Realization of Homogeneous Convex Cones

 through Oriented Graphs(Joint work with Takashi Yamasaki)

Takaaki Nomura

Kyushu University (Fukuoka)
$\mathscr{P}(N, \mathbb{R}):=\{x \in \operatorname{Sym}(N, \mathbb{R}) ; x \gg 0\}(N=1,2, \ldots)$
$G L(N, \mathbb{R}) \curvearrowright \mathscr{P}(N, \mathbb{R})$ transitively by $G L(N, \mathbb{R}) \times \mathscr{P}(N, \mathbb{R}) \ni(g, x) \mapsto g x^{t} g$
\downarrow restriction
$H^{+}(N, \mathbb{R}):=\{g \in G L(N, \mathbb{R}) ;$ lower triangular with diagonals $>0\}$
\Longrightarrow the action is simply transitive (stabilizer is trivial)

$$
\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}=H^{+}(N, \mathbb{R}) \cdot I
$$

$\mathscr{P}(N, \mathbb{R}):=\{x \in \operatorname{Sym}(N, \mathbb{R}) ; x \gg 0\}(N=1,2, \ldots)$
$G L(N, \mathbb{R}) \curvearrowright \mathscr{P}(N, \mathbb{R})$ transitively by $G L(N, \mathbb{R}) \times \mathscr{P}(N, \mathbb{R}) \ni(g, x) \mapsto g x^{t} g$
\downarrow restriction
$H^{+}(N, \mathbb{R}):=\{g \in G L(N, \mathbb{R}) ;$ lower triangular with diagonals $>0\}$
\Longrightarrow the action is simply transitive (stabilizer is trivial)

$$
\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}=H^{+}(N, \mathbb{R}) \cdot I
$$

$\mathscr{P}(N, \mathbb{R}) \xrightarrow{\text { generalization focused on homogeneity }}$ homogeneous convex cones
$\mathscr{P}(N, \mathbb{R}):=\{x \in \operatorname{Sym}(N, \mathbb{R}) ; x \gg 0\}(N=1,2, \ldots)$
$G L(N, \mathbb{R}) \curvearrowright \mathscr{P}(N, \mathbb{R})$ transitively by $G L(N, \mathbb{R}) \times \mathscr{P}(N, \mathbb{R}) \ni(g, x) \mapsto g x^{t} g$
\downarrow restriction
$H^{+}(N, \mathbb{R}):=\{g \in G L(N, \mathbb{R}) ;$ lower triangular with diagonals $>0\}$
\Longrightarrow the action is simply transitive (stabilizer is trivial)

$$
\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}=H^{+}(N, \mathbb{R}) \cdot I
$$

$\mathscr{P}(N, \mathbb{R}) \xrightarrow{\text { generalization focused on homogeneity }}$ homogeneous convex cones
V : a real vector space ($\operatorname{dim} V<\infty$) with an inner product
$V \supset \Omega$: a regular open convex cone (containing no entire line)
$G L(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: the linear automorphism group of Ω
(a Lie group as a closed subgroup of $G L(V)$)
Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G L(\Omega) \curvearrowright \Omega$ is transitive.

Vinberg (1963) introduced a non-associative matrix algebra with $*$.
This algebra is called a T-algebra.
Any homogeneous convex cone $=\left\{h h^{*} ; h \in H^{+}\right\}$(T-algbera products),
where $H^{+}:=\{h$; lower triangular with diagonals $>0\}$
Theoretically beautiful analogue of $\mathscr{P}(N, \mathbb{R})=\left\{g^{\dagger} g ; g \in H^{+}(N, \mathbb{R})\right\}$.

Vinberg (1963) introduced a non-associative matrix algebra with $*$.
This algebra is called a T-algebra.
Any homogeneous convex cone $=\left\{h h^{*} ; h \in H^{+}\right\}$(T-algbera products),
where $H^{+}:=\{h$; lower triangular with diagonals $>0\}$
Theoretically beautiful analogue of $\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}$.
In practice:

- hard to treat matrices without associative law.

Vinberg (1963) introduced a non-associative matrix algebra with $*$.
This algebra is called a T-algebra.
Any homogeneous convex cone $=\left\{h h^{*} ; h \in H^{+}\right\}$(T-algbera products), where $H^{+}:=\{h$; lower triangular with diagonals $>0\}$
Theoretically beautiful analogue of $\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}$.
In practice:

- hard to treat matrices without associative law.

For applications:

- desirable to have an easier access to homogeneous convex cones.

Vinberg (1963) introduced a non-associative matrix algebra with $*$.
This algebra is called a T-algebra.
Any homogeneous convex cone $=\left\{h h^{*} ; h \in H^{+}\right\}$(T-algbera products), where $H^{+}:=\{h$; lower triangular with diagonals $>0\}$
Theoretically beautiful analogue of $\mathscr{P}(N, \mathbb{R})=\left\{g^{t} g ; g \in H^{+}(N, \mathbb{R})\right\}$.
In practice:

- hard to treat matrices without associative law.

For applications:

- desirable to have an easier access to homogeneous convex cones.

Another purpose:

- Stop using T-algebras (too many requirements in the definition).
- Rewrite the basics in the language of Vinberg algebras (renamed from clans). It should have been klans following Russian original, for there is an English (and French) word clan.

