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P(N,R) :={x € Sym(N,R); >0} (N=1,2,...)

GL(N,R) ~ P(N,R) transitively by GL(N,R) x Z(N,R) > (g,z) — gx'qg
| restriction

H*(N,R):={g9 € GL(N,R) ; lower triangular with diagonals > 0}

—> the action is simply transitive (stabilizer is trivial)

P(N,R)={g9'g; g H'(N,R)} = H'(N,R) -
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P(N,R) :={x € Sym(N,R); >0} (N=1,2,...)

GL(N,R) ™~ P(N,R) transitively by GL(N,R) x Z(N,R) > (g, z) — gx'qg
| restriction

H*(N,R):={g9 € GL(N,R) ; lower triangular with diagonals > 0}

—> the action is simply transitive (stabilizer is trivial)

P(N,R)={g'g; g H'(N,R)} = H'(N,R) - I

generalization focused on homogeneity
P (N,R) > homogeneous convex cones

V. a real vector space (dim V' < oo) with an inner product
V' D ) a regular open convex cone (containing no entire line)
={g € GL(V) ; g(Q2) = Q}: the of
(a Lie group as a closed subgroup of GL(V))

def

() is < GL(Q)) ™ Q) is transitive.



Vinberg (1963) introduced a non-associative matrix algebra with x.

This algebra is called a T-algebra.

Any homogeneous convex cone = {hh* ; h € H'} (T-algbera products),
where H* := {h ; lower triangular with diagonals > 0}

Theoretically beautiful analogue of Z(N,R) ={g'g; g € H"(N,R)}.
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Vinberg (1963) introduced a non-associative matrix algebra with x.

This algebra is called a T-algebra.

Any homogeneous convex cone = {hh* ; h € H'} (T-algbera products),
where H* := {h ; lower triangular with diagonals > 0}

Theoretically beautiful analogue of Z(N,R) ={g'g; g € H"(N,R)}.

In practice:

e hard to treat matrices without associative law.

For applications:

e desirable to have an easier access to homogeneous convex cones.

Another purpose:

e Stop using T-algebras (too many requirements in the definition).

e Rewrite the basics in the language of Vinberg algebras (renamed from clans).
It should have been klans following Russian original, for there is an English
(and French) word clan.



Vinberg’s theory for homogeneous convex cones

Given a homogeneous convex cone () C V

R

JH (unique upto conjugation) split solvable s.t. H ™ ) simply transitively.
Fix £ € ). Then H > h+ hE € ()is a diffeomorphism.
lts derivative at [, i.e., the map ) 2 1"+ TE € V is a linear isomorphism.

(b = Lie(H))
VeeV, 1 L(x)ebhst. Lx)E =x.
(note: V32— L(x) € h C Z(V) is also linear)

We introduce a bilinear product by + /Ay = L(x)y in V.
(we do not mind the associative law)

V is a Vinberg algebra, and E is the unit element of V.
The H-orbit /F through E is an open convex cone linearly equiv. to €).
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Vinberg Algebras (Vinberg 1963)

— Definition 1
V is a real VS with a bilinear product = Ay = L(x)y.
V is a Vinberg algebra PLEN
(1) [L(2), Ly)] = Lz Ay — y Aa) (Y, € V),
(2) ds € V* s.t. s(x /A y) defines an inner product of V/,
(3) Each L(z) has only real eigenvalues.

e Associative law is not assumed for A\.



11

Vinberg Algebras (Vinberg 1963)

— Definition 1
V is a real VS with a bilinear product z Ay = L(x)y.
V is a Vinberg algebra &
(1) [L(z), L(y)l = Lz Ay —y Ax) (Va,y € V),
(2) ds € V* s.t. s(w /A y) defines an inner product of V/,
(3) Each L(z) has only real eigenvalues.

e Associative law is not assumed for A.
e In this talk we always assume that V' has a unit element.
¢ (1) — |z,y,2] =|y,x, 2] (Va,y,z € V),
where [z, y,z] =2z A (yAz) — (x Ay) A z: the associator.

e Algebras with (1) are called left-symmetric.
e \We sometimes encounter left-symmetric algebras in mathematics and physics.
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Realization of homogeneous cones

We retrun to the beginning so that we have ) C V/, with a Vinberg algebra V.
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Realization of homogeneous cones

We retrun to the beginning so that we have {2 C V/, with a Vinberg algebra V.
— V = @ V}'Z'a/}'j:RCj;j:l,...,T)Z

1<i<5<r o .
the normal decomposition w.r.t. a Vinberg frame ¢4, ... .c,.
e \inberg frame = complete system of primitive orthogonal idempotens

(c14+---+c¢ =FE)
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Realization of homogeneous cones

We retrun to the beginning so that we have {2 C V/, with a Vinberg algebra V.

