Realization of Homogeneous Convex Cones

through Oriented Graphs

(Joint work with Takashi Yamasaki)

Takaaki Nomura

Kyushu University (Fukuoka)

2

 $\begin{aligned} \mathscr{P}(N,\mathbb{R}) &:= \{ x \in \operatorname{Sym}(N,\mathbb{R}) \; ; \; x \gg 0 \} \; (N = 1, 2, \dots) \\ GL(N,\mathbb{R}) &\curvearrowright \; \mathscr{P}(N,\mathbb{R}) \; \text{transitively by } GL(N,\mathbb{R}) \times \mathscr{P}(N,\mathbb{R}) \ni (g,x) \mapsto gx^{t}g \\ \downarrow \; \text{restriction} \\ H^{+}(N,\mathbb{R}) &:= \{ g \in GL(N,\mathbb{R}) \; ; \; \text{lower triangular with diagonals} > 0 \} \\ \implies \; \text{the action is simply transitive (stabilizer is trivial)} \\ \mathscr{P}(N,\mathbb{R}) &= \{ q^{t}q \; ; \; q \in H^{+}(N,\mathbb{R}) \} = H^{+}(N,\mathbb{R}) \cdot I \end{aligned}$

$$\begin{split} \mathscr{P}(N,\mathbb{R}) &:= \{ x \in \operatorname{Sym}(N,\mathbb{R}) \; ; \; x \gg 0 \} \; (N = 1, 2, \dots) \\ GL(N,\mathbb{R}) \; &\curvearrowright \; \mathscr{P}(N,\mathbb{R}) \; \text{transitively by } GL(N,\mathbb{R}) \times \mathscr{P}(N,\mathbb{R}) \ni (g,x) \mapsto gx^{t}g \\ \downarrow \; \text{restriction} \\ H^{+}(N,\mathbb{R}) &:= \{ g \in GL(N,\mathbb{R}) \; ; \; \text{lower triangular with diagonals} > 0 \} \\ \implies \; \text{the action is simply transitive (stabilizer is trivial)} \end{split}$$

 $\mathscr{P}(N,\mathbb{R}) = \{q^t q ; q \in H^+(N,\mathbb{R})\} = H^+(N,\mathbb{R}) \cdot I$

 $\mathscr{P}(N,\mathbb{R}) \xrightarrow{\text{generalization focused on homogeneity}} \text{homogeneous convex cones}$

4

 $\mathscr{P}(N,\mathbb{R}) := \{x \in \operatorname{Sym}(N,\mathbb{R}) \; ; \; x \gg 0\} \; (N = 1, 2, \dots)$ $GL(N,\mathbb{R}) \; \curvearrowright \; \mathscr{P}(N,\mathbb{R}) \text{ transitively by } GL(N,\mathbb{R}) \times \mathscr{P}(N,\mathbb{R}) \ni (g, x) \mapsto gx^{t}g$ $\downarrow \text{ restriction}$ $H^{+}(N,\mathbb{R}) := \{g \in GL(N,\mathbb{R}) \; ; \text{ lower triangular with diagonals} > 0\}$ $\Longrightarrow \text{ the action is simply transitive (stabilizer is trivial)}$

 $\mathscr{P}(N,\mathbb{R}) = \{g^{t}g ; g \in H^{+}(N,\mathbb{R})\} = H^{+}(N,\mathbb{R}) \cdot I$

 $\mathscr{P}(N,\mathbb{R}) \xrightarrow{\text{generalization focused on homogeneity}} \text{homogeneous convex cones}$

V: a real vector space $(\dim V < \infty)$ with an inner product $V \supset \Omega$: a <u>regular</u> open convex cone (<u>containing no entire line</u>) $GL(\Omega) := \{g \in GL(V) ; g(\Omega) = \Omega\}$: the linear automorphism group of Ω (a Lie group as a closed subgroup of GL(V)) Ω is homogeneous $\stackrel{\text{def}}{\iff} GL(\Omega) \curvearrowright \Omega$ is transitive.

Any homogeneous convex cone = { hh^* ; $h \in H^+$ } (*T*-algbera products), where $H^+ := {h$; lower triangular with diagonals > 0} Theoretically beautiful analogue of $\mathscr{P}(N, \mathbb{R}) = {g^tg ; g \in H^+(N, \mathbb{R})}.$

Any homogeneous convex cone = $\{hh^*; h \in H^+\}$ (*T*-algbera products), where $H^+ := \{h; \text{ lower triangular with diagonals } > 0\}$

Theoretically beautiful analogue of $\mathscr{P}(N,\mathbb{R}) = \{g \, {}^t\!g \ ; \ g \in H^+(N,\mathbb{R})\}.$

In practice:

• hard to treat matrices without associative law.