Vinberg's theory for homogeneous convex cones

Given a homogeneous convex cone $\Omega \subset V$
$\Longrightarrow \exists H$ (unique upto conjugation) split solvable s.t. $H \curvearrowright \Omega$ simply transitively.
\Longrightarrow Fix $E \in \Omega$. Then $H \ni h \mapsto h E \in \Omega$ is a diffeomorphism.
\Longrightarrow Its derivative at I, i.e., the map $\mathfrak{h} \ni T \mapsto T E \in V$ is a linear isomorphism.
($\mathfrak{h}:=\operatorname{Lie}(H)$)
$\Longrightarrow \forall x \in V, \quad \exists 1 L(x) \in \mathfrak{h}$ s.t. $L(x) E=x$.
(note: $V \ni x \mapsto L(x) \in \mathfrak{h} \subset \mathscr{L}(V)$ is also linear)
\Longrightarrow We introduce a bilinear product by $x \triangle y=L(x) y$ in V.
(we do not mind the associative law)
$\Longrightarrow V$ is a Vinberg algebra, and E is the unit element of V.
\Longrightarrow The H-orbit $H E$ through E is an open convex cone linearly equiv. to Ω.

Vinberg Algebras (Vinberg 1963)

- Definition 1
V is a real VS with a bilinear product $x \triangle y=L(x) y$.
V is a Vinberg algebra $\stackrel{\text { def }}{\Longleftrightarrow}$
(1) $[L(x), L(y)]=L(x \triangle y-y \triangle x)(\forall x, y \in V)$,
(2) $\exists s \in V^{*}$ s.t. $s(x \triangle y)$ defines an inner product of V,
(3) Each $L(x)$ has only real eigenvalues.
- Associative law is not assumed for \triangle.

Vinberg Algebras (Vinberg 1963)

Definition 1

V is a real VS with a bilinear product $x \triangle y=L(x) y$.
V is a Vinberg algebra $\stackrel{\text { def }}{\Longleftrightarrow}$
(1) $[L(x), L(y)]=L(x \triangle y-y \triangle x)(\forall x, y \in V)$,
(2) $\exists s \in V^{*}$ s.t. $s(x \triangle y)$ defines an inner product of V,
(3) Each $L(x)$ has only real eigenvalues.

- Associative law is not assumed for \triangle.
- In this talk we always assume that V has a unit element.
- $(1) \Longleftrightarrow[x, y, z]=[y, x, z](\forall x, y, z \in V)$, where $[x, y, z]:=x \triangle(y \triangle z)-(x \triangle y) \triangle z$: the associator.
- Algebras with (1) are called left-symmetric.
- We sometimes encounter left-symmetric algebras in mathematics and physics.

Realization of homogeneous cones

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

Realization of homogeneous cones

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

$$
\Longrightarrow V=\bigoplus_{1 \leqq i \leqq j \leqq r r} V_{j i}\left(V_{j j}=\mathbb{R} c_{j} ; j=1, \ldots, r\right) \text { : }
$$

- Vinberg frame $=$ complete system of primitive orthogonal idempotens

$$
\left(c_{1}+\cdots+c_{r}=E\right)
$$

Realization of homogeneous cones

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

$$
\Longrightarrow V=\bigoplus_{1 \leqq i \leqq j \leqq r} V_{j i}\left(V_{j j}=\mathbb{R} c_{j} ; j=1, \ldots, r\right)
$$

- Vinberg frame $=$ complete system of primitive orthogonal idempotens

$$
\left(c_{1}+\cdots+c_{r}=E\right)
$$

- In short we can regard V as

$$
V=\left(\begin{array}{ccccc}
\mathbb{R} c_{1} & V_{21} & \cdots & V_{r-1,1} & V_{r 1} \\
V_{21} & \mathbb{R} c_{2} & & & \vdots \\
\vdots & & \ddots & & \vdots \\
V_{r-1,1} & & & \mathbb{R} c_{r-1} & V_{r, r-1} \\
V_{r 1} & \cdots & \cdots & V_{r, r-1} & \mathbb{R} c_{r}
\end{array}\right) \quad(r: \text { the rank of } \Omega \text { or of } V)
$$

Realization of homogeneous cones

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

$$
\begin{equation*}
\Longrightarrow V=\bigoplus_{1 \leqq i \leqq j \leqq r} V_{j i}\left(V_{j j}=\mathbb{R} c_{j} ; j=1, \ldots, r\right) \tag{1}
\end{equation*}
$$

the normal decomposition w.r.t. a Vinberg frame $c_{1}, \ldots c_{r}$.

- Vinberg frame $=$ complete system of primitive orthogonal idempotens

$$
\left(c_{1}+\cdots+c_{r}=E\right)
$$

- In short we can regard V as

$$
V=\left(\begin{array}{ccccc}
\mathbb{R} c_{1} & V_{21} & \cdots & V_{r-1,1} & V_{r 1} \\
V_{21} & \mathbb{R} c_{2} & & & \vdots \\
\vdots & & \ddots & & \vdots \\
V_{r-1,1} & & & \mathbb{R} c_{r-1} & V_{r, r-1} \\
V_{r 1} & \cdots & \cdots & V_{r, r-1} & \mathbb{R} c_{r}
\end{array}\right) \quad(r \text { : the rank of } \Omega \text { or of } V)
$$

- Fix an inner product $\langle x \mid y\rangle:=s_{0}(x \triangle y)$ of V.
\rightsquigarrow (1) is an orthogonal decomposition.

