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P(N, R) := {x 2 Sym(N, R) ; x � 0} (N = 1, 2, . . . )

GL(N, R) y P(N, R) transitively by GL(N, R)⇥P(N, R) 3 (g, x) 7! gx tg

# restriction

H+(N, R) := {g 2 GL(N, R) ; lower triangular with diagonals > 0}
=) the action is simply transitive (stabilizer is trivial)

P(N, R) = {g tg ; g 2 H+(N, R)} = H+(N, R) · I
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P(N, R) := {x 2 Sym(N, R) ; x � 0} (N = 1, 2, . . . )

GL(N, R) y P(N, R) transitively by GL(N, R)⇥P(N, R) 3 (g, x) 7! gx tg

# restriction

H+(N, R) := {g 2 GL(N, R) ; lower triangular with diagonals > 0}
=) the action is simply transitive (stabilizer is trivial)

P(N, R) = {g tg ; g 2 H+(N, R)} = H+(N, R) · I

P(N, R)
generalization focused on homogeneity�������������������! homogeneous convex cones

V : a real vector space (dim V < 1) with an inner product

V � ⌦: a regular open convex cone (containing no entire line)

GL(⌦) := {g 2 GL(V ) ; g(⌦) = ⌦}: the linear automorphism group of ⌦

(a Lie group as a closed subgroup of GL(V ))

⌦ is homogeneous
def() GL(⌦) y ⌦ is transitive.
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Vinberg (1963) introduced a non-associative matrix algebra with ⇤.
This algebra is called a T -algebra.

Any homogeneous convex cone = {hh⇤ ; h 2 H+} (T -algbera products),

where H+ := {h ; lower triangular with diagonals > 0}
Theoretically beautiful analogue of P(N, R) = {g tg ; g 2 H+(N, R)}.
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In practice:

• hard to treat matrices without associative law.
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Vinberg (1963) introduced a non-associative matrix algebra with ⇤.
This algebra is called a T -algebra.

Any homogeneous convex cone = {hh⇤ ; h 2 H+} (T -algbera products),

where H+ := {h ; lower triangular with diagonals > 0}
Theoretically beautiful analogue of P(N, R) = {g tg ; g 2 H+(N, R)}.

In practice:

• hard to treat matrices without associative law.

For applications:

• desirable to have an easier access to homogeneous convex cones.

Another purpose:
• Stop using T -algebras (too many requirements in the definition).
• Rewrite the basics in the language of Vinberg algebras (renamed from clans).

It should have been klans following Russian original, for there is an English
(and French) word clan.
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Vinberg’s theory for homogeneous convex cones

Given a homogeneous convex cone ⌦ ⇢ V

=) 9H (unique upto conjugation) split solvable s.t. H y ⌦ simply transitively.

=) Fix E 2 ⌦. Then H 3 h 7! hE 2 ⌦ is a di↵eomorphism.

=) Its derivative at I , i.e., the map h 3 T 7! TE 2 V is a linear isomorphism.
(h := Lie(H))

=) 8x 2 V , 91 L(x) 2 h s.t. L(x)E = x.
(note: V 3 x 7! L(x) 2 h ⇢ L (V ) is also linear)

=) We introduce a bilinear product by x4 y = L(x)y in V .
(we do not mind the associative law)

=) V is a Vinberg algebra, and E is the unit element of V .

=) The H-orbit HE through E is an open convex cone linearly equiv. to ⌦.
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Vinberg Algebras (Vinberg 1963)

Definition 1

V is a real VS with a bilinear product x4 y = L(x)y.

V is a Vinberg algebra
def()

(1) [L(x), L(y)] = L(x4 y � y4x) (8x, y 2 V ),

(2) 9s 2 V ⇤ s.t. s(x4 y) defines an inner product of V ,

(3) Each L(x) has only real eigenvalues.

• Associative law is not assumed for 4.
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Vinberg Algebras (Vinberg 1963)

Definition 1

V is a real VS with a bilinear product x4 y = L(x)y.

V is a Vinberg algebra
def()

(1) [L(x), L(y)] = L(x4 y � y4x) (8x, y 2 V ),

(2) 9s 2 V ⇤ s.t. s(x4 y) defines an inner product of V ,

(3) Each L(x) has only real eigenvalues.