Any homogeneous convex cone = $\{hh^*; h \in H^+\}$ (*T*-algbera products),

where $H^+ := \{h ; \text{ lower triangular with diagonals } > 0\}$

Theoretically beautiful analogue of $\mathscr{P}(N,\mathbb{R}) = \{g \, {}^t\!g \ ; \ g \in H^+(N,\mathbb{R})\}.$

In practice:

• hard to treat matrices without associative law.

For applications:

• desirable to have an easier access to homogeneous convex cones.

Any homogeneous convex cone = $\{hh^* ; h \in H^+\}$ (*T*-algbera products),

where $H^+ := \{h ; \text{ lower triangular with diagonals } > 0\}$

Theoretically beautiful analogue of $\mathscr{P}(N,\mathbb{R}) = \{g \, {}^t\!g \ ; \ g \in H^+(N,\mathbb{R})\}.$

In practice:

• hard to treat matrices without associative law.

For applications:

• desirable to have an easier access to homogeneous convex cones.

Another purpose:

- Stop using *T*-algebras (too many requirements in the definition).
- Rewrite the basics in the language of **Vinberg algebras** (renamed from clans). It should have been *klans* following Russian original, for there is an English (and French) word clan.

Vinberg's theory for homogeneous convex cones

Given a homogeneous convex cone $\Omega \subset V$

- $\implies \exists H \text{ (unique upto conjugation) split solvable s.t. } H \curvearrowright \Omega \text{ simply transitively.}$
- \implies Fix $E \in \Omega$. Then $H \ni h \mapsto hE \in \Omega$ is a diffeomorphism.
- \implies Its derivative at *I*, *i.e.*, the map $\mathfrak{h} \ni T \mapsto TE \in V$ is a linear isomorphism.

$$\implies \forall x \in V, \quad \exists 1 \ L(x) \in \mathfrak{h} \text{ s.t. } L(x)E = x.$$
(note: $V \ni x \mapsto L(x) \in \mathfrak{h} \subset \mathscr{L}(V)$ is also linear)

 \implies We introduce a bilinear product by $x \bigtriangleup y = L(x)y$ in V.

(we do not mind the associative law)

 $(\mathfrak{h} := \operatorname{Lie}(H))$

- \implies V is a **Vinberg algebra**, and E is the unit element of V.
- \implies The *H*-orbit *HE* through *E* is an open convex cone linearly equiv. to Ω .

Vinberg Algebras (Vinberg 1963)

Definition 1
V is a real VS with a bilinear product x △ y = L(x)y.
V is a Vinberg algebra def
(1) [L(x), L(y)] = L(x △ y - y △ x) (∀x, y ∈ V),
(2) ∃s ∈ V* s.t. s(x △ y) defines an inner product of V,
(3) Each L(x) has only real eigenvalues.

 \bullet Associative law is not assumed for $\bigtriangleup.$

Vinberg Algebras (Vinberg 1963)

- **Definition 1** *V* is a real VS with a bilinear product $x \bigtriangleup y = L(x)y$. *V* is a **Vinberg algebra** $\stackrel{\text{def}}{\iff}$ (1) $[L(x), L(y)] = L(x \bigtriangleup y - y \bigtriangleup x) \ (\forall x, y \in V)$, (2) $\exists s \in V^*$ s.t. $s(x \bigtriangleup y)$ defines an inner product of *V*, (3) Each L(x) has only real eigenvalues.

- Associative law is not assumed for \triangle .
- \bullet In this talk we always assume that V has a unit element.
- (1) $\iff [x, y, z] = [y, x, z] \ (\forall x, y, z \in V),$ where $[x, y, z] := x \bigtriangleup (y \bigtriangleup z) - (x \bigtriangleup y) \bigtriangleup z$: the associator.
- Algebras with (1) are called left-symmetric.
- We sometimes encounter left-symmetric algebras in mathematics and physics.

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V.

$$\implies V = \bigoplus_{1 \leq i \leq j \leq r} V_{ji} \ (V_{jj} = \mathbb{R}c_j; j = 1, \dots, r):$$

the normal decomposition w.r.t. a Vinberg frame c_1, \dots, c_r .

• Vinberg frame = complete system of primitive orthogonal idempotens (r_{1}, r_{2})

 $(c_1 + \cdots + c_r = E)$

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V. $\implies V = \bigoplus_{1 \leq i \leq j \leq r} V_{ji} \ (V_{jj} = \mathbb{R}c_j; j = 1, \dots, r)$ the normal decomposition w.r.t. a Vinberg frame c_1, \dots, c_r .

