y z\rangle \quad(\forall x, y)
$$

List of Irreducible Symmetric Cones:

$\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R}), \quad A \circ B:=\frac{1}{2}(A B+B A)$
$\Omega=\operatorname{Herm}(r, \mathbb{C})^{++} \subset V=\operatorname{Herm}(r, \mathbb{C})$
$\Omega=\operatorname{Herm}(r, \mathbb{H})^{++} \subset V=\operatorname{Herm}(r, \mathbb{H})$
$\Omega=\operatorname{Herm}(3, \mathbb{O})^{++} \subset V=\operatorname{Herm}(3, \mathbb{O})$
$\Omega=\Lambda_{n} \subset V=\mathbb{R}^{n}$ (n-dimensional Lorentz cone)

By Vinberg's theory (1963)
Homogeneous Open Convex Cones \rightleftarrows Clans with unit element
$\Omega \rightleftarrows V$: algebraic str. in the ambient VS (\equiv tangent space at a ref. pt.)

- V with a bilinear product $x \triangle y=L(x) y=R(y) x$ is called a Clan if
(1) $[L(x), L(y)]=L(x \triangle y-y \triangle x)$,
(2) $\exists s \in V^{*}$ s.t. $\langle x \triangle y, s\rangle$ defines an inner product,
(3) Each $L(x)$ has only real eigenvalues.
- The Case of Symmetric Cones: $G(\Omega)$ is reductive.

JA str. of $V: V \equiv T_{e}(\Omega) \equiv \mathfrak{p}$ of the Cartan decomposition $\mathfrak{g}(\Omega)=\mathfrak{k}+\mathfrak{p}$ Indeed $\mathfrak{p}=\{M(x) ; x \in V\}$. (The Jordan product is commutative.)

- The Case of General Homogeneous Convex Cones: simply transitive action of Iwasawa subgroup of $G(\Omega)$
Clan str. of $V: V \equiv T_{e}(\Omega) \equiv$ Iwasawa subalgebra $\mathfrak{s}:=\mathfrak{a}+\mathfrak{n}$ of $\mathfrak{g}(\Omega)$ Indeed $\mathfrak{s}=\{L(x) ; x \in V\}$. (The clan product is non-commutative, in general.)
Ω : homogeneous open convex cone, $G(\Omega)$: linear automorphism group of Ω, H : Isasawa subgroup of $G(\Omega)$.
H is a split solvable Lie group, acting simply transitively on Ω.
a function f on Ω, is relatively invariant (w.r.t. H)
$\stackrel{\text { def }}{\Longleftrightarrow} \exists \chi: 1$-dim. rep. of H s.t. $f(g x)=\chi(g) f(x) \quad$ (for all $g \in H, x \in \Omega)$.
Theorem [lshi 2001].
$\exists \Delta_{1}, \ldots, \Delta_{r}(r:=\operatorname{rank}(\Omega))$: relat. inv. irred. polynomial functions on V s.t any relat. inv. polynomial function $P(x)$ on V is written as

$$
P(x)=c \Delta_{1}(x)^{m_{1}} \cdots \Delta_{r}(x)^{m_{r}} \quad\left(c=\text { const., }\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{\geqq 0}^{r}\right) .
$$

Theorem [Ishi-N. 2008].
W : the complexification of the clan V,
$R(w)$: the right multiplication operator by w in W
\Longrightarrow irreducible factors of $\operatorname{det} R(w)$ are just $\Delta_{1}(w), \ldots, \Delta_{r}(w)$.

Example: $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R})$

- Product in V as a clan: $x \triangle y=\underline{x} y+y^{t}(\underline{x})$, where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$,
we put $\underline{x}:=\left(\begin{array}{ccccc}\frac{1}{2} x_{11} & & & 0 & \\ & \frac{1}{2} x_{22} & & & \\ & & \ddots & & \\ & & x_{j i} & \ddots & \\ & & & & \frac{1}{2} x_{n n}\end{array}\right)(i<j) . \quad$ Thus $x=\underline{x}+{ }^{t}(\underline{x})$.
In this case we have $\operatorname{det} R(y)=\Delta_{1}(y) \cdots \Delta_{r}(y)$.