— V = @ V}'Z'a/}'j:RCj;j:l,...,T)

Isisjsr

e \inberg frame = complete system of primitive orthogonal idempotens
(Cl_‘_...—'_CT:E)

e |n short we can regard V' as

Rey Vi Vr—l,l Vi \
Vo Rey :

V = : : (r: the rank of {2 or of V)
Vicia Rer1 Vipaa

Vi o Vi Re

the normal decomposition w.r.t. a Vinberg frame ¢y, .

. .Cy..



Realization of homogeneous cones

We retrun to the beginning so that we have {2 C V/, with a Vinberg algebra V.

— V= & VilVij=Reig=1,....r) - @

lsisjsr

e \inberg frame = complete system of primitive orthogonal idempotens
(Cl_'_...—'_CT’:E)

e |n short we can regard V' as

(RQ Vai : Vr—l,l Vi1 \
Va1 Reo :
V = : . : (r: the rank of 2 or of V)
Vicia Rer1 Vipaa
\Vi - o Vo Re

e Fix an inner product (z|y) := so(x Ay) of V.
~~ (1) is an orthogonal decomposition.

the normal decomposition w.r.t. a Vinberg frame ¢y, ...

.Cy..
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Example: V = Sym(r,R), Q= Z(r,R).
e GL(r,R)-action on Q: GL(r,R) x Q25 (g,x) — gx'g € Q
e Product in V' as a Vinberg algebra:
Ay =zy+y'(a),
where for x = (x;;) € Sym(r, R),

we put o

Thus 7 =z + ().
o L(z)y = R(y)zr =zy+y'z).

I
=



o Let d;; :=dimVj; (7 > ), and draw a weighted oriented graph by defining
v o={1,...,r}, o ={j—1;i<j, anddj > 0}.
|j — 4] or simply 7 — ¢ deotes the arc leaving j and enters 7. Thus

5956 if dim Vi > 0.
The graph I' =T'(V)) = (¥, &) is clearly oriented:

we do not have both ;7 — 7 and 7 — 7. Moreover no 1 — 1 exists.

17
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Example. If d;; = 1, we do not write it in the graph for simplicity.

5




Example. If d;; = 1, we do not write it in the graph for simplicity.

5

e Pick up the sources of . (source = vertex having no incoming arc)
Let . be the source set of I'. Note . # &, since we always have r € .¥.

In the above example, .7 = {4, 5}.

19
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Example. If d;; = 1, we do not write it in the graph for simplicity.

5

e Pick up the sources of . (source = vertex having no incoming arc)
Let . be the source set of I'. Note . # &, since we always have r € .¥.

In the above example, . = {4,5}.

e For each w € . pick up its out-neighbors, i.e., the vertices k s.t. [w — k| € .
Let N°""(w) := {out-neighbors of w}, and N°"[w] := N°""(w) U {w}.
In the example, N°"'[4] = {1,2, 3,4}, N°“[5] = {1,2,3,5}.



e Form the oriented sub-graphs I'y,) from N°"[w].
In the example, N°"'[4] = {1, 2, 3,4}, N°“[5] = {1,2,3,5}.

5

21
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e Form the oriented sub-graphs I'y,) from N°"[w].
In the example, N°"'[4] = {1, 2, 3,4}, N°“[5] = {1,2,3,5}.