- Vinberg frame = complete system of primitive orthogonal idempotens $(c_1 + \cdots + c_r = E)$
- \bullet In short we can regard V as

$$V = \begin{pmatrix} \mathbb{R}c_{1} & V_{21} & \cdots & V_{r-1,1} & V_{r1} \\ V_{21} & \mathbb{R}c_{2} & & \vdots \\ \vdots & & \ddots & & \vdots \\ V_{r-1,1} & & \mathbb{R}c_{r-1} & V_{r,r-1} \\ V_{r1} & \cdots & \cdots & V_{r,r-1} & \mathbb{R}c_{r} \end{pmatrix}$$
(*r*: the rank of Ω or of *V*)

We retrun to the beginning so that we have $\Omega \subset V$, with a Vinberg algebra V. $\implies V = \bigoplus_{1 \leq i \leq j \leq r} V_{ji} \ (V_{jj} = \mathbb{R}c_j; j = 1, \dots, r) \ \cdots \cdots \ 1$ the normal decomposition w.r.t. a Vinberg frame c_1, \dots, c_r .

- Vinberg frame = complete system of primitive orthogonal idempotens $(c_1 + \cdots + c_r = E)$
- \bullet In short we can regard V as

$$V = \begin{pmatrix} \mathbb{R}c_{1} & V_{21} & \cdots & V_{r-1,1} & V_{r1} \\ V_{21} & \mathbb{R}c_{2} & & \vdots \\ \vdots & & \ddots & & \vdots \\ V_{r-1,1} & & \mathbb{R}c_{r-1} & V_{r,r-1} \\ V_{r1} & \cdots & \cdots & V_{r,r-1} & \mathbb{R}c_{r} \end{pmatrix}$$
 (*r*: the rank of Ω or of *V*)

• Fix an inner product $\langle x | y \rangle := s_0(x \bigtriangleup y)$ of V. $\rightsquigarrow 1$ is an orthogonal decomposition.

Example: $V = \text{Sym}(r, \mathbb{R}), \ \Omega = \mathscr{P}(r, \mathbb{R}).$

- $GL(r, \mathbb{R})$ -action on Ω : $GL(r, \mathbb{R}) \times \Omega \ni (g, x) \mapsto gx^t g \in \Omega$
- Product in V as a Vinberg algebra:

$$x \Delta y = \underline{x} \, y + y^{t}(\underline{x}),$$

where for $x = (x_{ij}) \in \text{Sym}(r, \mathbb{R}),$
$$\begin{pmatrix} \frac{1}{2}x_{11} & 0\\ x_{21} & \frac{1}{2}x_{22}\\ \vdots & \ddots & \ddots\\ x_{r1} & \cdots & x_{r,r-1} & \frac{1}{2}x_{rr} \end{pmatrix}.$$

Thus $x = \underline{x} + {}^{t}(\underline{x}).$
• $L(x)y = R(y)x = \underline{x} \, y + y^{t}(\underline{x}).$

• Let $d_{ji} := \dim V_{ji} \ (j > i)$, and draw a weighted oriented graph by defining $\mathscr{V} := \{1, \ldots, r\}, \quad \mathscr{A} := \{[j \to i] ; i < j, \text{ and } d_{ji} > 0\}.$ $[j \to i]$ or simply $j \to i$ deotes the arc leaving j and enters i. Thus

 $\stackrel{j}{\circ} \xrightarrow{d_{ji}} \stackrel{i}{\circ} \qquad \text{if } \dim V_{ji} > 0.$

The graph $\Gamma = \Gamma(V) = (\mathscr{V}, \mathscr{A})$ is clearly oriented:

we do not have both $j \rightarrow i$ and $i \rightarrow j$. Moreover no $i \rightarrow i$ exists.

Example. If $d_{ji} = 1$, we do not write it in the graph for simplicity.

Example. If $d_{ji} = 1$, we do not write it in the graph for simplicity.

Pick up the sources of Γ. (source = vertex having no incoming arc) Let S be the source set of Γ. Note S ≠ Ø, since we always have r ∈ S. In the above example, S = {4,5}. **Example.** If $d_{ji} = 1$, we do not write it in the graph for simplicity.

- Pick up the sources of Γ. (source = vertex having no incoming arc) Let S be the source set of Γ. Note S ≠ Ø, since we always have r ∈ S.
 In the above example, S = {4,5}.
- For each $\omega \in \mathscr{S}$ pick up its out-neighbors, i.e., the vertices $k \text{ s.t. } [\omega \to k] \in \mathscr{A}$. Let $N^{\text{out}}(\omega) := \{ \text{out-neighbors of } \omega \}$, and $N^{\text{out}}[\omega] := N^{\text{out}}(\omega) \cup \{ \omega \}$. In the example, $N^{\text{out}}[4] = \{1, 2, 3, 4\}$, $N^{\text{out}}[5] = \{1, 2, 3, 5\}$.

• Form the oriented sub-graphs $\Gamma_{[\omega]}$ from $N^{\text{out}}[\omega]$. In the example, $N^{\text{out}}[4] = \{1, 2, 3, 4\}$, $N^{\text{out}}[5] = \{1, 2, 3, 5\}$.