Example: $V=\operatorname{Sym}(r, \mathbb{R}), \Omega=\mathscr{P}(r, \mathbb{R})$.

- $G L(r, \mathbb{R})$-action on $\Omega: G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$
- Product in V as a Vinberg algebra:

$$
x \triangle y=\underline{x} y+y^{t}(\underline{x}),
$$

where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$,
we put $\underline{x}:=\left(\begin{array}{cccc}\frac{1}{2} x_{11} & & 0 & \\ x_{21} & \frac{1}{2} x_{22} & & \\ \vdots & \ddots & \ddots & \\ x_{r 1} & \cdots & x_{r, r-1} & \frac{1}{2} x_{r r}\end{array}\right)$.
Thus $x=\underline{x}+{ }^{t}(\underline{x})$.

- $L(x) y=R(y) x=\underline{x} y+y^{t}(\underline{x})$.
- Let $d_{j i}:=\operatorname{dim} V_{j i}(j>i)$, and draw a weighted oriented graph by defining

$$
\mathscr{V}:=\{1, \ldots, r\}, \quad \mathscr{A}:=\left\{[j \rightarrow i] ; i<j, \text { and } d_{j i}>0\right\} .
$$

[$j \rightarrow i$] or simply $j \rightarrow i$ deotes the arc leaving j and enters i. Thus

$$
\stackrel{j}{\circ}_{\substack{d_{j i}}}^{\circ} \quad \text { if } \operatorname{dim} V_{j i}>0 .
$$

The graph $\Gamma=\Gamma(V)=(\mathscr{V}, \mathscr{A})$ is clearly oriented:

$$
\text { we do not have both } j \rightarrow i \text { and } i \rightarrow j \text {. Moreover no } i \rightarrow i \text { exists. }
$$

Example. If $d_{j i}=1$, we do not write it in the graph for simplicity.

Example. If $d_{j i}=1$, we do not write it in the graph for simplicity.

- Pick up the sources of Γ. (source $=$ vertex having no incoming arc) Let \mathscr{S} be the source set of Γ. Note $\mathscr{S} \neq \varnothing$, since we always have $r \in \mathscr{S}$. In the above example, $\mathscr{S}=\{4,5\}$.

Example. If $d_{j i}=1$, we do not write it in the graph for simplicity.

- Pick up the sources of Γ. (source $=$ vertex having no incoming arc) Let \mathscr{S} be the source set of Γ. Note $\mathscr{S} \neq \varnothing$, since we always have $r \in \mathscr{S}$. In the above example, $\mathscr{S}=\{4,5\}$.
- For each $\omega \in \mathscr{S}$ pick up its out-neighbors, i.e., the vertices k s.t. $[\omega \rightarrow k] \in \mathscr{A}$.

Let $N^{\text {out }}(\omega):=\{$ out-neighbors of $\omega\}$, and $N^{\text {out }}[\omega]:=N^{\text {out }}(\omega) \cup\{\omega\}$.
In the example, $N^{\text {out }}[4]=\{1,2,3,4\}, N^{\text {out }}[5]=\{1,2,3,5\}$.

- Form the oriented sub-graphs $\Gamma_{[\omega]}$ from $N^{\text {out }}[\omega]$.

In the example, $N^{\text {out }}[4]=\{1,2,3,4\}, N^{\text {out }}[5]=\{1,2,3,5\}$.

- Form the oriented sub-graphs $\Gamma_{[\omega]}$ from $N^{\text {out }}[\omega]$.

In the example, $N^{\text {out }}[4]=\{1,2,3,4\}, N^{\text {out }}[5]=\{1,2,3,5\}$.

For each $\omega \in \mathscr{S}$, let

- $V_{[\omega]}:=\bigoplus_{i \leq j} \quad V_{j i}$. \quad Then $V_{[\omega]}$ is a subalgebra of V

$$
\begin{aligned}
& \begin{array}{c}
i \leq j \\
i, j \in N^{\text {out }}[\omega]
\end{array} \\
& \text { (the source subalgebra corresponding to } \omega \text {). }
\end{aligned}
$$

- $E_{[\omega]}:=\bigoplus_{i \in N^{\text {out }}[\omega]} V_{\omega i}$ is a two-sided ideal of $V_{[\omega]}$.

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

$V_{[\omega]}=$ the biggest square
$\supset E_{[\omega]}=$ the shaded part

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

$V_{[\omega]}=$ the biggest square
$\supset E_{[\omega]}=$ the shaded part

In the above example, we have $N^{\text {out }}[5]=\{1,2,3,5\}$, so that

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

$V_{[\omega]}=$ the biggest square
$\supset E_{[\omega]}=$ the shaded part

- $\varphi_{[\omega]}(x) \eta:=\eta \Delta x\left(x \in V_{[\omega]}, \eta \in E_{[\omega]}\right)$.

After a minor change of the inner product of $E_{[\omega]}$, we have $\varphi_{[\omega]}(x) \in \operatorname{Sym}\left(E_{[\omega]}\right)$.