5 5

For each w € .¥, let

o Vi, = E|<9 Vii. Then V], is a subalgebra of V/
z‘,jeN_gut[w] (the source subalgebra corresponding to w).

o Hiy= € V. isa two-sided ideal of V.

je Nout[]



By ignoring the unrelated entries, you just image V|,; and Ej,; as

Re,

Vi) = the biggest square
D Ej,) = the shaded part

23



24

By ignoring the unrelated entries, you just image V|,; and Ej,; as

Vi) = the biggest square
D Ej,) = the shaded part

Re

In the above example, we have N°"[5] = {1,2, 3,5}, so that

1 2 3 5

Vis) = . D Ej5) = the shaded part

Res| 5
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By ignoring the unrelated entries, you just image V|, and Ej,; as

Vi) = the biggest square
D Ej,) = the shaded part

Re,

° o (@ =nlz(zeVy,ne Ey).
After a minor change of the inner product of E,;, we have P }(ZU) € Sym(Ey,).

w



N NS

WHEHOVV—2) : Se . . : .
' \éy ignoring the unrelated entries, you just image V) and Ej,) as

- LA b

Vi) = the biggest square
D Ej,) = the shaded part

Re

e o =niw(zeVy,ne Ey)
]

After a minor change of the inner product of E,, we have P }(ZU) € Sym(E,).

° QM: the homogeneous cone corresponding to V[w]

e We name (), the corresponding to the source w.
® Vi 3 @ o, (x) is faithful: ¢ () = 0 implies z = 0.
o gp[w](vw]) is a subalgebra of the Vinberg algebra Sym(£j,).



The source cones have a simple description.

(
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Theorem 2
Let z € V). Then, x € Q) <= ¢, (x) > 0.
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The source cones have a simple description.

Theorem 2
(Let z € Vi Then, z € Q) <= ¢, (x) > 0.

o If &/ ={r}, we are done. We have V = Vi, € =€, and
Q) == y1(€2;)) s our realization of () by pos.-def. operators in Sym(£,)).

® ¥ intertwines the simply transitive groups
H ~ Q) and exp L(V[Q]) N Q?,,],

where ‘/[S] = M(VM) C Sym(E[T]), €eXP L( [9]) C GL(E[T])

U): the simply transitive Lie group with Lie algebra cosisting of

]

exp L(V]
the left multiplication operators of the Vinberg algebra Vm.

® ¢,y is minimal in the sense that if ®: V' — Sym(V, R) is an injective LSA
homomorphism, then N > dim Ej,;.



In general, we have

— Proposition 3
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Let z € V. Then, with -V — Vw]: orthogonal projector,
(1) 2 =0 = ¢, (m)(z)) =0 for Vw € 7.

(2) 2 € Q = m(z) € Q) for Vw € .7
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In general, we have

— Proposition 3
Let z € V. Then, with Tl
(1) 2 =0 = ¢, (m)(z)) =0 for Vw € 7.
(2) 2 € Q = m(z) € Q) for Vw € .7

. V' — V},: orthogonal projector,

Thus

Theorem 4
" Q={zeV; P () >0 (Vw € )}




In general, we have
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— Proposition 3
Let z € V. Then, with Tl
(1) 2 =0 = ¢, (m)(z)) =0 for Vw € 7.
(2) 2 € Q = m(z) € Q) for Vw € .7

. V' — V},: orthogonal projector,

Thus

Theorem 4
" Q={zeV; P () >0 (Vw € )}

Our next task is to assemble Q?w] = QL) (W e S).
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Let .7 = {wi, ... w.f (s >1).
V[gi] = w[wi](v[%]) C Sym(El,).
V0= V[gﬂ SEERNC> ‘/[gs]: the outer dierct sum vector space of V[gi] (1=1,...,s).



Let .7 = {wi, ... w.f (s >1).

Vigg = #lu)(Viwy) C Sym(Ey,).

V0= V[gﬂ SEERNC> ‘/[gs]: the outer dierct sum vector space of V[gi] (1=1,...,s).
Recall 7, : V' — V), the orthogoal projector.

V[f)y] ={(X1,...,X,) e V' M) © gp[;h(Xi) = T, © gp[:jj](Xj) for any i # j }.

We write V[g/] = [V[gﬂ, e V[gsﬂ, which we call the stapling of V' |, ..., [gs].

wi]’
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Let .7 = {wi, ... w.f (s >1).

Vi = Pl (Viwg) € Sym(Ep).
VY= V[gﬂ G- P ‘/[gs]: the outer dierct sum vector space of V[gz_] (1=1,...,s).
Recall 7, : V' — V), the orthogoal projector.

