Analysis and Geometry Related to Homogeneous Siegel Domains and Homogeneous Convex Cones

Part II
Basic Relative Invariants Associated to
Homogeneous Convex Cones

Takaaki NOMURA
（Kyushu University）

越後湯沢
September 28， 2010

Homogeneous Open Convex Cones

V : a real vector space (with inner product, for simplpicity)
$V \supset \Omega$: a regular open convex cone

- $G(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: linear automorphism group of Ω linear Lie group as a closed subgroup of $G L(V)$
- Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G(\Omega) \curvearrowright \Omega$ is transitive

Example: $V=\operatorname{Sym}(r, \mathbb{R}) \supset \Omega:=\operatorname{Sym}(r, \mathbb{R})^{++}$:
$G L(r, \mathbb{R}) \curvearrowright \Omega \quad$ by $\quad G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$
This is a selfdual homogeneous open convex cone (symmetric cone).
Ω is selfdual $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ s.t. $\Omega=\{y \in V ;\langle x \mid y\rangle>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\}$
(the RHS is the dual cone taken relative to $\langle\cdot \mid \cdot\rangle$)

Symmetric Cones \rightleftarrows Euclidean Jordan Algebras
$\Omega \rightleftarrows V$: alg. str. in the ambient VS (\equiv tangent space at a ref. pt.)

- V with a bilinear product $x y$ is called a Jordan algebra if
(1) $x y=y x$,
(2) $x^{2}(x y)=x\left(x^{2} y\right)$.
- A real Jordan algebra is said to be Euclidean if $\exists\langle\cdot \mid \cdot\rangle$ s.t.

$$
\langle x y \mid z\rangle=\langle x \mid y z\rangle \quad(\forall x, y)
$$

List of Irreducible Symmetric Cones:

$$
\begin{aligned}
& \Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R}), \quad A \circ B:=\frac{1}{2}(A B+B A) \\
& \Omega=\operatorname{Herm}(r, \mathbb{C})^{++} \subset V=\operatorname{Herm}(r, \mathbb{C}) \\
& \Omega=\operatorname{Herm}(r, \mathbb{H})^{++} \subset V=\operatorname{Herm}(r, \mathbb{H}) \\
& \Omega=\operatorname{Herm}(3, \mathbb{O})^{++} \subset V=\operatorname{Herm}(3, \mathbb{O}) \\
& \Omega=\Lambda_{n} \subset V=\mathbb{R}^{n}(n \text {-dimensional Lorentz cone })
\end{aligned}
$$

Non-Selfdual Homogeneous Open Convex Cones:

Vinberg cone (1960)
$V=\left\{x=\left(\begin{array}{ccc}x_{1} & x_{2} & x_{4} \\ x_{2} & x_{3} & 0 \\ x_{4} & 0 & x_{5}\end{array}\right) ; x_{1}, \ldots, x_{5} \in \mathbb{R}\right\} \supset \Omega:=\left\{\begin{array}{l}x_{1}>0 \\ x \in V ; \begin{array}{l}x_{1} x_{3}-x_{2}^{2}>0 \\ x_{1} x_{5}-x_{4}^{2}>0\end{array}\end{array}\right\}$
the lowest-dimensional homogeneous non-selfdual open convex cone

Classification of Irred. Homogeneous Convex Cones (dim ≤ 10)
(Kaneyuki-Tsuji, 1974)
There are 135 (up to linear isom.) in which 12 are selfdual.

$$
\begin{aligned}
& \mathbb{R}_{>0}, \quad \Lambda_{n} \subset \mathbb{R}^{n}(\text { Lorentz cones with } \operatorname{dim}=3,4, \ldots, 10), \\
& \operatorname{Sym}(3, \mathbb{R})^{++}(6 \text {-dim }), \quad \operatorname{Herm}(3, \mathbb{C})^{++}(9-\operatorname{dim}), \quad \operatorname{Sym}(4, \mathbb{R})^{++}(10 \text {-dim })
\end{aligned}
$$

By Vinberg's theory (1963)
Homogeneous Open Convex Cones \rightleftarrows Clans with unit element $\Omega \rightleftarrows V$: alg. str. in the ambient VS (\equiv tangent space at a ref. pt.)

- V with a bilinear product $x \Delta y=L(x) y=R(y) x$ is called a Clan if (1) $[L(x), L(y)]=L(x \Delta y-y \Delta x)$,
(2) $\exists s \in V^{*}$ s.t. $\langle x \Delta y, s\rangle$ defines an inner product,
(3) Each $L(x)$ has only real eigenvalues.
(1) The Case of Symmetric Cones:
- $G(\Omega)$ is reductive.
- Jordan algebra structure of V :
$V \equiv T_{e}(\Omega) \equiv$ " \mathfrak{p} of the Cartan decomposition $\mathfrak{g}(\Omega)=\mathfrak{k}+\mathfrak{p}$ "
Indeed $\mathfrak{p}=\{M(x) ; x \in V\}$, the space of Jordan multiplication operators.
- The Jordan product is commutative.