The case of general irreducible symmetric cone $\Omega \subset V$
V : a simple Euclidean Jordan algebra of rank r with unit element e,
$\Omega:=\operatorname{Int}\left\{x^{2} ; x \in V\right\}$: the symmetric cone in V,
$G:=G(\Omega)^{\circ}$: the connected component of $G(\Omega)$,
$\mathfrak{g}:=\operatorname{Lie}(G), \mathfrak{k}:=\operatorname{Der}(V), \mathfrak{p}:=\{M(x) ; x \in V\}$.
Then $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} with $\theta X=-^{t} X$,
We fix $\left\{\begin{array}{l}\langle x \mid y\rangle:=\operatorname{tr}(x y) \text { : the trace inner product of } V, \\ c_{1}, \ldots, c_{r}: \text { a Jordan frame of } V \text {, so that } c_{1}+\cdots+c_{r}=e .\end{array}\right.$
$V=\bigoplus_{1 \leqq j \leqq k \leqq r} V_{j k}$: the corresponding Peirce decomposition, where
$V_{j j}:=\mathbb{R} c_{j} \quad(j=1, \ldots, r)$,
$V_{j k}:=\left\{x \in V ; M\left(c_{i}\right) x=\frac{1}{2}\left(\delta_{i j}+\delta_{i k}\right) x \quad(i=1,2, \ldots, r)\right\} \quad(1 \leqq j<k \leqq r)$.
$\mathfrak{a}:=\mathbb{R} M\left(c_{1}\right) \oplus \cdots \oplus \mathbb{R} M\left(c_{r}\right)$: maximal abelian in \mathfrak{p}, $\alpha_{1}, \ldots, \alpha_{r}$: basis of \mathfrak{a}^{*} dual to $M\left(c_{1}\right), \ldots, M\left(c_{r}\right)$.
Then the positve \mathfrak{a}-roots are $\frac{1}{2}\left(\alpha_{k}-\alpha_{j}\right)(j<k)$, the corresponding root spaces are described as

$$
\mathfrak{n}_{k j}:=\mathfrak{g}_{\left(\alpha_{k}-\alpha_{j}\right) / 2}=\left\{z \square c_{j} ; z \in V_{j k}\right\} \quad(a \square b:=M(a b)+[M(a), M(b)]) .
$$

With $\mathfrak{n}:=\sum_{j<k} \mathfrak{n}_{k j}$, we get Iwasawa decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$.
Let $A:=\exp \mathfrak{a}, N:=\exp \mathfrak{n}$.
Then $H:=N \rtimes A$ acts on Ω simply transitively, so that we have an diffeomorphism

$$
H \ni h \mapsto h e \in \Omega .
$$

This gives rise to a linear isomorohism $\mathfrak{h}:=\operatorname{Lie}(H) \ni X \mapsto X e \in V$. Its inverse map is denoted as $V \ni v \mapsto X_{v} \in \mathfrak{h}$, so that $X_{v} e=v$. Now the clan \triangle product in V is by definition

$$
v_{1} \triangle v_{2}:=X_{v_{1}} v_{2}=R\left(v_{2}\right) v_{1} .
$$

Lemma. (1) If $v=a_{1} c_{1}+\cdots+a_{r} c_{r}\left(a, \in \mathbb{R}, \ldots, a_{r} \in \mathbb{R}\right)$, then $X_{v}=M(v)$.
(2) If $v \in V_{j k}(j<k)$, then $X_{v}=2\left(v \square c_{j}\right)$.

Let $\Xi:=V_{1 r} \oplus \cdots \oplus V_{r-1, r}$.

$W:=\Xi \oplus \mathbb{R} c_{r}, \quad V^{\prime}:=\bigoplus_{1 \leqq i \leqq j \leqq r-1} V_{i j}$
Proposition. W is a two-sided ideal in the clan V :

$$
X_{v}(W) \subset W, \quad R_{v}(W) \subset W \quad(\forall v \in V)
$$

In what follows, we put $X_{v}^{W}:=\left.X_{v}\right|_{W}, \quad R_{v}^{W}:=\left.R_{v}\right|_{W}$. Then

Corollary. By writing $v \in V$ as $v=v^{\prime}+w\left(v^{\prime} \in V^{\prime}, w \in W\right)$, the operator R_{v} is of the form $R_{v}=\left(\begin{array}{c|c}R_{v^{\prime}}^{\prime} & O \\ * & R_{v}^{W}\end{array}\right)$.