• Associative law is not assumed for 4.

• In this talk we always assume that V has a unit element.

• (1) () [x, y, z] = [y, x, z] (8x, y, z 2 V ),
where [x, y, z] := x4 (y4 z)� (x4 y)4 z: the associator.

• Algebras with (1) are called left-symmetric.
• We sometimes encounter left-symmetric algebras in mathematics and physics.



12

Realization of homogeneous cones

We retrun to the beginning so that we have ⌦ ⇢ V , with a Vinberg algebra V .
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Realization of homogeneous cones

We retrun to the beginning so that we have ⌦ ⇢ V , with a Vinberg algebra V .

=) V =
L

15i5j5r

Vji (Vjj = Rcj; j = 1, . . . , r):

the normal decomposition w.r.t. a Vinberg frame c1, . . . .cr.

• Vinberg frame = complete system of primitive orthogonal idempotens
(c1 + · · · + cr = E)
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Realization of homogeneous cones

We retrun to the beginning so that we have ⌦ ⇢ V , with a Vinberg algebra V .

=) V =
L

15i5j5r

Vji (Vjj = Rcj; j = 1, . . . , r)

the normal decomposition w.r.t. a Vinberg frame c1, . . . .cr.

• Vinberg frame = complete system of primitive orthogonal idempotens
(c1 + · · · + cr = E)

• In short we can regard V as

V =

0
BBBB@

Rc1 V21 · · · Vr�1,1 Vr1

V21 Rc2
...

... . . . ...

Vr�1,1 Rcr�1 Vr,r�1

Vr1 · · · · · · Vr,r�1 Rcr

1
CCCCA (r: the rank of ⌦ or of V )
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Realization of homogeneous cones

We retrun to the beginning so that we have ⌦ ⇢ V , with a Vinberg algebra V .

=) V =
L

15i5j5r

Vji (Vjj = Rcj; j = 1, . . . , r) · · · · · · 1�
the normal decomposition w.r.t. a Vinberg frame c1, . . . .cr.

• Vinberg frame = complete system of primitive orthogonal idempotens
(c1 + · · · + cr = E)

• In short we can regard V as

V =

0
BBBB@

Rc1 V21 · · · Vr�1,1 Vr1

V21 Rc2
...

... . . . ...

Vr�1,1 Rcr�1 Vr,r�1

Vr1 · · · · · · Vr,r�1 Rcr

1
CCCCA (r: the rank of ⌦ or of V )

• Fix an inner product hx | y i := s0(x4 y) of V .
 1� is an orthogonal decomposition.
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Example: V = Sym(r, R), ⌦ = P(r, R).

• GL(r, R)-action on ⌦: GL(r, R)⇥ ⌦ 3 (g, x) 7! gxtg 2 ⌦

• Product in V as a Vinberg algebra:

x4y = x y + yt(x),

where for x = (xij) 2 Sym(r, R),

we put x :=

0
BBBB@

1
2 x11 0
x21

1
2 x22

... . . . . . .

xr1 · · · xr,r�1
1
2 xrr

1
CCCCA.

Thus x = x + t(x).

• L(x)y = R(y)x = x y + yt(x).
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• Let dji := dim Vji (j > i), and draw a weighted oriented graph by defining
V := {1, . . . , r}, A := {[j ! i] ; i < j, and dji > 0}.

[j ! i] or simply j ! i deotes the arc leaving j and enters i. Thus

j�
dji�! i� if dim Vji > 0.

The graph � = �(V ) = (V , A ) is clearly oriented:

we do not have both j ! i and i ! j. Moreover no i ! i exists.
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Example. If dji = 1, we do not write it in the graph for simplicity.

1

23

4

5

2
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Example. If dji = 1, we do not write it in the graph for simplicity.

1

23

4

5

2

• Pick up the sources of �. (source = vertex having no incoming arc)
Let S be the source set of �. Note S 6= ?, since we always have r 2 S .

In the above example, S = {4, 5}.
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Example. If dji = 1, we do not write it in the graph for simplicity.

1

23

4

5

2

• Pick up the sources of �. (source = vertex having no incoming arc)
Let S be the source set of �. Note S 6= ?, since we always have r 2 S .

In the above example, S = {4, 5}.