(2) The Case of General Homogeneous Convex Cones:

- simply transitive action of Iwasawa subgroup of $G(\Omega)$
- Clan structure of V :
$V \equiv T_{e}(\Omega) \equiv$ "Iwasawa subalgebra $\mathfrak{s}:=\mathfrak{a}+\mathfrak{n}$ of $\mathfrak{g}(\Omega)$ "
Indeed $\mathfrak{s}=\{L(x) ; x \in V\}$, the space of left clan multiplication operators.
- The clan product is non-commutative, in general.
- Of course one can consider the clan structure in the case of symmetric cones.
Ω : homogeneous open convex cone,
$G(\Omega)$: linear automorphism group of Ω,
S : Iwasawa subgroup of $G(\Omega)$.
S is a split solvable Lie group, acting simply transitively on Ω.
a function f on Ω is relatively invariant (w.r.t. S)
$\stackrel{\text { def }}{\Longleftrightarrow} \exists \chi:$ 1-dimensional representation of S s.t.

$$
f(g x)=\chi(g) f(x) \quad(\text { for all } g \in S, x \in \Omega)
$$

Theorem [Ishi 2001]. One can find irreducible relatively invariant polynomial functions

$$
\Delta_{1}, \ldots, \Delta_{r} \quad(r:=\operatorname{rank}(\Omega))
$$

on V s.t. any relatively invariant polynomial function $P(x)$ on V is written as

$$
P(x)=c \Delta_{1}(x)^{m_{1}} \cdots \Delta_{r}(x)^{m_{r}} \quad\left(c=\text { const., }\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{\geqq 0}^{r}\right)
$$

More intrinsic description of $\Delta_{1}, \ldots, \Delta_{r}$
Theorem [Ishi-N., 2008].
$W=V_{\mathbb{C}}:$ the complexification of the Clan V,
$R(w)$: the right multiplication operator by w in W :

$$
R(w) z=z \Delta w .
$$

\Longrightarrow irreducible factors of $\operatorname{det} R(w)$ are just $\Delta_{1}(w), \ldots, \Delta_{r}(w)$.

- $\Delta_{1}, \ldots, \Delta_{r}$: Basic relative invariants associated to Ω.
- Just avoid the zeros of $\Delta_{1}, \ldots, \Delta_{r}$
$\Longrightarrow \quad$ we are safe for holomorphy for the pseudo-inverse map

$$
\mathcal{I}_{\mathrm{s}}(w)=E_{\mathrm{s}}^{*} \circ R(w)^{-1}
$$

Example: $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R})$.
$G L(r, \mathbb{R})$ acts on Ω by $\rho(g) x:=g x^{t} g(g \in G L(r, \mathbb{R}), x \in \Omega)$.
Let $G L(r, \mathbb{R}) \supset S:=\left\{\left(\begin{array}{cccc}a_{1} & & & \\ & a_{2} & & 0 \\ * & & \ddots & \\ & & & a_{r}\end{array}\right) ; a_{1}>0, \ldots, a_{r}>0\right\}$.
The basic relative S-invariants are

$$
\left(\begin{array}{ll}
A & O \\
B & C
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
{ }^{t} Y & Z
\end{array}\right)\left(\begin{array}{cc}
{ }^{t} A & { }^{t} B \\
O & { }^{t} C
\end{array}\right)=\left(\begin{array}{cc}
A X^{t} A & * \\
* & *
\end{array}\right)
$$

Product in $V=\operatorname{Sym}(r, \mathbb{R})$ as a clan: $x \Delta y=\underline{x} y+y^{t}(\underline{x})$, where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$, we put

$$
\underline{x}:=\left(\begin{array}{cccc}
\frac{1}{2} x_{11} & & & \\
x_{21} & \frac{1}{2} x_{22} & & 0 \\
\vdots & & \ddots & \\
x_{r 1} & x_{r 2} & & \frac{1}{2} x_{r r}
\end{array}\right) \in \mathfrak{s}:=\operatorname{Lie}(S) .
$$

Thus $x=\underline{x}+{ }^{t}(\underline{x})$.
In this case we have $\operatorname{det} R(y)=\Delta_{1}(y) \cdots \Delta_{r}(y)$.
Remark: This can be seen without computation, once one accepts the previous theorem.

- In fact, $\operatorname{deg} \operatorname{det} R(y)=V=\frac{1}{2} \cdot r(r+1)$.
- On the other hand, $\operatorname{deg}\left(\Delta_{1}(y) \cdots \Delta_{r}(y)\right)=1+\cdots+r=\frac{1}{2} \cdot r(r+1)$.