By ignoring the unrelated entries，you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

$V_{[\omega]}=$ the biggest square
$\supset E_{[\omega]}=$ the shaded part
－$\varphi_{[\omega]}(x) \eta:=\eta \Delta x\left(x \in V_{[\omega]}, \eta \in E_{[\omega]}\right)$ ．
After a minor change of the inner product of $E_{[\omega]}$ ，we have $\varphi_{[\omega]}(x) \in \operatorname{Sym}\left(E_{[\omega]}\right)$ ．
－$\Omega_{[\omega]}$ ：the homogeneous cone corresponding to $V_{[\omega]}$
－We name $\Omega_{[\omega]}$ the source homogeneous cone corresponding to the source ω ．
－$V_{[\omega]} \ni x \mapsto \varphi_{[\omega]}(x)$ is faithful：$\varphi_{[\omega]}(x)=0$ implies $x=0$ ．
－$\varphi_{[\omega]}\left(V_{[\omega]}\right)$ is a subalgebra of the Vinberg algebra $\operatorname{Sym}\left(E_{[\omega]}\right)$ ．

The source cones have a simple description.

- Theorem 2

Let $x \in V_{[\omega]}$. Then, $x \in \Omega_{[\omega]} \Longleftrightarrow \varphi_{[\omega]}(x) \gg 0$.

The source cones have a simple description.

Theorem 2

Let $x \in V_{[\omega]}$. Then, $x \in \Omega_{[\omega]} \Longleftrightarrow \varphi_{[\omega]}(x) \gg 0$.

- If $\mathscr{S}=\{r\}$, we are done. We have $V=V_{[r]}, \Omega=\Omega_{[r]}$, and
$\Omega_{[r]}^{0}:=\varphi_{[r]}\left(\Omega_{[r]}\right)$ is our realization of Ω by pos.-def. operators in $\operatorname{Sym}\left(E_{[r]}\right)$.
- $\varphi_{[r]}$ intertwines the simply transitive groups

$$
H \curvearrowright \Omega \text { and } \exp L\left(V_{[r]}^{0}\right) \curvearrowright \Omega_{[r]}^{0},
$$

where $\quad V_{[r]}^{0}:=\varphi_{[r]}\left(V_{[r]}\right) \subset \operatorname{Sym}\left(E_{[r]}\right), \quad \exp L\left(V_{[r]}^{0}\right) \subset G L\left(E_{[r]}\right)$.
$\exp L\left(V_{[r]}^{0}\right)$: the simply transitive Lie group with Lie algebra cosisting of the left multiplication operators of the Vinberg algebra $V_{[r]}^{0}$.

- $\varphi_{[r]}$ is minimal in the sense that if $\Phi: V \rightarrow \operatorname{Sym}(N, \mathbb{R})$ is an injective LSA homomorphism, then $N \geq \operatorname{dim} E_{[r]}$.

In general, we have

- Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]}: V \rightarrow V_{[\omega]}$: orthogonal projector,
(1) $x=0 \Longleftrightarrow \varphi_{[\omega]}\left(\pi_{[\omega]}(x)\right)=0$ for $\forall \omega \in \mathscr{S}$.
(2) $x \in \Omega \Longleftrightarrow \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$.

In general, we have

- Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]}: V \rightarrow V_{[\omega]}$: orthogonal projector,
(1) $x=0 \Longleftrightarrow \varphi_{[\omega]}\left(\pi_{[\omega]}(x)\right)=0$ for $\forall \omega \in \mathscr{S}$.
(2) $x \in \Omega \Longleftrightarrow \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$.

Thus
Theorem 4

$$
\Omega=\left\{x \in V ; \varphi_{[\omega]}\left(\pi_{[\omega]}(x)\right) \gg 0 \quad(\forall \omega \in \mathscr{S})\right\} .
$$

In general, we have

- Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]}: V \rightarrow V_{[\omega]}$: orthogonal projector,
(1) $x=0 \Longleftrightarrow \varphi_{[\omega]}\left(\pi_{[\omega]}(x)\right)=0$ for $\forall \omega \in \mathscr{S}$.
(2) $x \in \Omega \Longleftrightarrow \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$.

Thus
Theorem 4

$$
\Omega=\left\{x \in V ; \varphi_{[\omega]}\left(\pi_{[\omega]}(x)\right) \gg 0 \quad(\forall \omega \in \mathscr{S})\right\} .
$$

Our next task is to assemble $\Omega_{[\omega]}^{0}:=\varphi_{[\omega]}\left(\Omega_{[\omega]}\right)(\omega \in \mathscr{S})$.

Let $\mathscr{S}=\left\{\omega_{1}, \ldots, \omega_{s}\right\}(s>1)$.
$V_{\left[\omega_{i}\right]}^{0}:=\varphi_{\left[\omega_{i}\right]}\left(V_{\left[\omega_{i}\right]}\right) \subset \operatorname{Sym}\left(E_{\left[\omega_{i}\right]}\right)$.
$V^{0}:=V_{\left[\omega_{1}\right]}^{0} \oplus \cdots \oplus V_{\left[\omega_{s}\right]}^{0}:$ the outer dierct sum vector space of $V_{\left[\omega_{i}\right]}^{0}(i=1, \ldots, s)$.