• For each ! 2 S pick up its out-neighbors, i.e., the vertices k s.t. [! ! k] 2 A .
Let N out(!) := {out-neighbors of !}, and N out[!] := N out(!) [ {!}.

In the example, N out[4] = {1, 2, 3, 4}, N out[5] = {1, 2, 3, 5}.
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• Form the oriented sub-graphs �[!] from N out[!].

In the example, N out[4] = {1, 2, 3, 4}, N out[5] = {1, 2, 3, 5}.

1

23

4

5

2

1

23

4 1

23

5

2

� �[4] �[5]
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• Form the oriented sub-graphs �[!] from N out[!].

In the example, N out[4] = {1, 2, 3, 4}, N out[5] = {1, 2, 3, 5}.

1

23

4

5

2

1

23

4 1

23

5

2

� �[4] �[5]

For each ! 2 S , let

• V[!] :=
L
ij

i,j2Nout[!]

Vji. Then V[!] is a subalgebra of V

(the source subalgebra corresponding to !).

• E[!] :=
L

i2Nout[!]

V!i is a two-sided ideal of V[!].
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Rc!

V[!] =
V[!] = the biggest square

� E[!] = the shaded part

By ignoring the unrelated entries, you just image V[!] and E[!] as
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Rc!

V[!] =
V[!] = the biggest square

� E[!] = the shaded part

By ignoring the unrelated entries, you just image V[!] and E[!] as

In the above example, we have N out[5] = {1, 2, 3, 5}, so that

Rc5

V[5] =

1 2 3 5

5

3

2

1

� E[5] = the shaded part
0

0
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Rc!

V[!] =
V[!] = the biggest square

� E[!] = the shaded part

By ignoring the unrelated entries, you just image V[!] and E[!] as

• '[!](x)⌘ := ⌘4x (x 2 V[!], ⌘ 2 E[!]).

After a minor change of the inner product of E[!], we have '[!](x) 2 Sym(E[!]).
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Rc!

V[!] =
V[!] = the biggest square

� E[!] = the shaded part

By ignoring the unrelated entries, you just image V[!] and E[!] as

• '[!](x)⌘ := ⌘4x (x 2 V[!], ⌘ 2 E[!]).

After a minor change of the inner product of E[!], we have '[!](x) 2 Sym(E[!]).

• ⌦[!]: the homogeneous cone corresponding to V[!]

• We name ⌦[!] the source homogeneous cone corresponding to the source !.

• V[!] 3 x 7! '[!](x) is faithful: '[!](x) = 0 implies x = 0.

• '[!](V[!]) is a subalgebra of the Vinberg algebra Sym(E[!]).
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The source cones have a simple description.

Theorem 2

Let x 2 V[!]. Then, x 2 ⌦[!] () '[!](x) � 0.
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The source cones have a simple description.

Theorem 2

Let x 2 V[!]. Then, x 2 ⌦[!] () '[!](x) � 0.

• If S = {r}, we are done. We have V = V[r], ⌦ = ⌦[r], and

⌦0
[r] := '[r](⌦[r]) is our realization of ⌦ by pos.-def. operators in Sym(E[r]).

• '[r] intertwines the simply transitive groups

H y ⌦ and exp L(V 0
[r]) y ⌦0

[r],

where V 0
[r] := '[r](V[r]) ⇢ Sym(E[r]), exp L(V 0

[r]) ⇢ GL(E[r]).

exp L(V 0
[r]): the simply transitive Lie group with Lie algebra cosisting of

the left multiplication operators of the Vinberg algebra V 0
[r].

• '[r] is minimal in the sense that if � : V ! Sym(N, R) is an injective LSA
homomorphism, then N � dim E[r].
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In general, we have

Proposition 3

Let x 2 V . Then, with ⇡[!] : V ! V[!]: orthogonal projector,

(1) x = 0 () '[!](⇡[!](x)) = 0 for 8! 2 S .

(2) x 2 ⌦ () ⇡[!](x) 2 ⌦[!] for 8! 2 S .
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In general, we have

Proposition 3

Let x 2 V . Then, with ⇡[!] : V ! V[!]: orthogonal projector,

(1) x = 0 () '[!](⇡[!](x)) = 0 for 8! 2 S .

(2) x 2 ⌦ () ⇡[!](x) 2 ⌦[!] for 8! 2 S .