• Form the oriented sub-graphs $\Gamma_{[\omega]}$ from $N^{\text{out}}[\omega]$. In the example, $N^{\text{out}}[4] = \{1, 2, 3, 4\}$, $N^{\text{out}}[5] = \{1, 2, 3, 5\}$.

For each $\omega \in \mathscr{S}$, let

- $V_{[\omega]} := \bigoplus_{\substack{i \leq j \\ i, j \in N^{\text{out}}[\omega]}} V_{ji}$. Then $V_{[\omega]}$ is a subalgebra of V (the source subalgebra corresponding to ω).
- $E_{[\omega]} := \bigoplus_{i \in N^{\text{out}}[\omega]} V_{\omega i}$ is a two-sided ideal of $V_{[\omega]}$.

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

$$V_{[\omega]} =$$
 the biggest square
 $\supset E_{[\omega]} =$ the shaded part

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

In the above example, we have $N^{\text{out}}[5] = \{1, 2, 3, 5\}$, so that

24

By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

 $V_{[\omega]} =$ the biggest square $\supset E_{[\omega]} =$ the shaded part

• $\varphi_{[\omega]}(x)\eta := \eta \bigtriangleup x \ (x \in V_{[\omega]}, \ \eta \in E_{[\omega]}).$

After a minor change of the inner product of $E_{[\omega]}$, we have $\varphi_{[\omega]}(x) \in \text{Sym}(E_{[\omega]})$.

 \overline{W} 猫中の人一系:50 By ignoring the unrelated entries, you just image $V_{[\omega]}$ and $E_{[\omega]}$ as

 $V_{[\omega]} = { t the \ biggest \ square} \ \supset E_{[\omega]} = { t the \ shaded \ part}$

• $\varphi_{[\omega]}(x)\eta := \eta \bigtriangleup x \ (x \in V_{[\omega]}, \ \eta \in E_{[\omega]}).$

After a minor change of the inner product of $E_{[\omega]}$, we have $\varphi_{[\omega]}(x) \in \text{Sym}(E_{[\omega]})$.

- $\Omega_{[\omega]}$: the homogeneous cone corresponding to $V_{[\omega]}$
- We name $\Omega_{[\omega]}$ the source homogeneous cone corresponding to the source ω .
- $V_{[\omega]} \ni x \mapsto \varphi_{[\omega]}(x)$ is faithful: $\varphi_{[\omega]}(x) = 0$ implies x = 0.
- $\varphi_{[\omega]}(V_{[\omega]})$ is a subalgebra of the Vinberg algebra $Sym(E_{[\omega]})$.

The source cones have a simple description.

 $- \text{$ **Theorem 2** $} \\ \text{Let } x \in V_{[\omega]}. \text{ Then, } x \in \Omega_{[\omega]} \iff \varphi_{[\omega]}(x) \gg 0.$

The source cones have a simple description.

- If $\mathscr{S} = \{r\}$, we are done. We have $V = V_{[r]}$, $\Omega = \Omega_{[r]}$, and $\Omega_{[r]}^{0} := \varphi_{[r]}(\Omega_{[r]})$ is our realization of Ω by pos.-def. operators in $\operatorname{Sym}(E_{[r]})$. • $\varphi_{[r]}$ intertwines the simply transitive groups $H \curvearrowright \Omega$ and $\exp L(V_{[r]}^{0}) \curvearrowright \Omega_{[r]}^{0}$, where $V_{[r]}^{0} := \varphi_{[r]}(V_{[r]}) \subset \operatorname{Sym}(E_{[r]})$, $\exp L(V_{[r]}^{0}) \subset GL(E_{[r]})$. $\exp L(V_{[r]}^{0})$: the simply transitive Lie group with Lie algebra cosisting of the left multiplication operators of the Vinberg algebra $V_{[r]}^{0}$.
- $\varphi_{[r]}$ is minimal in the sense that if $\Phi: V \to \operatorname{Sym}(N, \mathbb{R})$ is an injective LSA homomorphism, then $N \ge \dim E_{[r]}$.

In general, we have

- Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]} : V \to V_{[\omega]}$: orthogonal projector, (1) $x = 0 \iff \varphi_{[\omega]}(\pi_{[\omega]}(x)) = 0$ for $\forall \omega \in \mathscr{S}$. (2) $x \in \Omega \iff \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$. In general, we have

- Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]} : V \to V_{[\omega]}$: orthogonal projector, (1) $x = 0 \iff \varphi_{[\omega]}(\pi_{[\omega]}(x)) = 0$ for $\forall \omega \in \mathscr{S}$. (2) $x \in \Omega \iff \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$.