V[Pﬂ = {(X17 s 7XS) S VO s ﬂ-[wj] © QO[;}](XO — ﬂ-[wi] O QO[:J](X]> for any ) 7é j}

We write V[f)y] — [V

[ Vgsﬂ, which we call the stapling of VAL 0

0
]t V] w1l Vi)

e For s = 2, you just observe (11 ==V, N V,)
0 0 L 1
‘/Y[wl] D ‘/[wg] — gp[wl] (W + <‘/[L<J1] nw )) D Sp[wg] (W + (‘/[UJQ] nw ))
and thus
[V[gl]’ ‘/[32]] - {(w[wﬂ(w + 1), 90[w2]<w T 372)) ,we W, x; € V[wj] M WJ‘}.



Accordingly define a linear isomorphism Pro V — V[f)ﬂ in a natural way.
V =237, Vi, (sum of vector subspaces; not necessarily direct) implies

dimV =3 (=1)""" > dim(Vi, NV, ),
p=1

1<iq <+ <ip<s

We have thus stapled V[g@]: V[f;] = [V[Sﬂ, R V[BS]]

35



36

Accordingly define a linear isomorphism Pro V — V[f)y] in a natural way.

V = Zle VM (sum of vector subspaces; not necessarily direct) implies

dimV =3 (=1)""" > dim(Vi, NV, ),
p=1 1<y <-<ip<s

We have thus stapled V[g@']: V[gﬂ] — [V[gﬂ, o V[gs]] ------ (%)

e Staple Q! . following the stapling (*), so that Q?y] = ... ,Q?wsﬂ.

(wi
e Staple also the simple transitive matrix groups

H[(Zdz'] = eXpL(V[gi]) v Q([)wz']
M N
so that
0 e 0 0
H[y] M [H[w1]7 ooy H[ws]:| .



What happens in the stapling process ?

37
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What happens in the stapling process ?
I (wi,wj) = N"w;] N N"w,] (i < j): the for w;, w;.

Then, V1N V[wj] = k@l Vii. is the normal decomposition of V|, N V[wj].
k,le/_(wi,wj)



What happens in the stapling process ?

I (wi,wj) = N"w;] N N"w,] (i < j): the for w;, w;.
Then, V1N V[wj] = kEE Vii. is the normal decomposition of V|, N V[wj].
k,le/_(wi,wj)

Q[wwﬂ: the homogeneous convex cone corresponding to V) N V[wj].

We have Q[wz‘wﬂ = Ww,iwj<9[w7j) = Ww'jwi(Q[w }), where
Toiw; * Viw] = Viw) N V[wj], Mo V[wj] — Vi, N VM] are the orthog. pro;j.

39
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What happens in the stapling process ?

I (wi,wj) = N"w;] N N"w,] (i < j): the for w;, w;.
Then, V1N V[wj] = kEE Vii. is the normal decomposition of V|, N V[wj].
k,le/_(wi,wj)

Q[wiwj]: the homogeneous convex cone corresponding to V) N V[wj].
We have Q[wiwﬂ = Ww,iwj<Q[w7;}) = Ww'jwi(Q[ij’ where
Toiw; * Viw] = Viw) N V[wj], Mo V[wj] — Vi, N VM] are the orthog. pro;j.
H (wi,w;j) ~ I s, the corresponding oriented subgraph of I' = I'(V').
Holwi,wj) = L (T g0,)): the source set for I'(_Z (w;, w;))
(the for wi, w;).
Let Zy(wi,w;j) = {Jj1,-.., ¢}, and put Q([) i) = Q0 .. ,Qo,f]].

We have Q{w,,;wﬂ = Q?/()(wi’wj)], and we say that
QY . and ) , are stapled at )}

[w;] |w;] [ Zo(w;,w;)]



We retuen to the example. . = {4, 5}.

5

41
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We retuen to the example. . = {4, 5}.

5) 5%
2 2
4 =] 4 =] 1
3 2 3 2 3 2
I Iy s
( ) 4 \
A0 w31 ap Mls 0y z3167 T35

)
Q&] _ 0 X @30 @y >0 Q%] _ 0 X x32 o5 >0\

t
31 I32 /\3 X43 xr31€1 T32 )\3 Z53

L\ %1 Za2 Ta3 N ) L\ T w2 w3 A
The shaded parts are stapled. Note 7 (4,5) = {1,2.3}, Zy(4,5) = {3}.
In Q&], the shaded block is the minimal realization of the dual Vinberg cone.

In Q%], the shaded block is not the minimal realization of the dual Vinberg cone.