Thus

Theorem 4

⌦ =
�
x 2 V ; '[!](⇡[!](x)) � 0 (8! 2 S )

 
.
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In general, we have

Proposition 3

Let x 2 V . Then, with ⇡[!] : V ! V[!]: orthogonal projector,

(1) x = 0 () '[!](⇡[!](x)) = 0 for 8! 2 S .

(2) x 2 ⌦ () ⇡[!](x) 2 ⌦[!] for 8! 2 S .

Thus

Theorem 4

⌦ =
�
x 2 V ; '[!](⇡[!](x)) � 0 (8! 2 S )

 
.

Our next task is to assemble ⌦0
[!] := '[!](⌦[!]) (! 2 S ).
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Let S = {!1, . . . , !s} (s > 1).

V 0
[!i]

:= '[!i]
(V[!i]) ⇢ Sym(E[!i]).

V 0 := V 0
[!1]
� · · ·� V 0

[!s]
: the outer dierct sum vector space of V 0

[!i]
(i = 1, . . . , s).
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Let S = {!1, . . . , !s} (s > 1).

V 0
[!i]

:= '[!i](V[!i]) ⇢ Sym(E[!i]).

V 0 := V 0
[!1]
� · · ·� V 0

[!s]
: the outer dierct sum vector space of V 0

[!i]
(i = 1, . . . , s).

Recall ⇡[!] : V ! V[!], the orthogoal projector.

V 0
[S ] :=

�
(X1, . . . , Xs) 2 V 0 ; ⇡[!j ]

� '�1
[!i]

(Xi) = ⇡[!i]
� '�1

[!j ]
(Xj) for any i 6= j

 
.

We write V 0
[S ] =

⇥
V 0

[!1]
, . . . , V 0

[!s]

⇤
, which we call the stapling of V 0

[!1]
, . . . , V 0

[!s]
.
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Let S = {!1, . . . , !s} (s > 1).

V 0
[!i]

:= '[!i](V[!i]) ⇢ Sym(E[!i]).

V 0 := V 0
[!1]
� · · ·� V 0

[!s]
: the outer dierct sum vector space of V 0

[!i]
(i = 1, . . . , s).

Recall ⇡[!] : V ! V[!], the orthogoal projector.

V 0
[S ] :=

�
(X1, . . . , Xs) 2 V 0 ; ⇡[!j ]

� '�1
[!i]

(Xi) = ⇡[!i]
� '�1

[!j ]
(Xj) for any i 6= j

 
.

We write V 0
[S ] =

⇥
V 0

[!1]
, . . . , V 0

[!s]

⇤
, which we call the stapling of V 0

[!1]
, . . . , V 0

[!s]
.

• For s = 2, you just observe (W := V[!1] \ V[!2])

V 0
[!1]
� V 0

[!2]
= '[!1]

�
W + (V[!1] \W?)

�
� '[!2]

�
W + (V[!2] \W?)

�
and thus⇥

V 0
[!1]

, V 0
[!2]

⇤
=
��

'[!1](w + x1), '[!2](w + x2)
�

; w 2 W, xj 2 V[!j ] \W? .
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Accordingly define a linear isomorphism '[S ] : V ! V 0
[S ] in a natural way.

V =
Ps

i=1 V[!i] (sum of vector subspaces; not necessarily direct) implies

dim V =
sX

p=1

(�1)p�1
X

1i1<···<ips

dim(V[!i1
] \ · · ·V[!ip]).

We have thus stapled V 0
[!i]

: V 0
[S ] =

⇥
V 0

[!1]
, . . . , V 0

[!s]

⇤
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Accordingly define a linear isomorphism '[S ] : V ! V 0
[S ] in a natural way.

V =
Ps

i=1 V[!i] (sum of vector subspaces; not necessarily direct) implies

dim V =
sX

p=1

(�1)p�1
X

1i1<···<ips

dim(V[!i1
] \ · · ·V[!ip]).

We have thus stapled V 0
[!i]

: V 0
[S ] =

⇥
V 0

[!1]
, . . . , V 0

[!s]

⇤
· · · · · · (⇤)

• Staple ⌦0
[!i]

following the stapling (⇤), so that ⌦0
[S ] :=

⇥
⌦0

[!1]
, . . . , ⌦0

[!s]

⇤
.