Analysis of R_{v}^{W}
Recall $V^{\prime}=V_{0}\left(c_{r}\right), \Xi=V_{1 / 2}\left(c_{r}\right)$, the Peirce 0 - and $1 / 2$ - spaces respectively.
The Jordan subalgebra V^{\prime} has a representation ϕ on Ξ : given by $\phi\left(v^{\prime}\right) \xi=2 v^{\prime} \xi$.
$\phi: V^{\prime} \rightarrow \operatorname{End}(\Xi)$ satisfies:
(1) $\phi\left(e^{\prime}\right)=\operatorname{Id}_{\Xi}\left(e^{\prime}:=c_{1}+\cdots+c_{r-1}\right)$,
(2) $\phi\left(v_{1}^{\prime} v_{2}^{\prime}\right)=\frac{1}{2}\left(\phi\left(v_{1}^{\prime}\right) \phi\left(v_{2}^{\prime}\right)+\phi\left(v_{2}^{\prime}\right) \phi\left(v_{1}^{\prime}\right)\right)$.

On the other hand, if $v^{\prime} \in V^{\prime}$, we have $R_{v^{\prime}}(\Xi) \subset \Xi$, so that we set $R_{v^{\prime}}^{\Xi}:=\left.R_{v^{\prime}}\right|_{\Xi}$.
Proposition. $R_{v^{\prime}}^{\Xi}=\phi\left(v^{\prime}\right)$.

Proposition. By writing $v \in V$ as $v=v^{\prime}+\xi+v_{r} c_{r}\left(v^{\prime} \in V^{\prime}, \quad \xi \in \Xi\right.$, $v_{r} \in \mathbb{R}$), the operator R_{v}^{W} is of the form

$$
R_{v}^{W}=\left(\begin{array}{c|c}
\phi\left(v^{\prime}\right) & \frac{1}{2}\left\langle\cdot \mid c_{r}\right\rangle \xi \\
\hline\langle\cdot \mid \xi\rangle c_{r} & v_{r} I_{\mathbb{R} c_{r}}
\end{array}\right) .
$$

We renormalize the inner product in $W=\Xi+\mathbb{R} c_{r}$:

$$
\left\langle\eta+y_{r} c_{r} \mid \eta^{\prime}+y_{r}^{\prime} c_{r}\right\rangle_{W}=\left\langle\eta \mid \eta^{\prime}\right\rangle+\frac{1}{2} y_{r} y_{r}^{\prime} \quad\left(\eta, \eta^{\prime} \in \Xi \text { and } y_{r}, y_{r}^{\prime} \in \mathbb{R}\right)
$$

Then we have a more comfortable expression:

$$
R_{v}^{W}=\left(\begin{array}{c|c}
\phi\left(v^{\prime}\right) & \left\langle\cdot \mid c_{r}\right\rangle_{W} \xi \\
\hline\langle\cdot \mid \xi\rangle_{W} c_{r} & v_{r} I_{\mathbb{R} c_{r}}
\end{array}\right) \quad\left(v=v^{\prime}+\xi+v_{r} c_{r}\right)
$$

Jordan algebra principal minors
Jordan frame c_{1}, \ldots, c_{r} gives

$$
\mathbb{R} c_{1}=V^{(1)} \subset V^{(2)} \subset \cdots \subset V^{(r)}=V, \quad V^{(k)}:=\bigoplus_{1 \leqq i \leqq j \leqq k} V_{i j}
$$

$\operatorname{det}^{(k)}$: the deterninant of the Jordan algebra $V^{(k)}$, $P^{(k)}$: the orthogonal projector $V \rightarrow V^{(k)}$,
$\Delta_{k}(x):=\operatorname{det}^{(k)}\left(P_{k} x\right)$: the k-th Jordan algebra prioncipal minor.
Fact. $\Delta_{1}, \ldots, \Delta_{r}$ are the basic relative invariants associated to the symmetric cone Ω of V.

$$
\begin{aligned}
& \text { Theorem. } \operatorname{det} R(v)=\Delta_{1}(v)^{d} \cdots \Delta_{r-1}(v)^{d} \Delta_{r}(v) \text {, where } \\
& d=\text { common dimension of } V_{i j}(i<j) \text {. } \\
& d=1 \text { for } \operatorname{Sym}(r, \mathbb{R}), \quad d=\operatorname{dim}_{\mathbb{R}} \mathbb{K} \text { for } \operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{C}, \mathbb{H}, \mathbb{O}), \\
& r=2, d=n-2 \text { for } \Omega=\Lambda_{n}(n \geqq 3) .
\end{aligned}
$$