Thus

 $\begin{array}{c} - \text{ Theorem 4} \\ \Omega = \big\{ x \in V \; ; \; \varphi_{[\omega]}(\pi_{[\omega]}(x)) \gg 0 \; \; (\forall \omega \in \mathscr{S}) \big\}. \end{array}$

In general, we have

– Proposition 3

Let $x \in V$. Then, with $\pi_{[\omega]} : V \to V_{[\omega]}$: orthogonal projector, (1) $x = 0 \iff \varphi_{[\omega]}(\pi_{[\omega]}(x)) = 0$ for $\forall \omega \in \mathscr{S}$. (2) $x \in \Omega \iff \pi_{[\omega]}(x) \in \Omega_{[\omega]}$ for $\forall \omega \in \mathscr{S}$.

Thus

$$\begin{array}{l} - \text{ Theorem 4} \\ \Omega = \big\{ x \in V \ ; \ \varphi_{[\omega]}(\pi_{[\omega]}(x)) \gg 0 \ \ (\forall \omega \in \mathscr{S}) \big\}. \end{array}$$

Our next task is to assemble $\Omega^0_{[\omega]} := \varphi_{[\omega]}(\Omega_{[\omega]}) \ (\omega \in \mathscr{S}).$

Let $\mathscr{S} = \{\omega_1, \dots, \omega_s\}$ (s > 1). $V^0_{[\omega_i]} := \varphi_{[\omega_i]}(V_{[\omega_i]}) \subset \operatorname{Sym}(E_{[\omega_i]})$. $V^0 := V^0_{[\omega_1]} \oplus \dots \oplus V^0_{[\omega_s]}$: the outer dierct sum vector space of $V^0_{[\omega_i]}$ $(i = 1, \dots, s)$.

Let $\mathscr{S} = \{\omega_1, \ldots, \omega_s\}$ (s > 1). $V^0_{[\omega_i]} := \varphi_{[\omega_i]}(V_{[\omega_i]}) \subset \operatorname{Sym}(E_{[\omega_i]})$. $V^0 := V^0_{[\omega_1]} \oplus \cdots \oplus V^0_{[\omega_s]}$: the outer dierct sum vector space of $V^0_{[\omega_i]}$ $(i = 1, \ldots, s)$. Recall $\pi_{[\omega]} : V \to V_{[\omega]}$, the orthogoal projector. $V^0_{[\mathscr{S}]} := \{(X_1, \ldots, X_s) \in V^0 ; \pi_{[\omega_j]} \circ \varphi^{-1}_{[\omega_i]}(X_i) = \pi_{[\omega_i]} \circ \varphi^{-1}_{[\omega_j]}(X_j) \text{ for any } i \neq j\}.$ We write $V^0_{[\mathscr{S}]} = [V^0_{[\omega_1]}, \ldots, V^0_{[\omega_s]}]$, which we call the stapling of $V^0_{[\omega_1]}, \ldots, V^0_{[\omega_s]}$. Let $\mathscr{S} = \{\omega_1, \ldots, \omega_s\}$ (s > 1). $V^0_{[\omega_i]} := \varphi_{[\omega_i]}(V_{[\omega_i]}) \subset \operatorname{Sym}(E_{[\omega_i]})$. $V^0 := V^0_{[\omega_1]} \oplus \cdots \oplus V^0_{[\omega_s]}$: the outer dierct sum vector space of $V^0_{[\omega_i]}$ $(i = 1, \ldots, s)$. Recall $\pi_{[\omega]} : V \to V_{[\omega]}$, the orthogoal projector. $V^0_{[\mathscr{S}]} := \{(X_1, \ldots, X_s) \in V^0 ; \pi_{[\omega_j]} \circ \varphi^{-1}_{[\omega_i]}(X_i) = \pi_{[\omega_i]} \circ \varphi^{-1}_{[\omega_j]}(X_j) \text{ for any } i \neq j\}.$ We write $V^0_{[\mathscr{S}]} = [V^0_{[\omega_1]}, \ldots, V^0_{[\omega_s]}]$, which we call the stapling of $V^0_{[\omega_1]}, \ldots, V^0_{[\omega_s]}$.

• For s = 2, you just observe $(W := V_{[\omega_1]} \cap V_{[\omega_2]})$ $V^0_{[\omega_1]} \oplus V^0_{[\omega_2]} = \varphi_{[\omega_1]} (W + (V_{[\omega_1]} \cap W^{\perp})) \oplus \varphi_{[\omega_2]} (W + (V_{[\omega_2]} \cap W^{\perp}))$ and thus

$$\left[V_{[\omega_1]}^0, V_{[\omega_2]}^0\right] = \left\{ \left(\varphi_{[\omega_1]}(w + x_1), \varphi_{[\omega_2]}(w + x_2)\right) ; \ w \in W, \ x_j \in V_{[\omega_j]} \cap W^{\perp} \right\}.$$

Accordingly define a linear isomorphism $\varphi_{[\mathscr{S}]} : V \to V_{[\mathscr{S}]}^0$ in a natural way. $V = \sum_{i=1}^s V_{[\omega_i]}$ (sum of vector subspaces; not necessarily direct) implies $\dim V = \sum_{p=1}^s (-1)^{p-1} \sum_{1 \le i_1 < \dots < i_p \le s} \dim(V_{[\omega_{i_1}]} \cap \dots \vee V_{[\omega_{i_p}]}).$