• Staple also the simple transitive matrix groups

H0
[!i]

:= exp L(V 0
[!i]

) y ⌦0
[!i]

\ \
GL(E[!i]) y Sym(E[!i])

so that
H0

[S ] :=
⇥
H0

[!1]
, . . . , H0

[!s]

⇤
.
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What happens in the stapling process ?
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What happens in the stapling process ?

J (!i, !j) := N out[!i] \N out[!j] (i < j): the junction set for !i, !j.

Then, V[!i] \ V[!j ] =
L
kl

k,l2J (!i,!j)

Vlk is the normal decomposition of V[!i] \ V[!j ].
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What happens in the stapling process ?

J (!i, !j) := N out[!i] \N out[!j] (i < j): the junction set for !i, !j.

Then, V[!i] \ V[!j ] =
L
kl

k,l2J (!i,!j)

Vlk is the normal decomposition of V[!i] \ V[!j ].

⌦[!i!j ]: the homogeneous convex cone corresponding to V[!i] \ V[!j ].

We have ⌦[!i!j ] = ⇡!i!j(⌦[!i]) = ⇡!j!i(⌦[!j ]), where

⇡!i!j : V[!i] ! V[!i] \ V[!j ], ⇡!j!i : V[!j ] ! V[!i] \ V[!j ] are the orthog. proj.
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What happens in the stapling process ?

J (!i, !j) := N out[!i] \N out[!j] (i < j): the junction set for !i, !j.

Then, V[!i] \ V[!j ] =
L
kl

k,l2J (!i,!j)

Vlk is the normal decomposition of V[!i] \ V[!j ].

⌦[!i!j ]: the homogeneous convex cone corresponding to V[!i] \ V[!j ].

We have ⌦[!i!j ] = ⇡!i!j(⌦[!i]) = ⇡!j!i(⌦[!j ]), where

⇡!i!j : V[!i] ! V[!i] \ V[!j ], ⇡!j!i : V[!j ] ! V[!i] \ V[!j ] are the orthog. proj.

J (!i, !j) �J (!i,!j): the corresponding oriented subgraph of � = �(V ).
J0(!i, !j) = S (�J (!i,!j)): the source set for �(J (!i, !j))

(the reduced junction set for !i, !j).

Let J0(!i, !j) = {j1, . . . , jt}, and put ⌦0
[J0(!i,!j)]

:=
⇥
⌦0

[j1]
, . . . , ⌦0

[jt]

⇤
.

We have ⌦[!i!j ]
⇠= ⌦0

[J0(!i,!j)]
, and we say that

⌦0
[!i]

and ⌦0
[!j ]

are stapled at ⌦0
[J0(!i,!j)]

.
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We retuen to the example. S = {4, 5}.

1

23

4

5

2

1

23

4 1

23

5

2

� �[4] �[5]
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We retuen to the example. S = {4, 5}.

1

23

4

5

2

1

23

4 1

23

5

2

� �[4] �[5]

⌦0
[4] =

8><
>:

0
B@

�1 0 x31

0 �2 x32

x31 x32 �3

x41

x42

x43

x41 x42 x43 �4

1
CA� 0

9>=
>; , ⌦0

[5] =

8><
>:

0
B@

�1I2 02 x31e1
t02 �2 x32

x31
te1 x32 �3

x51

x52

x53
tx51 x52 x53 �5

1
CA� 0

9>=
>;

The shaded parts are stapled. Note J (4, 5) = {1, 2, 3}, J0(4, 5) = {3}.

In ⌦0
[4], the shaded block is the minimal realization of the dual Vinberg cone.

In ⌦0
[5], the shaded block is not the minimal realization of the dual Vinberg cone.
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H0
[4] :=

8>><
>>:

�1 0 0
0 �2 0

x31 x32 �3

0
0
0

x41 x42 x43 �4

9>>=
>>;

(�j > 0)

, H0
[5] =

8>><
>>:

�1I2 02 02
t02 �2 0

x31
te1 x32 �3

02

0
0

tx51 x52 x53 �5

9>>=
>>;

(�j > 0)

,

The shaded parts are stapled: H0
[S ] = [H0

[4], H0
[5]].
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H0
[4] :=

8>><
>>:

�1 0 0
0 �2 0

x31 x32 �3

0
0
0

x41 x42 x43 �4

9>>=
>>;

(�j > 0)

, H0
[5] =

8>><
>>:

�1I2 02 02
t02 �2 0

x31
te1 x32 �3

02

0
0

tx51 x52 x53 �5

9>>=
>>;

(�j > 0)

,

The shaded parts are stapled: H0
[S ] = [H0

[4], H0
[5]].

