Symmetry Characterization Theorems

for
Homogeneous Convex Cones and Siegel Domains

Takaaki NOMURA

(Kyushu University)

Cadi Ayyad University, Marrakech

$$
\text { April } 1-4,2009
$$

Homogeneous Open Convex Cones

V : a real vector space with inner product
$V \supset \Omega$: a regular open convex cone

- $G(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: linear automorphism group of Ω a Lie group as a closed subgroup of $G L(V)$
- Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G(\Omega) \curvearrowright \Omega$ is transitive

Example: $V=\operatorname{Sym}(r, \mathbb{R}) \supset \Omega:=\operatorname{Sym}(r, \mathbb{R})^{++}$:
$G L(r, \mathbb{R}) \curvearrowright \Omega \quad$ by $G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$
This is a selfdual homogeneous open convex cone (symmetric cone).
Ω is selfdual $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ s.t. $\Omega=\{y \in V ;\langle x \mid y\rangle>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\}$ (the RHS is the dual cone taken relative to $\langle\cdot \mid \cdot\rangle$)

Symmetric Cones \rightleftarrows Euclidean Jordan Algebras
$\Omega \rightleftarrows V$: algebraic str. in the ambient VS (\equiv tangent space at a ref. pt.)
List of Irreducible Symmetric Cones:
$\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R}), \quad A \circ B:=\frac{1}{2}(A B+B A)$
$\Omega=\operatorname{Herm}(r, \mathbb{C})^{++} \subset V=\operatorname{Herm}(r, \mathbb{C})$
$\Omega=\operatorname{Herm}(r, \mathbb{H})^{++} \subset V=\operatorname{Herm}(r, \mathbb{H})$
$\Omega=\operatorname{Herm}(3, \mathbb{O})^{++} \subset V=\operatorname{Herm}(3, \mathbb{O})$
$\Omega=\Lambda_{n} \subset V=\mathbb{R}^{n}$ (n-dimensional Lorentz cone)
Non-Selfdual Homogeneous Open Convex Cones: Vinberg cone (1960)
$V=\left\{x=\left(\begin{array}{ccc}x_{1} & x_{2} & x_{4} \\ x_{2} & x_{3} & 0 \\ x_{4} & 0 & x_{5}\end{array}\right) ; x_{1}, \ldots, x_{5} \in \mathbb{R}\right\} \supset \Omega:=\left\{x \in V ; \begin{array}{l}x_{1}>0 \\ x_{1} x_{3}-x_{2}^{2}>0 \\ x_{1} x_{5}-x_{4}^{2}>0\end{array}\right\}$
the lowest-dimensional homogeneous non-selfdual open convex cone

Classification of Irreducible Homogeneous Convex Cones (dim ≤ 10) (Kaneyuki-Tsuji, 1974)

There are 135 (up to linear isom.) in which 12 are selfdual.
$\mathbb{R}_{>0}, \quad \Lambda_{n} \subset \mathbb{R}^{n}$ (Lorentz cones with $\left.\operatorname{dim}=3,4, \ldots, 10\right)$,
$\operatorname{Sym}(3, \mathbb{R})^{++}(6-\operatorname{dim}), \quad \operatorname{Herm}(3, \mathbb{C})^{++}(9-\operatorname{dim}), \quad \operatorname{Sym}(4, \mathbb{R})^{++}(10-\operatorname{dim})$
By Vinberg's theory (1963)
Homogeneous Open Convex Cones \rightleftarrows Clans with unit element
$\Omega \rightleftarrows V$: algebraic str. in the ambient VS (\equiv tangent space at a ref. pt.)

- The Case of Symmetric Cones: $G(\Omega)$ is reductive.

JA str. of $V: V \equiv T_{e}(\Omega) \equiv \mathfrak{p}$ of the Cartan decomposition $\mathfrak{g}(\Omega)=\mathfrak{k}+\mathfrak{p}$
(The product is commutative.)