(XA 0 0 0) (ML, 05 0y 05
0 X 0 0 0, X 0 0

0 ._ 0 —
H[4] =9 r31 T39 )\3 0 > ’ H[5] ) 51331t€1 L32 >\3 0

t
L L41 T42 T43 )\4) (A > 0) . L51 T52 T53 )\5,

The shaded parts are stapled: H[?Sﬂ] = [H[?L], H[%ﬂ.
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(A 0 0 0) (ML 0; 0y 0]
0 A 0 O 0y Xy 0 0
0 . 2 0 _ 2 A2
Higy = r31 T3z A3 0 > - Hig =+ x3i'e; 3 Az 0 > ’
[ T41 T42 Ta3 Ay (A > 0) | T51 T2 T3 s ) (\j > 0)
The shaded parts are stapled: H[?y] — [H[%], H[%ﬂ.
Q ~V . the corresponding Vinberg algebra
~ I'=T(V) . the corresponding oriented graph
v =wr, ., ws ) . the sources of I'
> Qs+ e Q) . the source homogeneous cones
A ([)wﬂ’ . ?ws] . the minimal realizations of the source cones
~ Q?y] = [Q?wﬂ, . ,Q?wsﬂ . stapling of the Q([)wi]’s
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When we only have pieces of cones, there might be several ways to assemble a cone
from them by stapling.
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When we only have pieces of cones, there might be several ways to assemble a cone
from them by stapling.

4 1 1 4 1
: 4
2
4 3 3 3
3 2 9 3 2 2 2
I g A

In this case, we have two non-isomorphic Vinberg algebras V' and W such that
NV)y=rw)=rT.

Then, let Q¥ < V and QY < W. We have Q" 22 QO

For § = 3,4, we obatin the source cones QE;] and Qm through I7;).

It is shown that Qg], QEZ], Qg, Q[% are all linearly equivalent.

Note that dim " = dim Q" = 19.



Kaneyuki—Tsuji condition (1974)

[": a transitive oriented graph, &7 := @7 (I'): the arc set of T,
k—jled and|j —ile o = [k —i]e .
c: a capacity (weight) function &/ — Z-
We say that (I, ¢) satisfies the Kaneyuki—Tsuji condition &
(KT1) Suppose @ < j < k.
If there is a path &k — 7 — 1, then one has max(ckj, cjz') < ;.

(KT2) Suppose i < 7 < k <.
If there are two paths | — k — i and | — j — i with j ¢ N°"(k), then

ci; > max(cy, cpi) + max(cy;, Cji).

47
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Kaneyuki—Tsuji condition (1974)

[": a transitive oriented graph, o7 := &7 (I'): the arc set of T,

k—jled and|j —ile o = [k —i]e .
c: a capacity (weight) function &/ — Z-

We say that (I, ¢) satisfies the Kaneyuki—Tsuji condition PLEN
(KT1) Suppose @ < j < k.
If there is a path &k — 7 — 1, then one has max(ckj, cjz') < ¢y
(KT2) Suppose i < 7 < k <.
If there are two paths | — k — i and | — j — i with j ¢ N°"(k), then
ci; > max(cy, cpi) + max(cy;, Cji).

e Example of (KT2): 2

4()\~ =i<)1

3 2
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(KT1) Suppose @ < j < k.
If there is a path k — j — 1, then one has max(ckj, cjz') < Cp;.

(KT2) Suppose i < j < k <.
If there are two paths | — k — i and | — j — i with j ¢ N°"(k), then
ci; > max(cy, cpi) + max(cy;, Cji).

(1) [ =I'(V) for a Vinberg algebra V' and ¢(|j — 1]) := dim V}; satisfies
(KT1) and (KT2).

(2) V — (I'(V), (dim V};)) is neither surjective nor injective.

(3) However, for dim V' < 10 it is bijective, which led them to the classification
of homogeneous convex cones of dimension < 10.

(4) For dim V' = 11, a family of continuously many non-isomorphic V' have
the same (I'(V), ¢).
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(5) 3(T', ¢) with (KT1) and (KT2) s.t. I' =T'(V) for no V.
For (5), the I' below with

c(3—=1)=c(3—=2)=c(2—1]) =d € Z-y
clearly satsifies (KT1) and (KT2).

2

But ' =T(V) forsome V «<— d=1,2,4,8.

In this case the corresponding cone 2 = 22(3,KK), where
K=R(d=1), K=C(d=2), K=H(d=4), K=0 (d=38).