The formula is nice in view of $\operatorname{dim} V=r+\frac{d}{2} \cdot r(r-1)$, because

$$
\operatorname{deg}\left(\Delta_{1}(v)^{d} \cdots \Delta_{r-1}(v)^{d} \Delta_{r}(v)\right)=d(1+\cdots+(r-1))+r=r+\frac{d}{2} \cdot r(r-1)
$$

Non-selfdual Irreducible Homogeneous Convex Cones linearly isomorphic to the dual cones

- Ω is selfdual $\Longleftrightarrow \exists T$: positive definite selfadjoint operator s.t. $T(\Omega)=\Omega^{*}$

$$
\left(\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for } \forall x \in \bar{\Omega} \backslash\{0\}\}\right)
$$

- Even though there is no positive definite selfadjoint operator T s.t. $T(\Omega)=\Omega^{*}$, we might find such T if we do not require the positive definiteness.
- If one accepts reducible ones, then $\Omega_{0} \oplus \Omega_{0}^{*}$ just gives an example. Thus the irreducibility counts for much here.
- The list in [Kaneyuki-Tsuji] of irreducible homogeneous open convex cones ($\operatorname{dim} \leq 10$) is described up to linear isomoprhisms. There is one non-selfdual irreducible homogeneous convex cone (7-dimensional) identified with its dual cone.
- In an exercise of Faraut-Korányi's book, a hint is given to prove that the Vinberg cone is never linerly isomorphic to its dual cone. Then the non-selfduality follows from this immediately.

We asuume $m \geqq 1$.
$\boldsymbol{e}:=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right) \in \mathbb{R}^{m+1}, \quad I_{m+1}:(m+1) \times(m+1)$ unit matrix
$V:=\left\{x:=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\prime t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ \boldsymbol{\xi}_{\boldsymbol{\xi}} & \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) ; \begin{array}{ll}x_{1} \in \mathbb{R}, & x_{2} \in \mathbb{R}, \quad X \in \operatorname{Sym}(m, \mathbb{R}) \\ \boldsymbol{\xi} \in \mathbb{R}^{m+1}, & \boldsymbol{x}^{\prime} \in \mathbb{R}^{m},\end{array}\right\}$
We note $V \subset \operatorname{Sym}(2 m+2, \mathbb{R})$, and take $\Omega:=\{x \in V ; x \gg 0\}$.
When $m=1$, we have $x=\left(\begin{array}{cccc}x_{1} & 0 & x^{\prime} & \xi_{1} \\ 0 & x_{1} & 0 & \xi_{2} \\ x^{\prime} & 0 & X & x^{\prime \prime} \\ \xi_{1} & \xi_{2} & x^{\prime \prime} & x_{2}\end{array}\right)$.

Homogeneity of Ω

\mathbf{H} acts on Ω by $\mathbf{H} \times \Omega \ni(h, x) \mapsto h x^{t} h$. The action is in fact simply transitive. We have $\mathbf{H}=\mathbf{N} \rtimes \mathbf{A}$ with

$$
\begin{aligned}
& \mathbf{A}:=\left\{\begin{array}{cc}
a:=\left(\begin{array}{c|cc}
a_{1} I_{m+1} & 0 & 0 \\
\hline 0 & A & 0 \\
0 & 0 & a_{2}
\end{array}\right) ; \begin{array}{cc}
a_{j}>0 \quad(j=1,2), \\
\text { matrix with positive diagonals }
\end{array} \\
\mathbf{N}:=\left\{\begin{array}{ccc}
n:=\left(\begin{array}{c|cc}
I_{m+1} & 0 & 0 \\
\hline \boldsymbol{n}^{\prime t} \boldsymbol{e} & N & 0 \\
\boldsymbol{n}^{\prime}, \boldsymbol{n}^{\prime \prime} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{m+1} \\
\boldsymbol{\nu}^{t} & \boldsymbol{n}^{\prime \prime} & 1
\end{array}\right) ; & N \in G L(m, \mathbb{R}) \text { is strictly } \\
\text { lower triangular }
\end{array}\right\} .
\end{array}\right.
\end{aligned}
$$

In solving $x=n a^{\dagger} n(x \in \Omega$: given $)$ we obtain basic relative invariants.