- The Case of General Homogeneous Convex Cones:
simply transitive action of Iwasawa subgroup of $G(\Omega)$
Clan str. of $V: V \equiv T_{e}(\Omega) \equiv$ Iwasawa subalgebra $\mathfrak{a}+\mathfrak{n}$ of $\mathfrak{g}(\Omega)$
(The product is non-commutative, in general.)
Ω : homogeneous open convex cone, $G(\Omega)$: linear automorphism group of Ω, H : Isasawa subgroup of $G(\Omega)$.
H is a split solvable Lie group, acting simply transitively on Ω.
a function f on Ω, is relatively invariant (w.r.t. H)
$\stackrel{\text { def }}{\Longleftrightarrow} \exists \chi$: 1-dim. rep. of S s.t. $f(g x)=\chi(g) f(x) \quad$ (for all $g \in H, x \in \Omega$).
Theorem [Ishi 2001].
$\exists \Delta_{1}, \ldots, \Delta_{r}(r:=\operatorname{rank}(\Omega))$: relat. inv. irred. polynomial functions on V s.t any relat. inv. polynomial function $P(x)$ on V is written as

$$
P(x)=c \Delta_{1}(x)^{m_{1}} \cdots \Delta_{r}(x)^{m_{r}} \quad\left(c=\text { const., }\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{\geqq 0}^{r}\right) .
$$

Theorem [Ishi-N., 2008].
W : the complexification of the Clan V, $R(w)$: the right multiplication operator by w in W
\Longrightarrow irreducible factors of $\operatorname{det} R(w)$ are just $\Delta_{1}(w), \ldots, \Delta_{r}(w)$.

Example: $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R})$

- Product in V as a clan: $x \Delta y=\underline{x} y+y^{t}(\underline{x})$, where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$,
we put $\underline{x}:=\left(\begin{array}{lllll}\frac{1}{2} x_{11} & & & 0 & \\ & \frac{1}{2} x_{22} & & & \\ & & \ddots & & \\ & & x_{j i} & \ddots & \\ & & & & \frac{1}{2} x_{n n}\end{array}\right)(i<j) . \quad$ Thus $x=\underline{x}+{ }^{t}(\underline{x})$.
In this case we have $\operatorname{det} R(y)=\Delta_{1}(y) \cdots \Delta_{r}(y)$.

The case of general irreducible symmetric cone $\Omega \subset V$

- $\Delta_{k}(y)$ is the k-th Jordan algebra principal minor.
- $\mathfrak{h} \ni X \mapsto X e \in V$ is a linear isomorphism (e is the unit element of V).
- The inverse map is denoted as $V \ni v \mapsto X_{v} \in \mathfrak{h}$. Thus $X_{v} e=v$ for any $v \in V$. (This is related to the linear isomorphism $\mathfrak{g}_{\left(\alpha_{j}-\alpha_{i}\right) / 2} \cong V_{i j}(i>j)$).
- Euclidean Jordan algebra V is now a clan by the product $x \Delta y:=X_{x} y=R(y) x$.
- $\operatorname{det} R(y)=\Delta_{1}(y)^{d} \cdots \Delta_{r-1}(y)^{d} \Delta_{r}(y)$, where $d=$ common dim. of $V_{i j}(i<j)$: $d=1$ for $\operatorname{Sym}(r, \mathbb{R}), \quad d=\operatorname{dim}_{\mathbb{R}} \mathbb{K}$ for $\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{C}, \mathbb{H}, \mathbb{O})$, $r=2, d=n-2$ for $\Omega=\Lambda_{n}(n \geqq 3)$.

The boxed formula is nice in view of $\operatorname{dim} V=r+\frac{d}{2} \cdot r(r-1)$, because

$$
\operatorname{deg}\left(\Delta_{1}(y)^{d} \cdots \Delta_{r-1}(y)^{d} \Delta_{r}(y)\right)=d(1+\cdots+(r-1))+r=r+\frac{d}{2} \cdot r(r-1)
$$

Why do I become interested in these things?

Proposition. $\quad w \in \operatorname{Sym}(r, \mathbb{C})$.

$$
\operatorname{Re} w \gg 0 \Longrightarrow \operatorname{Re} \frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}>0 \quad(k=1, \ldots, r)
$$

where we understand $\Delta_{0}(w) \equiv 1$.
This follows from the following two lemmas.
Lemma 1. Suppose $w \in \operatorname{Sym}(r, \mathbb{C})$ and $\Delta_{k}(w) \neq 0$ for $k=1, \ldots, r$.
Then we have $w=n a^{t} n$ with $n=\left(\begin{array}{lll}1 & & 0 \\ & \ddots & 0 \\ * & & 1\end{array}\right), \quad a=\left(\begin{array}{lll}a_{1} & & 0 \\ & \ddots & \\ 0 & & a_{r}\end{array}\right)$.
Each $a_{k}(k=1, \ldots, r)$ is given by $a_{k}=\frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}$.
Lemma 2. Let n, a be as above. Then

$$
\operatorname{Re}\left(n a^{t} n\right) \gg 0 \Longrightarrow \operatorname{Re} a_{k}>0 \quad(k=1, \ldots, r) .
$$