Let $\mathscr{S}=\left\{\omega_{1}, \ldots, \omega_{s}\right\}(s>1)$.
$V_{\left[\omega_{i}\right]}^{0}:=\varphi_{\left[\omega_{i}\right]}\left(V_{\left[\omega_{i}\right]}\right) \subset \operatorname{Sym}\left(E_{\left[\omega_{i}\right]}\right)$.
$V^{0}:=V_{\left[\omega_{1}\right]}^{0} \oplus \cdots \oplus V_{\left[\omega_{s}\right]}^{0}$: the outer dierct sum vector space of $V_{\left[\omega_{i}\right]}^{0}(i=1, \ldots, s)$.
Recall $\pi_{[\omega]}: V \rightarrow V_{[\omega]}$, the orthogoal projector.
$V_{[\mathscr{S}]}^{0}:=\left\{\left(X_{1}, \ldots, X_{s}\right) \in V^{0} ; \pi_{\left[\omega_{j}\right]} \circ \varphi_{\left[\omega_{i}\right]}^{-1}\left(X_{i}\right)=\pi_{\left[\omega_{i}\right]} \circ \varphi_{\left[\omega_{j}\right]}^{-1}\left(X_{j}\right)\right.$ for any $\left.i \neq j\right\}$.
We write $V_{[\mathscr{S}]}^{0}=\left[V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{s}\right]}^{0}\right]$, which we call the stapling of $V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{\mathcal{S}}\right]}^{0}$.

Let $\mathscr{S}=\left\{\omega_{1}, \ldots, \omega_{s}\right\}(s>1)$.
$V_{\left[\omega_{i}\right]}^{0}:=\varphi_{\left[\omega_{i}\right]}\left(V_{\left[\omega_{i}\right]}\right) \subset \operatorname{Sym}\left(E_{\left[\omega_{i}\right]}\right)$.
$V^{0}:=V_{\left[\omega_{1}\right]}^{0} \oplus \cdots \oplus V_{\left[\omega_{s}\right]}^{0}$: the outer dierct sum vector space of $V_{\left[\omega_{i}\right]}^{0}(i=1, \ldots, s)$.
Recall $\pi_{[\omega]}: V \rightarrow V_{[\omega]}$, the orthogoal projector.
$V_{[\mathscr{S}]}^{0}:=\left\{\left(X_{1}, \ldots, X_{s}\right) \in V^{0} ; \pi_{\left[\omega_{j}\right]} \circ \varphi_{\left[\omega_{i}\right]}^{-1}\left(X_{i}\right)=\pi_{\left[\omega_{i}\right]} \circ \varphi_{\left[\omega_{j}\right]}^{-1}\left(X_{j}\right)\right.$ for any $\left.i \neq j\right\}$.
We write $V_{[\mathscr{S}]}^{0}=\left[V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{s}\right]}^{0}\right]$, which we call the stapling of $V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{\mathcal{S}}\right]}^{0}$.

- For $s=2$, you just observe $\left(W:=V_{\left[\omega_{1}\right]} \cap V_{\left[\omega_{2}\right]}\right)$

$$
V_{\left[\omega_{1}\right]}^{0} \oplus V_{\left[\omega_{2}\right]}^{0}=\varphi_{\left[\omega_{1}\right]}\left(W+\left(V_{\left[\omega_{1}\right]} \cap W^{\perp}\right)\right) \oplus \varphi_{\left[\omega_{2}\right]}\left(W+\left(V_{\left[\omega_{2}\right]} \cap W^{\perp}\right)\right)
$$

and thus

$$
\left[V_{\left[\omega_{1}\right]}^{0}, V_{\left[\omega_{2}\right]}^{0}\right]=\left\{\left(\varphi_{\left[\omega_{1}\right]}\left(w+x_{1}\right), \varphi_{\left[\omega_{2}\right]}\left(w+x_{2}\right)\right) ; w \in W, x_{j} \in V_{\left[\omega_{j}\right]} \cap W^{\perp}\right\} .
$$

Accordingly define a linear isomorphism $\varphi_{[\mathscr{S}]}: V \rightarrow V_{[\mathscr{S}]}^{0}$ in a natural way. $V=\sum_{i=1}^{s} V_{\left[\omega_{i}\right]}$ (sum of vector subspaces; not necessarily direct) implies

$$
\operatorname{dim} V=\sum_{p=1}^{s}(-1)^{p-1} \sum_{1 \leq i_{1}<\cdots<i_{p} \leq s} \operatorname{dim}\left(V_{\left[\omega_{i_{1}}\right]} \cap \cdots V_{\left[\omega_{i_{p}}\right]}\right) .
$$

We have thus stapled $V_{\left[\omega_{i}\right]}^{0}: \quad V_{[\mathscr{S}]}^{0}=\left[V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{s}\right]}^{0}\right]$

Accordingly define a linear isomorphism $\varphi_{[\mathscr{S}]}: V \rightarrow V_{[\mathscr{G}]}^{0}$ in a natural way.
$V=\sum_{i=1}^{s} V_{\left[\omega_{i}\right]}$ (sum of vector subspaces; not necessarily direct) implies

$$
\operatorname{dim} V=\sum_{p=1}^{s}(-1)^{p-1} \sum_{1 \leq i_{1}<\cdots<i_{p} \leq s} \operatorname{dim}\left(V_{\left[\omega_{i_{1}}\right]} \cap \cdots V_{\left[\omega_{i_{p}}\right]}\right) .
$$

We have thus stapled $\left.V_{\left[\omega_{i}\right.}^{0}\right]: \quad V_{[\mathscr{S}]}^{0}=\left[V_{\left[\omega_{1}\right]}^{0}, \ldots, V_{\left[\omega_{s}\right]}^{0}\right] \cdots \cdots(*)$