⌦  V : the corresponding Vinberg algebra

 � = �(V ) : the corresponding oriented graph

 S = {!1, . . . , !s} : the sources of �

 ⌦[!1], . . . , ⌦[!s] : the source homogeneous cones

 ⌦0
[!1]

, . . . , ⌦0
[!s]

: the minimal realizations of the source cones

 ⌦0
[S ] :=

⇥
⌦0

[!1]
, . . . , ⌦0

[!s]

⇤
: stapling of the ⌦0

[!i]
’s



45

When we only have pieces of cones, there might be several ways to assemble a cone
from them by stapling.
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When we only have pieces of cones, there might be several ways to assemble a cone
from them by stapling.

1

23

4 4

3
4

2

2

1

23

3
4

2

1

2

4 4

32

� �[3] �[4]

In this case, we have two non-isomorphic Vinberg algebras V and W such that
�(V ) = �(W ) = �.

Then, let ⌦V $ V and ⌦W $ W . We have ⌦V � ⌦W .
For j = 3, 4, we obatin the source cones ⌦V

[j] and ⌦W
[j] through �[j].

It is shown that ⌦V
[3], ⌦

V
[4], ⌦

W
[3], ⌦

W
[4] are all linearly equivalent.

Note that dim ⌦V = dim ⌦W = 19.
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Kaneyuki–Tsuji condition (1974)

�: a transitive oriented graph, A := A (�): the arc set of �,

[k ! j] 2 A and [j ! i] 2 A =) [k ! i] 2 A .
c: a capacity (weight) function A ! Z>0

We say that (�, c) satisfies the Kaneyuki–Tsuji condition
def()

(KT1) Suppose i < j < k.
If there is a path k ! j ! i, then one has max

�
ckj, cji

�
 cki.

(KT2) Suppose i < j < k < l.
If there are two paths l ! k ! i and l ! j ! i with j /2 N out(k), then

cli � max(clk, cki) + max(clj, cji).
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Kaneyuki–Tsuji condition (1974)

�: a transitive oriented graph, A := A (�): the arc set of �,

[k ! j] 2 A and [j ! i] 2 A =) [k ! i] 2 A .
c: a capacity (weight) function A ! Z>0

We say that (�, c) satisfies the Kaneyuki–Tsuji condition
def()

(KT1) Suppose i < j < k.
If there is a path k ! j ! i, then one has max

�
ckj, cji

�
 cki.

(KT2) Suppose i < j < k < l.
If there are two paths l ! k ! i and l ! j ! i with j /2 N out(k), then

cli � max(clk, cki) + max(clj, cji).

• Example of (KT2): 1

23

4
2
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(KT1) Suppose i < j < k.
If there is a path k ! j ! i, then one has max

�
ckj, cji

�
 cki.

(KT2) Suppose i < j < k < l.
If there are two paths l ! k ! i and l ! j ! i with j /2 N out(k), then

cli � max(clk, cki) + max(clj, cji).

(1) � = �(V ) for a Vinberg algebra V and c([j ! i]) := dim Vji satisfies
(KT1) and (KT2).

(2) V 7! (�(V ), (dim Vji)) is neither surjective nor injective.

(3) However, for dim V  10 it is bijective, which led them to the classification
of homogeneous convex cones of dimension  10.

(4) For dim V = 11, a family of continuously many non-isomorphic V have
the same (�(V ), c).
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(5) 9(�, c) with (KT1) and (KT2) s.t. � = �(V ) for no V .

For (5), the � below with

c([3 ! 1]) = c([3 ! 2]) = c([2 ! 1]) = d 2 Z>0

clearly satsifies (KT1) and (KT2).

1

2

3

But � = �(V ) for some V () d = 1, 2, 4, 8.

In this case the corresponding cone ⌦V ⇠= P(3, K), where

K = R (d = 1), K = C (d = 2), K = H (d = 4), K = O (d = 8).