Generalization to Irreducible Symmetric Cones

Ω : an irreducible symmetric cone $(\operatorname{rk}(\Omega)=r) \subset V$: a Euclidean JA
$\Delta_{1}, \ldots, \Delta_{r}$: JA principal minors (basic relative invariants).
Theorem [lshi-N. 2008]. Suppose $w \in W:=V_{\mathbb{C}}$. Then

$$
w \in \Omega+i V \Longrightarrow \operatorname{Re} \frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}>0 \quad(k=1, \ldots, r)
$$

Further Generalization to Homogeneous Open Convex Cones?

Ω : Irreducible homogeneous open convex cone $(\operatorname{rank}(\Omega)=r) \subset V$: a clan
$\Delta_{1}, \ldots, \Delta_{r}$: basic relative invariants

$$
\text { Problem. } \quad w \in \Omega+i V \Longrightarrow \operatorname{Re} \frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}>0 \quad(k=1, \ldots, r) ?
$$

Immediately seen that

if one observes for $w \in \Omega \cap\{$ diagonal type $\}$, we must have the gap between $\operatorname{deg} \Delta_{k}(w)$ and $\operatorname{deg} \Delta_{k-1}(w)$ equal to 1 .

diagonal type elements:

$\exists E_{1}, \ldots, E_{r} \in \bar{\Omega}$: complete orthogonal system of primitive idempotents (the sum is equal to the unit element)
diagonal type elements $=c_{1} E_{1}+\cdots+c_{r} E_{r}\left(c_{k}>0\right.$ for $\left.\forall k=1, \ldots, r\right)$

Problem. $w \in \Omega+i V \Longrightarrow \operatorname{Re} \frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}>0 \quad(k=1, \ldots, r) ?$

Answer to the problem:

(1) For non-selfdual irred. homog. open convex cones, the answer is in general No.
(2) If the answer is always No, then one is happy (\Longrightarrow obtains a symmetry characterization). But this is not the case.
(3) In $\operatorname{dim} \leq 10$, there are 123 non-selfdual irred. homog. open convex cones up to linear isomorphisms). But the only one such gives the answer Yes. It is of 8-dimension.
(4) In the following, we give such cone (non-selfdual irred. homog. open convex cone that gives an affirmative answer to the problem) with any rank (≥ 3).
$I_{m}: m \times m$ unit matrix
$\mathbb{R}^{r m}$: column vectors of size $r \times m$.

$$
V:=\left\{x=\left(\left.\frac{x_{0} \otimes I_{m} \mid \boldsymbol{y}}{{ }^{t} \boldsymbol{y}} \right\rvert\, z\right) ; x_{0} \in \operatorname{Sym}(r, \mathbb{R}), \boldsymbol{y} \in \mathbb{R}^{r m}, z \in \mathbb{R}\right\}
$$

Note $V \subset \operatorname{Sym}(r m+1, \mathbb{R})$.
When $m=r=2, x$ is the following 5×5 matrix:

$$
x=\left(\begin{array}{ccccc}
x_{11} & 0 & x_{21} & 0 & y_{11} \\
0 & x_{11} & 0 & x_{21} & y_{12} \\
x_{21} & 0 & x_{22} & 0 & y_{21} \\
0 & x_{21} & 0 & x_{22} & y_{22} \\
y_{11} & y_{12} & y_{21} & y_{22} & z
\end{array}\right) \quad \text { (in this case } \operatorname{dim} V=8 \text {). }
$$

- For open convex cone Ω, we take the set of positive definite ones in V :

$$
\Omega:=\{x \in V ; x \gg 0\} \quad(\operatorname{rank}(\Omega)=r+1) .
$$

Assumption: $m \geqq 2, r \geqq 2$:
$\left(m=1 \Longrightarrow \Omega=\operatorname{Sym}^{++}(r+1, \mathbb{R}), \quad r=1 \Longrightarrow \Omega=\Lambda_{m+2}\right)$