- Staple $\Omega_{\left[\omega_{i}\right]}^{0}$ following the stapling $(*)$, so that $\left.\Omega_{[\mathscr{S}]}^{0}:=\left[\Omega_{\left[\omega_{1}\right]}^{0}\right], \ldots, \Omega_{\left[\omega_{s}\right]}^{0}\right]$.
- Staple also the simple transitive matrix groups

$$
\begin{array}{rlr}
H_{\left[\omega_{i}\right]}^{0}:=\exp L\left(V_{\left[\omega_{i}\right]}^{0}\right) & \curvearrowright & \Omega_{\left[\omega_{i}\right]}^{0} \\
\cap & \cap \\
G L\left(E_{\left[\omega_{i}\right]}\right) & \curvearrowright \operatorname{Sym}\left(E_{\left[\omega_{i}\right]}\right)
\end{array}
$$

so that

$$
H_{[\mathscr{S}]}^{0}:=\left[H_{\left[\omega_{1}\right]}^{0}, \ldots, H_{\left[\omega_{s}\right]}^{0}\right]
$$

What happens in the stapling process ?

What happens in the stapling process ?
$\mathscr{J}\left(\omega_{i}, \omega_{j}\right):=N^{\text {out }}\left[\omega_{i}\right] \cap N^{\text {out }}\left[\omega_{j}\right](i<j)$: the junction set for ω_{i}, ω_{j}.
Then, $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}=\bigoplus_{k \leq l} V_{l k}$ is the normal decomposition of $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}$.

What happens in the stapling process ?
$\mathscr{J}\left(\omega_{i}, \omega_{j}\right):=N^{\text {out }}\left[\omega_{i}\right] \cap N^{\text {out }}\left[\omega_{j}\right](i<j)$: the junction set for ω_{i}, ω_{j}.
Then, $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}=\bigoplus_{\substack{k \leq l \\ k, l \in \mathscr{\mathscr { J }}\left(\omega_{i}, \omega_{j}\right)}} V_{l k}$ is the normal decomposition of $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}$.
$\Omega_{\left[\omega_{i} \omega_{j}\right]}$: the homogeneous convex cone corresponding to $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}$.
We have $\Omega_{\left[\omega_{i} \omega_{j}\right]}=\pi_{\omega_{i} \omega_{j}}\left(\Omega_{\left[\omega_{j}\right]}\right)=\pi_{\omega_{j} \omega_{i}}\left(\Omega_{\left[\omega_{j}\right]}\right)$, where

$$
\pi_{\omega_{i} \omega_{j}}: V_{\left[\omega_{i}\right]} \rightarrow V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}, \quad \pi_{\omega_{j} \omega_{i}}: V_{\left[\omega_{j}\right]} \rightarrow V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]} \quad \text { are the orthog. proj. }
$$

What happens in the stapling process ?

$\mathscr{J}\left(\omega_{i}, \omega_{j}\right):=N^{\text {out }}\left[\omega_{i}\right] \cap N^{\text {out }}\left[\omega_{j}\right](i<j)$: the junction set for ω_{i}, ω_{j}.
Then, $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}=\bigoplus_{\substack{k \leq l \\ k, l \in \mathscr{\mathscr { L }}\left(\omega_{i}, \omega_{j}\right)}} V_{l k}$ is the normal decomposition of $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}$.
$\Omega_{\left[\omega_{i} \omega_{j}\right]}$: the homogeneous convex cone corresponding to $V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}$.
We have $\Omega_{\left[\omega_{i} \omega_{j}\right]}=\pi_{\omega_{i} \omega_{j}}\left(\Omega_{\left[\omega_{i}\right]}\right)=\pi_{\omega_{j} \omega_{i}}\left(\Omega_{\left[\omega_{j}\right]}\right)$, where $\pi_{\omega_{i} \omega_{j}}: V_{\left[\omega_{i}\right]} \rightarrow V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]}, \quad \pi_{\omega_{j} \omega_{i}}: V_{\left[\omega_{j}\right]} \rightarrow V_{\left[\omega_{i}\right]} \cap V_{\left[\omega_{j}\right]} \quad$ are the orthog. proj.
$\mathscr{J}\left(\omega_{i}, \omega_{j}\right) \rightsquigarrow \Gamma_{\mathscr{J}}\left(\omega_{i}, \omega_{j}\right)$: the corresponding oriented subgraph of $\Gamma=\Gamma(V)$.
$\mathscr{J}_{0}\left(\omega_{i}, \omega_{j}\right)=\mathscr{S}\left(\Gamma_{\mathscr{J}}\left(\omega_{i}, \omega_{j}\right)\right):$ the source set for $\Gamma\left(\mathscr{J}\left(\omega_{i}, \omega_{j}\right)\right)$
(the reduced junction set for ω_{i}, ω_{j}).
Let $\mathscr{J}_{0}\left(\omega_{i}, \omega_{j}\right)=\left\{j_{1}, \ldots, j_{t}\right\}$, and put $\Omega_{\left[\mathscr{L}_{0}\left(\omega_{i}, \omega_{j}\right)\right]}^{0}:=\left[\Omega_{\left[j_{1}\right]}^{0}, \ldots, \Omega_{[j t]}^{0}\right]$.
We have $\Omega_{\left[\omega_{i} \omega_{j}\right]} \cong \Omega_{\left[\mathscr{F}_{0}\left(\omega_{i}, \omega_{j}\right)\right]}$, and we say that

$$
\Omega_{\left[\omega_{i}\right]}^{0} \text { and } \Omega_{\left[\omega_{j}\right]}^{0} \text { are stapled at } \Omega_{\left[\mathscr{H}_{0}\left(\omega_{i}, \omega_{j}\right)\right]}^{0} \cdot
$$

We retuen to the example. $\mathscr{S}=\{4,5\}$.