We have thus stapled $V^0_{[\omega_i]}$: $V^0_{[\mathscr{S}]} = \begin{bmatrix} V^0_{[\omega_1]}, \dots, V^0_{[\omega_s]} \end{bmatrix}$

Accordingly define a linear isomorphism $\varphi_{[\mathscr{S}]} : V \to V_{[\mathscr{S}]}^0$ in a natural way. $V = \sum_{i=1}^s V_{[\omega_i]}$ (sum of vector subspaces; not necessarily direct) implies $\dim V = \sum_{p=1}^s (-1)^{p-1} \sum_{1 \le i_1 < \dots < i_p \le s} \dim(V_{[\omega_{i_1}]} \cap \dots V_{[\omega_{i_p}]}).$

We have thus stapled $V^0_{[\omega_i]}$: $V^0_{[\mathscr{S}]} = \begin{bmatrix} V^0_{[\omega_1]}, \dots, V^0_{[\omega_s]} \end{bmatrix} \cdots \cdots (*)$

- Staple $\Omega^0_{[\omega_i]}$ following the stapling (*), so that $\Omega^0_{[\mathscr{S}]} := [\Omega^0_{[\omega_1]}, \ldots, \Omega^0_{[\omega_s]}]$.
- Staple also the simple transitive matrix groups

$$H^{0}_{[\omega_{i}]} := \exp L(V^{0}_{[\omega_{i}]}) \curvearrowright \Omega^{0}_{[\omega_{i}]}$$

$$\cap \qquad \cap$$

$$GL(E_{[\omega_{i}]}) \curvearrowright \operatorname{Sym}(E_{[\omega_{i}]})$$

so that

$$H^0_{[\mathscr{S}]} := \left[H^0_{[\omega_1]}, \dots, H^0_{[\omega_s]} \right].$$

 $\mathscr{J}(\omega_i, \omega_j) := N^{\text{out}}[\omega_i] \cap N^{\text{out}}[\omega_j] \ (i < j): \text{ the junction set for } \omega_i, \omega_j.$ Then, $V_{[\omega_i]} \cap V_{[\omega_j]} = \bigoplus_{\substack{k \le l \\ k, l \in \mathscr{J}(\omega_i, \omega_j)}} V_{lk} \text{ is the normal decomposition of } V_{[\omega_i]} \cap V_{[\omega_j]}.$

 $\mathscr{J}(\omega_i, \omega_j) := N^{\text{out}}[\omega_i] \cap N^{\text{out}}[\omega_j] \ (i < j): \text{ the junction set for } \omega_i, \omega_j.$ Then, $V_{[\omega_i]} \cap V_{[\omega_j]} = \bigoplus_{\substack{k \le l \\ k, l \in \mathscr{J}(\omega_i, \omega_j)}} V_{lk} \text{ is the normal decomposition of } V_{[\omega_i]} \cap V_{[\omega_j]}.$

$$\begin{split} &\Omega_{[\omega_i\omega_j]}: \text{ the homogeneous convex cone corresponding to } V_{[\omega_i]} \cap V_{[\omega_j]}.\\ &\text{We have } \Omega_{[\omega_i\omega_j]} = \pi_{\omega_i\omega_j}(\Omega_{[\omega_i]}) = \pi_{\omega_j\omega_i}(\Omega_{[\omega_j]}), \text{ where }\\ &\pi_{\omega_i\omega_j}: V_{[\omega_i]} \to V_{[\omega_i]} \cap V_{[\omega_j]}, \quad \pi_{\omega_j\omega_i}: V_{[\omega_j]} \to V_{[\omega_i]} \cap V_{[\omega_j]} \text{ are the orthog. proj.} \end{split}$$

 $\mathscr{J}(\omega_i, \omega_j) := N^{\text{out}}[\omega_i] \cap N^{\text{out}}[\omega_j] \ (i < j): \text{ the junction set for } \omega_i, \omega_j.$ Then, $V_{[\omega_i]} \cap V_{[\omega_j]} = \bigoplus_{\substack{k \le l \\ k, l \in \mathscr{J}(\omega_i, \omega_j)}} V_{lk} \text{ is the normal decomposition of } V_{[\omega_i]} \cap V_{[\omega_j]}.$