Homogeneity of Ω

$$
\left.\begin{array}{rl}
A & :=\left\{a=\left(\begin{array}{l|l}
a_{0} \otimes I_{m} & 0 \\
\hline 0 & a_{r+1}
\end{array}\right) ;\right. \\
\left.N: \begin{array}{l}
a_{0}:=\operatorname{diag}\left[a_{1}, \ldots, a_{r}\right] \text { with } \\
a_{1}>0, \ldots, a_{r}>0 \text { and } a_{r+1}>0
\end{array}\right\}, \\
n=\left(\begin{array}{ll}
n_{0} \otimes I_{m} & 0 \\
\hline{ }^{t} \boldsymbol{\xi} & 1
\end{array}\right) ; & \begin{array}{l}
n_{0} \text { is strictly lower triangular in } G L(r, \mathbb{R}), \\
\boldsymbol{\xi} \in \mathbb{R}^{r m}
\end{array}
\end{array}\right\} .
$$

We have $H:=N \ltimes A \curvearrowright \Omega$ by $H \times \Omega \ni(h, x) \mapsto h x^{t} h \in \Omega$
This action is simply transitive. In fact, given $x \in \Omega$, the equation $x=$ $n a^{t} n=n a^{1 / 2} I_{r m+1} a^{1 / 2}\left({ }^{t} n\right)(a \in A, n \in N)$ has unique solution: For a_{k} we have

$$
a_{k}=\frac{\Delta_{k}(x)}{\Delta_{k-1}(x)}(k=1,2, \ldots, r+1), \text { with } \Delta_{0}(x) \equiv 1, \text { where }
$$

$$
\left\{\begin{array}{l}
\Delta_{k}(x):=\Delta_{k}^{0}\left(x_{0}\right) \quad(k=1, \ldots, r), \\
\Delta_{r+1}(x):=z \operatorname{det}\left(x_{0}\right)-{ }^{t} \boldsymbol{y}\left({ }^{\mathrm{co}} x_{0} \otimes I_{m}\right) \boldsymbol{y}
\end{array}\right.
$$

${ }^{\mathrm{c}} T$: the cofactor matrix of T. Thus $T\left({ }^{\mathrm{C} O} T\right)=\left({ }^{\mathrm{Co}} T\right) T=(\operatorname{det} T) I$.

- We note $\operatorname{deg} \Delta_{k}(x)=k(k=1,2, \ldots, r+1)$.

To understand $\Delta_{r+1}(x)$

For each $x=\left(\begin{array}{c|c}x_{0} \otimes I_{m} & \boldsymbol{y} \\ \hline{ }^{t} \boldsymbol{y} & z\end{array}\right) \in V$, we set

$$
{ }^{\mathrm{d}} x:=\left(\begin{array}{ccc|c}
x_{11} & \cdots & x_{r 1} & \boldsymbol{y}_{1} \\
\vdots & & \vdots & \vdots \\
x_{r 1} & \cdots & x_{r r} & \boldsymbol{y}_{r} \\
\hline{ }^{t} & \boldsymbol{y}_{1} & \cdots & { }^{t} \boldsymbol{y}_{r}
\end{array}\right), \quad x_{0}=\left(x_{i j}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
\boldsymbol{y}_{1} \\
\vdots \\
\boldsymbol{y}_{r}
\end{array}\right), \quad \boldsymbol{y}_{j} \in \mathbb{R}^{m}
$$

Since $\Delta_{r+1}(x)=z \operatorname{det}\left(x_{0}\right)-\sum_{i=1}^{r} \sum_{j=1}^{r}\left({ }^{(\mathrm{o}} x_{0}\right)_{i j} \boldsymbol{y}_{i} \cdot \boldsymbol{y}_{j}$, we have $\Delta_{r+1}(x)=\operatorname{det}{ }^{\mathrm{d}} x$.
Here we compute det ${ }^{\mathrm{d}} x$ as if it were an ordinary determinant, and the product of ${ }^{t} \boldsymbol{y}_{i}$ and \boldsymbol{y}_{j} should be interpreted as the inner product $\boldsymbol{y}_{i} \cdot \boldsymbol{y}_{j}$.