We retuen to the example. $\mathscr{S}=\{4,5\}$.

Γ

$\Gamma_{[4]}$

$\Gamma_{[5]}$

$$
\Omega_{[4]}^{0}=\left\{\left(\begin{array}{cccc}
\lambda_{1} & 0 & x_{31} & x_{41} \\
0 & \lambda_{2} & x_{32} & x_{42} \\
x_{31} & x_{32} & \lambda_{3} & x_{43} \\
x_{41} & x_{42} & x_{43} & \lambda_{4}
\end{array}\right)>0\right\}, \quad \Omega_{[5]}^{0}=\left\{\left(\begin{array}{cccc}
\lambda_{1} I_{2} & \boldsymbol{0}_{2} & x_{31} \boldsymbol{e}_{1} & \boldsymbol{x}_{51} \\
{ }^{{ }^{t} \mathbf{0}_{2}} & \lambda_{2} & x_{32} & x_{52} \\
x_{31}{ }^{t} \boldsymbol{e}_{1} & x_{32} & \lambda_{3} & x_{53} \\
{ }^{t} \boldsymbol{x}_{51} & x_{52} & x_{53} & \lambda_{5}
\end{array}\right) \gg 0\right\}
$$

The shaded parts are stapled. Note $\mathscr{J}(4,5)=\{1,2,3\}, \mathscr{J}_{0}(4,5)=\{3\}$.
$\ln \Omega_{[4]}^{0}$, the shaded block is the minimal realization of the dual Vinberg cone.
$\ln \Omega_{[5]}^{0}$, the shaded block is not the minimal realization of the dual Vinberg cone.

$$
H_{[4]}^{0}:=\left\{\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
x_{31} & x_{32} & \lambda_{3} & 0 \\
x_{41} & x_{42} & x_{43} & \lambda_{4}
\end{array}\right\}_{\left(\lambda_{j}>0\right)} \quad, \quad H_{[5]}^{0}=\left\{\begin{array}{cccc}
\lambda_{1} I_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} \\
{ }^{t} \mathbf{0}_{2} & \lambda_{2} & 0 & 0 \\
x_{31}{ }^{t} \boldsymbol{e}_{1} & x_{32} & \lambda_{3} & 0 \\
{ }^{t} \boldsymbol{x}_{51} & x_{52} & x_{53} & \lambda_{5}
\end{array}\right\}_{\left(\lambda_{j}>0\right)}
$$

The shaded parts are stapled: $\quad H_{[\mathscr{S}]}^{0}=\left[H_{[4]}^{0}, H_{[5]}^{0}\right]$.

$$
H_{[4]}^{0}:=\left\{\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
x_{31} & x_{32} & \lambda_{3} & 0 \\
x_{41} & x_{42} & x_{43} & \lambda_{4}
\end{array}\right\}_{\left(\lambda_{j}>0\right)} \quad, \quad H_{[5]}^{0}=\left\{\begin{array}{cccc}
\lambda_{1} I_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} \\
{ }^{t} \mathbf{0}_{2} & \lambda_{2} & 0 & 0 \\
x_{31}{ }^{t} \boldsymbol{e}_{1} & x_{32} & \lambda_{3} & 0 \\
{ }^{t} \boldsymbol{x}_{51} & x_{52} & x_{53} & \lambda_{5}
\end{array}\right\}_{\left(\lambda_{j}>0\right)}
$$

The shaded parts are stapled: $\quad H_{[\mathscr{S}]}^{0}=\left[H_{[4]}^{0}, H_{[5]}^{0}\right]$.

$$
\begin{array}{rlrl}
\Omega & \rightsquigarrow V & & : \text { the corresponding Vin } \\
& \rightsquigarrow \Gamma=\Gamma(V) & & : \text { the corresponding orie } \\
& \rightsquigarrow \mathscr{S}=\left\{\omega_{1}, \ldots, \omega_{s}\right\} & & : \text { the sources of } \Gamma \\
& \rightsquigarrow \Omega_{\left[\omega_{1}\right]}, \ldots, \Omega_{\left[\omega_{s}\right]} & & : \text { the source homogenec } \\
& \rightsquigarrow \Omega_{\left[\omega_{1}\right]}^{0}, \ldots, \Omega_{\left[\omega_{s}\right]}^{0} & & : \text { the minimal realization } \\
& \rightsquigarrow \Omega_{[\mathscr{S}]}^{0}:=\left[\Omega_{\left[\omega_{1}\right]}^{0}, \ldots, \Omega_{\left[\omega_{s}\right]}^{0}\right] & : \text { stapling of the } \Omega_{\left[\omega_{i}\right]}^{0} \text { 's }
\end{array}
$$

When we only have pieces of cones, there might be several ways to assemble a cone from them by stapling.