$$\begin{split} \Omega_{[\omega_i\omega_j]}: \text{ the homogeneous convex cone corresponding to } V_{[\omega_i]} \cap V_{[\omega_j]}. \\ \text{We have } \Omega_{[\omega_i\omega_j]} = \pi_{\omega_i\omega_j}(\Omega_{[\omega_i]}) = \pi_{\omega_j\omega_i}(\Omega_{[\omega_j]}), \text{ where} \\ \pi_{\omega_i\omega_j}: V_{[\omega_i]} \to V_{[\omega_i]} \cap V_{[\omega_j]}, \quad \pi_{\omega_j\omega_i}: V_{[\omega_j]} \to V_{[\omega_i]} \cap V_{[\omega_j]} \quad \text{are the orthog. proj.} \\ \mathscr{J}(\omega_i, \omega_j) & \rightsquigarrow \Gamma_{\mathscr{J}(\omega_i, \omega_j)}: \text{ the corresponding oriented subgraph of } \Gamma = \Gamma(V). \\ \mathscr{J}_0(\omega_i, \omega_j) = \mathscr{S}(\Gamma_{\mathscr{J}(\omega_i, \omega_j)}): \text{ the source set for } \Gamma(\mathscr{J}(\omega_i, \omega_j)) \\ & \text{ (the reduced junction set for } \omega_i, \omega_j). \\ \text{Let } \mathscr{J}_0(\omega_i, \omega_j) = \{j_1, \ldots, j_t\}, \text{ and put } \Omega_{[\mathscr{J}_0(\omega_i, \omega_j)]}^0 := [\Omega_{[j_1]}^0, \ldots, \Omega_{[j_t]}^0]. \\ \text{We have } \Omega_{[\omega_i\omega_j]} \cong \Omega_{[\mathscr{J}_0(\omega_i, \omega_j)]}^0, \text{ and we say that} \\ & \Omega_{[\omega_i]}^0 \text{ and } \Omega_{[\omega_j]}^0 \text{ are stapled at } \Omega_{[\mathscr{J}_0(\omega_i, \omega_j)]}^0. \end{split}$$

We retuen to the example. $\mathscr{S} = \{4, 5\}.$

We return to the example. $\mathscr{S} = \{4, 5\}.$

In $\Omega_{[4]}^{0}$, the shaded block is the minimal realization of the dual Vinberg cone. In $\Omega_{[5]}^{0}$, the shaded block is <u>not</u> the minimal realization of the dual Vinberg cone.

$$H^{0}_{[4]} := \left\{ \begin{array}{ccccc} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ x_{31} & x_{32} & \lambda_{3} & 0 \\ \hline x_{41} & x_{42} & x_{43} & \lambda_{4} \end{array} \right\}_{(\lambda_{j} > 0)}, \quad H^{0}_{[5]} = \left\{ \begin{array}{cccccc} \lambda_{1}I_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{t}\mathbf{0}_{2} & \lambda_{2} & 0 & 0 \\ x_{31}{}^{t}\mathbf{e}_{1} & x_{32} & \lambda_{3} & 0 \\ \hline \mathbf{t}_{\mathbf{x}_{51}} & x_{52} & x_{53} & \lambda_{5} \end{array} \right\}_{(\lambda_{j} > 0)},$$

The shaded parts are stapled: $H^0_{[\mathscr{S}]} = [H^0_{[4]}, H^0_{[5]}].$

$$H_{[4]}^{0} := \left\{ \begin{array}{cccc} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ x_{31} & x_{32} & \lambda_{3} & 0 \\ \hline x_{41} & x_{42} & x_{43} & \lambda_{4} \end{array} \right\}_{(\lambda_{j} > 0)}, \quad H_{[5]}^{0} = \left\{ \begin{array}{cccc} \lambda_{1}I_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} \\ \mathbf{t}\mathbf{0}_{2} & \lambda_{2} & 0 & 0 \\ x_{31}^{t}\mathbf{e}_{1} & x_{32} & \lambda_{3} & 0 \\ \hline \mathbf{t}\mathbf{x}_{51} & x_{52} & x_{53} & \lambda_{5} \end{array} \right\}_{(\lambda_{j} > 0)},$$

The shaded parts are stapled: $H^0_{[\mathscr{S}]} = [H^0_{[4]}, H^0_{[5]}].$

$$\Omega \rightsquigarrow V$$

$$\rightsquigarrow \Gamma = \Gamma(V)$$

$$\rightsquigarrow \mathscr{S} = \{\omega_1, \dots, \omega_s\}$$

$$\rightsquigarrow \Omega_{[\omega_1]}, \dots, \Omega_{[\omega_s]}$$

$$\rightsquigarrow \Omega_{[\omega_1]}^0, \dots, \Omega_{[\omega_s]}^0$$

$$\rightsquigarrow \Omega_{[\mathscr{S}]}^0 := [\Omega_{[\omega_1]}^0, \dots, \Omega_{[\omega_s]}^0]$$

the corresponding Vinberg algebra
the corresponding oriented graph
the sources of Γ
the source homogeneous cones
the minimal realizations of the source cones
stapling of the Ω⁰_[ωi]'s

When we only have pieces of cones, there might be several ways to assemble a cone from them by stapling.

45

When we only have pieces of cones, there might be several ways to assemble a cone from them by stapling.