Basic relative invariants: \quad For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{t t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) \in V$,

$$
\begin{aligned}
& \Delta_{1}(x):=x_{1}, \\
& \Delta_{j}(x):=\operatorname{det}\left(\begin{array}{c|c}
x_{1} & { }^{t} \boldsymbol{x}_{j-1}^{\prime} \\
\boldsymbol{x}_{j-1}^{\prime} \mid X_{j-1}
\end{array}\right) \quad(j=2, \ldots, m+1) \\
&\left(\begin{array}{ccc}
\left.X_{k}:=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & & \vdots \\
x_{k 1} & \cdots & x_{k k}
\end{array}\right), \quad \boldsymbol{x}_{k}^{\prime}:=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{k}^{\prime}
\end{array}\right) \in \mathbb{R}^{k}\right), \\
\Delta_{m+2}(x):=x_{1} \operatorname{det}\left(\begin{array}{ccc}
x_{1} & { }^{t} \boldsymbol{x}^{\prime} & \xi_{1} \\
\boldsymbol{x}^{\prime} & X & \boldsymbol{x}^{\prime \prime} \\
\xi_{1} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}
\end{array}\right)-\left(\|\boldsymbol{\xi}\|^{2}-\xi_{1}^{2}\right) \operatorname{det}\binom{x_{1}{ }^{t} \boldsymbol{x}^{\prime}}{\boldsymbol{x}^{\prime} \mid X} \\
& \left({ }^{t} \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{m+1}\right)\right) .
\end{array}\right.
\end{aligned}
$$

Note $\operatorname{deg} \Delta_{m+2}=m+3$.

Inner product in V : For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\prime t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ \boldsymbol{\xi}^{t} \boldsymbol{\xi} & \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right), y=\left(\begin{array}{c|cc}y_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{y}^{\prime} & \boldsymbol{\eta} \\ \hline \boldsymbol{y}^{t} \boldsymbol{e} & Y & \boldsymbol{y}^{\prime \prime} \\ { }^{t} \boldsymbol{\eta} & \boldsymbol{y}^{t} & y_{2}\end{array}\right)$
$\langle x \mid y\rangle:=x_{1} y_{1}+\operatorname{tr}(X Y)+x_{2} y_{2}+2\left(\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}^{\prime}+\boldsymbol{x}^{\prime \prime} \cdot \boldsymbol{y}^{\prime \prime}+\boldsymbol{\xi} \cdot \boldsymbol{\eta}\right)$

We consider the dual cone Ω^{*} taken with respect to this inner product:

$$
\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for } \forall x \in \bar{\Omega} \backslash\{0\}\} .
$$

Define a linear operator T_{0} on V by $T_{0} x=\left(\begin{array}{c|cc}x_{2} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime \prime} J & \boldsymbol{\xi} \\ \hline J \boldsymbol{x}^{\prime \prime} \boldsymbol{e} & J X J & J \boldsymbol{x}^{\prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime} J & x_{1}\end{array}\right) \quad(x \in V)$,
where $J \in \operatorname{Sym}(m, \mathbb{R})$ is given by $J=\left(\begin{array}{ccc}0 & & 1 \\ & . & \\ 1 & & 0\end{array}\right)$.

Theorem [Ishi-N. 2009]. $\quad \Omega^{*}=T_{0}(\Omega)$.

For $h:=\left(\begin{array}{c|cc}h_{1} I_{m+1} & 0 & 0 \\ \hline \boldsymbol{h}^{\prime t} \boldsymbol{e} & H & 0 \\ { }^{t} \boldsymbol{\zeta} & { }^{t} \boldsymbol{h}^{\prime \prime} & h_{2}\end{array}\right) \in \mathbf{H}$, we set $\check{h}:=\left(\begin{array}{c|cc}h_{2} I_{m+1} & 0 & 0 \\ \hline J \boldsymbol{h}^{\prime t} \boldsymbol{e} & J^{t} H J & 0 \\ { }^{t} \boldsymbol{\zeta} & { }^{t} \boldsymbol{h}^{\prime} J & h_{1}\end{array}\right)$.
Then $h \mapsto \check{h}$ is an involutive anti-automorphism of \mathbf{H}.

$$
\rho(h) x:=h x^{t} h \quad(h \in \mathbf{H}, x \in \Omega), \quad \sigma(h):=T_{0} \rho(h) T_{0}(h \in \mathbf{H}) .
$$

Lemma. $\langle\rho(h) x \mid y\rangle=\langle x \mid \sigma(\breve{h}) y\rangle \quad(x, y \in V, h \in \mathbf{H})$.

Conjecture. Ω with $\operatorname{rank} \Omega=r$ is selfdual \Longleftrightarrow the degrees of basic relative invariants associated to Ω and Ω^{*} are both $1,2, \ldots, r$.