When we only have pieces of cones, there might be several ways to assemble a cone from them by stapling.

In this case, we have two non-isomorphic Vinberg algebras V and W such that

$$
\Gamma(V)=\Gamma(W)=\Gamma
$$

Then, let $\Omega^{V} \leftrightarrow V$ and $\Omega^{W} \leftrightarrow W$. We have $\Omega^{V} \not \nexists \Omega^{W}$.
For $j=3,4$, we obatin the source cones $\Omega_{[j]}^{V}$ and $\Omega_{[j]}^{W}$ through $\Gamma_{[j]}$.
It is shown that $\Omega_{[3]}^{V}, \Omega_{[4]}^{V}, \Omega_{[3]}^{W}, \Omega_{[4]}^{W}$ are all linearly equivalent.
Note that $\operatorname{dim} \Omega^{V}=\operatorname{dim} \Omega^{W}=19$.

Kaneyuki-Tsuji condition (1974)

Γ : a transitive oriented graph, $\mathscr{A}:=\mathscr{A}(\Gamma)$: the arc set of Γ,

$$
[k \rightarrow j] \in \mathscr{A} \text { and }[j \rightarrow i] \in \mathscr{A} \Longrightarrow[k \rightarrow i] \in \mathscr{A} .
$$

c : a capacity (weight) function $\mathscr{A} \rightarrow \mathbb{Z}_{>0}$
We say that (Γ, c) satisfies the Kaneyuki-Tsuji condition $\stackrel{\text { def }}{\Longleftrightarrow}$
(KT1) Suppose $i<j<k$.
If there is a path $k \rightarrow j \rightarrow i$, then one has $\max \left(c_{k j}, c_{j i}\right) \leq c_{k i}$.
(KT2) Suppose $i<j<k<l$.
If there are two paths $l \rightarrow k \rightarrow i$ and $l \rightarrow j \rightarrow i$ with $j \notin N^{\text {out }}(k)$, then

$$
c_{l i} \geq \max \left(c_{l k}, c_{k i}\right)+\max \left(c_{l j}, c_{j i}\right) .
$$

Kaneyuki-Tsuji condition (1974)

Γ : a transitive oriented graph, $\mathscr{A}:=\mathscr{A}(\Gamma)$: the arc set of Γ,

$$
[k \rightarrow j] \in \mathscr{A} \text { and }[j \rightarrow i] \in \mathscr{A} \Longrightarrow[k \rightarrow i] \in \mathscr{A}
$$

c : a capacity (weight) function $\mathscr{A} \rightarrow \mathbb{Z}_{>0}$
We say that (Γ, c) satisfies the Kaneyuki-Tsuji condition $\stackrel{\text { def }}{\Longleftrightarrow}$
(KT1) Suppose $i<j<k$.
If there is a path $k \rightarrow j \rightarrow i$, then one has $\max \left(c_{k j}, c_{j i}\right) \leq c_{k i}$.
(KT2) Suppose $i<j<k<l$.
If there are two paths $l \rightarrow k \rightarrow i$ and $l \rightarrow j \rightarrow i$ with $j \notin N^{\text {out }}(k)$, then

$$
c_{l i} \geq \max \left(c_{l k}, c_{k i}\right)+\max \left(c_{l j}, c_{j i}\right) .
$$

- Example of (KT2):

(KT1) Suppose $i<j<k$.
If there is a path $k \rightarrow j \rightarrow i$, then one has $\max \left(c_{k j}, c_{j i}\right) \leq c_{k i}$.
(KT2) Suppose $i<j<k<l$.
If there are two paths $l \rightarrow k \rightarrow i$ and $l \rightarrow j \rightarrow i$ with $j \notin N^{\text {out }}(k)$, then

$$
c_{l i} \geq \max \left(c_{l k}, c_{k i}\right)+\max \left(c_{l j}, c_{j i}\right)
$$

(1) $\Gamma=\Gamma(V)$ for a Vinberg algebra V and $c([j \rightarrow i]):=\operatorname{dim} V_{j i}$ satisfies (KT1) and (KT2).
(2) $V \mapsto\left(\Gamma(V),\left(\operatorname{dim} V_{j i}\right)\right)$ is neither surjective nor injective.
(3) However, for $\operatorname{dim} V \leq 10$ it is bijective, which led them to the classification of homogeneous convex cones of dimension ≤ 10.
(4) For $\operatorname{dim} V=11$, a family of continuously many non-isomorphic V have the same $(\Gamma(V), c)$.
(5) $\exists(\Gamma, c)$ with (KT1) and (KT2) s.t. $\Gamma=\Gamma(V)$ for no V.

For (5), the Γ below with

$$
c([3 \rightarrow 1])=c([3 \rightarrow 2])=c([2 \rightarrow 1])=d \in \mathbb{Z}_{>0}
$$

clearly satsifies (KT1) and (KT2).

But $\Gamma=\Gamma(V)$ for some $V \Longleftrightarrow d=1,2,4,8$.
In this case the corresponding cone $\Omega^{V} \cong \mathscr{P}(3, \mathbb{K})$, where

$$
\mathbb{K}=\mathbb{R}(d=1), \quad \mathbb{K}=\mathbb{C}(d=2), \quad \mathbb{K}=\mathbb{H}(d=4), \quad \mathbb{K}=\mathbb{O}(d=8)
$$