In this case, we have two non-isomorphic Vinberg algebras V and W such that $\Gamma(V) = \Gamma(W) = \Gamma$.

Then, let $\Omega^V \leftrightarrow V$ and $\Omega^W \leftrightarrow W$. We have $\Omega^V \ncong \Omega^W$. For j = 3, 4, we obttin the source cones $\Omega_{[j]}^V$ and $\Omega_{[j]}^W$ through $\Gamma_{[j]}$. It is shown that $\Omega_{[3]}^V, \Omega_{[4]}^V, \Omega_{[3]}^W, \Omega_{[4]}^W$ are all linearly equivalent. Note that dim $\Omega^V = \dim \Omega^W = 19$.

Kaneyuki–Tsuji condition (1974)

Γ: a transitive oriented graph, $\mathscr{A} := \mathscr{A}(\Gamma)$: the arc set of Γ, $[k \to j] \in \mathscr{A}$ and $[j \to i] \in \mathscr{A} \implies [k \to i] \in \mathscr{A}$. c: a capacity (weight) function $\mathscr{A} \to \mathbb{Z}_{>0}$ We say that (Γ, c) satisfies the Kaneyuki–Tsuji condition $\stackrel{\text{def}}{\iff}$ (KT1) Suppose i < j < k. If there is a path $k \to j \to i$, then one has $\max(c_{kj}, c_{ji}) \leq c_{ki}$. (KT2) Suppose i < j < k < l. If there are two paths $l \to k \to i$ and $l \to j \to i$ with $j \notin N^{\text{out}}(k)$, then $c_{li} \geq \max(c_{lk}, c_{ki}) + \max(c_{lj}, c_{ji})$.

Kaneyuki–Tsuji condition (1974)

 $\begin{array}{l} \Gamma: \text{ a transitive oriented graph, } \mathscr{A} := \mathscr{A}(\Gamma): \text{ the arc set of } \Gamma, \\ [k \rightarrow j] \in \mathscr{A} \text{ and } [j \rightarrow i] \in \mathscr{A} \implies [k \rightarrow i] \in \mathscr{A}. \\ c: \text{ a capacity (weight) function } \mathscr{A} \rightarrow \mathbb{Z}_{>0} \\ \text{We say that } (\Gamma, c) \text{ satisfies the Kaneyuki-Tsuji condition } \stackrel{\text{def}}{\Longrightarrow} \\ \textbf{(KT1) Suppose } i < j < k. \\ \text{ If there is a path } k \rightarrow j \rightarrow i, \text{ then one has } \max(c_{kj}, c_{ji}) \leq c_{ki}. \\ \textbf{(KT2) Suppose } i < j < k < l. \\ \text{ If there are two paths } l \rightarrow k \rightarrow i \text{ and } l \rightarrow j \rightarrow i \text{ with } j \notin N^{\text{out}}(k), \text{ then } \\ c_{li} \geq \max(c_{lk}, c_{ki}) + \max(c_{lj}, c_{ji}). \end{array}$

Example of (KT2):

(KT1) Suppose i < j < k. If there is a path $k \to j \to i$, then one has $\max(c_{kj}, c_{ji}) \leq c_{ki}$. (KT2) Suppose i < j < k < l. If there are two paths $l \to k \to i$ and $l \to j \to i$ with $j \notin N^{\text{out}}(k)$, then $c_{li} \geq \max(c_{lk}, c_{ki}) + \max(c_{lj}, c_{ji})$.

- (1) $\Gamma = \Gamma(V)$ for a Vinberg algebra V and $c([j \rightarrow i]) := \dim V_{ji}$ satisfies (KT1) and (KT2).
- (2) $V \mapsto (\Gamma(V), (\dim V_{ji}))$ is neither surjective nor injective.
- (3) However, for dim $V \le 10$ it is bijective, which led them to the classification of homogeneous convex cones of dimension ≤ 10 .
- (4) For dim V = 11, a family of continuously many non-isomorphic V have the same $(\Gamma(V), c)$.

(5) $\exists (\Gamma, c)$ with (KT1) and (KT2) s.t. $\Gamma = \Gamma(V)$ for no V. For (5), the Γ below with

$$c([3 \to 1]) = c([3 \to 2]) = c([2 \to 1]) = d \in \mathbb{Z}_{>0}$$

clearly satsifies (KT1) and (KT2).

But $\Gamma = \Gamma(V)$ for some $V \iff d = 1, 2, 4, 8$.

In this case the corresponding cone $\Omega^V \cong \mathscr{P}(3, \mathbb{K})$, where

 $\mathbb{K}=\mathbb{R} \ (d=1), \quad \mathbb{K}=\mathbb{C} \ (d=2), \quad \mathbb{K}=\mathbb{H} \ (d=4), \quad \mathbb{K}=\mathbb{O} \ (d=8).$