- $\Delta_{1}(x), \ldots, \Delta_{r}(x), \Delta_{r+1}(x)$ are basic relative invariants.
$\delta_{k}(x)(k=1, \ldots, r m+1)$: the k-th principal minor of $x=\binom{x_{0} \otimes I_{m} \mid \boldsymbol{y}}{{ }^{{ }^{t} \boldsymbol{y}} \mid} \in V$.
Then we have

$$
\left\{\begin{array}{l}
\delta_{k m+j}(x)=\Delta_{k}(x)^{m-j} \Delta_{k+1}(x)^{j} \quad(0 \leqq k \leqq r-1,1 \leqq j \leqq m), \\
\delta_{r m+1}(x)=\Delta_{r}(x)^{m-1} \Delta_{r+1}(x)
\end{array}\right.
$$

Hence

$$
x \in \Omega \Longleftrightarrow \Delta_{j}(x)>0 \text { for any } j=1, \ldots, r+1
$$

- This description of Ω in terms of basic relative invarinats is true in general. (Ishi 2001)

Regarding $\Delta_{k}(k=1, \ldots, r+1)$ as polynomial functions on $W:=V_{\mathbb{C}}$ naturally, we get

Proposition. $w \in \Omega+i V \Longrightarrow \operatorname{Re} \frac{\Delta_{k}(w)}{\Delta_{k-1}(w)}>0 \quad(k=1, \ldots, r+1)$.

Non-selfdual Irreducible Homogeneous Convex Cones linearly isomorphic to the dual cones

- Ω is selfdual $\Longleftrightarrow \exists T$: positive definite selfadjoint operator s.t. $T(\Omega)=\Omega^{*}$

$$
\left(\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for } \forall x \in \bar{\Omega} \backslash\{0\}\}\right)
$$

- Even though there is no positive definite selfadjoint operator T s.t. $T(\Omega)=\Omega^{*}$, we might find such T if we do not require the positive definiteness.
- If one accepts reducible ones, then $\Omega_{0} \oplus \Omega_{0}^{*}$ just gives an example. Thus the irreducibility counts for much here.
- The list in [Kaneyuki-Tsuji] of irreducible homogeneous open convex cones ($\operatorname{dim} \leq 10$) is described up to linear isomoprhisms. There is one non-selfdual irreducible homogeneous convex cone (7-dimensional) identified with its dual cone.
- In an exercise of Faraut-Korányi's book, a hint is given to prove that the Vinberg cone is never linerly isomorphic to its dual cone. Then the non-selfduality follows from this immediately.
$\boldsymbol{e}:=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right) \in \mathbb{R}^{m+1}, \quad I_{m+1}:(m+1) \times(m+1)$ unit matrix
$V:=\left\{x:=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\prime t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ { }^{t \boldsymbol{\xi}} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) ; \begin{array}{ll}x_{1} \in \mathbb{R}, & x_{2} \in \mathbb{R}, \quad X \in \operatorname{Sym}(m, \mathbb{R}) \\ \boldsymbol{\xi} \in \mathbb{R}^{m+1}, & \boldsymbol{x}^{\prime} \in \mathbb{R}^{m},\end{array}\right\}$
We note $V \subset \operatorname{Sym}(2 m+2, \mathbb{R})$, and take $\Omega:=\{x \in V ; x \gg 0\}$.
When $m=1$, we have $x=\left(\begin{array}{cccc}x_{1} & 0 & x^{\prime} & \xi_{1} \\ 0 & x_{1} & 0 & \xi_{2} \\ x^{\prime} & 0 & X & x^{\prime \prime} \\ \xi_{1} & \xi_{2} & x^{\prime \prime} & x_{2}\end{array}\right)$.

Homogeneity of Ω

\mathbf{H} acts on Ω by $\mathbf{H} \times \Omega \ni(h, x) \mapsto h x^{t} h$. The action is in fact simply transitive. We have $\mathbf{H}=\mathbf{N} \rtimes \mathbf{A}$ with

$$
\begin{aligned}
& \mathbf{A}:=\left\{\begin{array}{cc}
a:=\left(\begin{array}{c|cc}
a_{1} I_{m+1} & 0 & 0 \\
\hline 0 & A & 0 \\
0 & 0 & a_{2}
\end{array}\right) ; \begin{array}{cc}
a_{j}>0 \quad(j=1,2), \\
\text { matrix with positive diagonals }
\end{array} \\
\mathbf{N}:=\left\{\begin{array}{ccc}
n:=\left(\begin{array}{c|cc}
I_{m+1} & 0 & 0 \\
\hline \boldsymbol{n}^{\prime t} \boldsymbol{e} & N & 0 \\
\boldsymbol{n}^{\prime}, \boldsymbol{n}^{\prime \prime} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{m+1} \\
\boldsymbol{\nu}^{t} & \boldsymbol{n}^{\prime \prime} & 1
\end{array}\right) ; & N \in G L(m, \mathbb{R}) \text { is strictly } \\
\text { lower triangular }
\end{array}\right\} .
\end{array}\right.
\end{aligned}
$$

In solving $x=n a^{t} n(x \in \Omega$: given) we obtain basic relative invariants as before.

Basic relative invariants: \quad For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\boldsymbol{x}^{t} \boldsymbol{e}} & X & \boldsymbol{x}^{\prime \prime} \\ \boldsymbol{}^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) \in V$,

$$
\begin{aligned}
& \Delta_{1}(x):=x_{1}, \\
& \Delta_{j}(x):=\operatorname{det}\left(\begin{array}{c|c}
x_{1} & { }^{t} \boldsymbol{x}_{j-1}^{\prime} \\
\boldsymbol{x}_{j-1}^{\prime} \mid & X_{j-1}
\end{array}\right) \quad(j=2, \ldots, m+1) \\
&\left(\begin{array}{cccc}
\left.X_{k}:=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & & \vdots \\
x_{k 1} & \cdots & x_{k k}
\end{array}\right), \quad \boldsymbol{x}_{k}^{\prime}:=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{k}^{\prime}
\end{array}\right) \in \mathbb{R}^{k}\right), \\
\Delta_{m+2}(x):=x_{1} \operatorname{det}\left(\begin{array}{ccc}
x_{1}{ }^{t} \boldsymbol{x}^{\prime} & \xi_{1} \\
\boldsymbol{x}^{\prime} & X & \boldsymbol{x}^{\prime \prime} \\
\xi_{1} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}
\end{array}\right)-\left(\|\boldsymbol{\xi}\|^{2}-\xi_{1}^{2}\right) \operatorname{det}\binom{x_{1}{ }^{t} \boldsymbol{x}^{\prime}}{\hline \boldsymbol{x}^{\prime} \mid X} \\
& \left({ }^{t} \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{m+1}\right)\right) .
\end{array}\right.
\end{aligned}
$$

Note $\operatorname{deg} \Delta_{m+2}=m+3$.

Inner product in V : For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\boldsymbol{t} t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right), y=\left(\begin{array}{c|cc}y_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{y}^{\prime} & \boldsymbol{\eta} \\ \hline \boldsymbol{y}^{t} \boldsymbol{e} & Y & \boldsymbol{y}^{\prime \prime} \\ { }^{t} \boldsymbol{\eta} & \boldsymbol{y}^{t} & y_{2}\end{array}\right)$
$\langle x \mid y\rangle:=x_{1} y_{1}+\operatorname{tr}(X Y)+x_{2} y_{2}+2\left(\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}^{\prime}+\boldsymbol{x}^{\prime \prime} \cdot \boldsymbol{y}^{\prime \prime}+\boldsymbol{\xi} \cdot \boldsymbol{\eta}\right)$

$$
\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for } \forall x \in \bar{\Omega} \backslash\{0\}\}
$$

Define a linear operator T_{0} on V by $T_{0} x=\left(\begin{array}{c|cc}x_{2} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime \prime} J & \boldsymbol{\xi} \\ \hline J \boldsymbol{x}^{\prime \prime} \boldsymbol{e} & J X J & J \boldsymbol{x}^{\prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime} J & x_{1}\end{array}\right) \quad(x \in V)$,
where $J \in \operatorname{Sym}(m, \mathbb{R})$ is given by $J=\left(\begin{array}{lll}0 & & 1 \\ & . & \\ 1 & & 0\end{array}\right)$.
Theorem [Ishi-N. 2009]. $\quad \Omega^{*}=T_{0}(\Omega)$.

Conjecture. Ω with rank $\Omega=r$ is selfdual the degrees of basic relative invariants associated to Ω and Ω^{*} are both $1,2, \ldots, r$.