The case of general irreducible symmetric cone $\Omega \subset V$

- $\Delta_{k}(y)$ is the k-th Jordan algebra principal minor of $y \in V$.
- Iwasawa subgroup $S \subset G(\Omega)$ acts on Ω simply transitively
\rightsquigarrow The orbit map $S \ni g \mapsto g e \in \Omega$ is a diffeomorphism ($e \in \Omega$ is the unit element of V)
The differential $\mathfrak{s} \ni X \mapsto X e \in V$ is a linear isomorphism.
- The inverse map is denoted as $V \ni v \mapsto X_{v} \in \mathfrak{s}$.
\rightsquigarrow Then $X_{v} e=v$ for any $v \in V$.
- Euclidean Jordan algebra V now has a structure of clan by

$$
x \triangle y:=X_{x} y=R(y) x .
$$

Proposition [N, Preprint]: $\operatorname{det} R(y)=\Delta_{1}(y)^{d} \cdots \Delta_{r-1}(y)^{d} \Delta_{r}(y)$, where $d=1$ for $\operatorname{Sym}(r, \mathbb{R}), \quad d=\operatorname{dim}_{\mathbb{R}} \mathbb{K}$ for $\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{C}, \mathbb{H}, \mathbb{O})$,

$$
r=2, d=n-2 \text { for } \Omega=\Lambda_{n}(n \geqq 3)
$$

- The formula is nice in view of $\operatorname{dim} V=r+\frac{d}{2} \cdot r(r-1)$, because $\operatorname{deg}\left(\Delta_{1}(y)^{d} \cdots \Delta_{r-1}(y)^{d} \Delta_{r}(y)\right)=d(1+\cdots+(r-1))+r=r+\frac{d}{2} \cdot r(r-1)$.

Inductive structure of right multiplications

- Just computing $\operatorname{det} R(y)$ is not so difficult.

One can see the corresponding one-dimensional representation of S without much difficulty.

$$
\begin{gathered}
\operatorname{rank}(V)=r, \operatorname{rank}\left(V^{\prime}\right)=r-1 \\
V=V^{\prime} \oplus \Xi \oplus \mathbb{R} c_{r} \\
W:=\Xi \oplus \mathbb{R} c_{r}
\end{gathered}
$$

- W is a 2 -sided ideal in the clan structure of V.

According to the decomposition $V=V^{\prime} \oplus \underbrace{\Xi \oplus \mathbb{R}_{c}}_{W}$, we have

$$
R_{v}=\left(\right) \quad\left(v=v^{\prime}+\xi+v_{r} c_{r}\right)
$$

$\langle\cdot \mid \cdot\rangle$: renormalized inner product in W, $\phi\left(v^{\prime}\right) \xi_{0}:=R\left(v^{\prime}\right) \xi_{0}$ (by definition)

$$
\Xi \triangle \square V^{\prime}
$$

Proposition: $R\left(V^{\prime}\right) \Xi \subset \Xi$, and $v^{\prime} \mapsto \phi\left(v^{\prime}\right):=\left.R\left(v^{\prime}\right)\right|_{\Xi} \in \operatorname{End}(\Xi)$ is a Jordan algebra representation of V^{\prime} :

$$
\phi\left(v_{1}^{\prime} v_{2}^{\prime}\right)=\frac{1}{2}\left(\phi\left(v_{1}^{\prime}\right) \phi\left(v_{2}^{\prime}\right)+\phi\left(v_{2}^{\prime}\right) \phi\left(v_{1}^{\prime}\right)\right)
$$

Question: Ω : irred. homogeneous open convex cone of rank r. Then Ω is selfdual
\Longleftrightarrow the degrees of basic relative invariants are $1,2, \ldots, r$.
$[\Rightarrow$] Jordan algebra principal minors are of degree $1,2, \ldots, r$.
$[\Leftarrow]$ False in any rank ≥ 3 :
$\exists \Omega$: non-selfdual homogeneous open convex cone
s.t. the associated basic relative invariants are of degree $1,2, \ldots, r$.

Example

$I_{m}: m \times m$ unit matrix, $\quad \mathbb{R}^{r m}:$ column vectors of size $r \times m$.

$$
V:=\left\{x=\binom{x_{0} \otimes I_{m} \mid \boldsymbol{y}}{{ }^{\dagger} \boldsymbol{y}} ; x_{0} \in \operatorname{Sym}(r, \mathbb{R}), \boldsymbol{y} \in \mathbb{R}^{r m}, z \in \mathbb{R}\right\} .
$$

Note $V \subset \operatorname{Sym}(r m+1, \mathbb{R})$.
When $m=r=2, x$ is the following 5×5 matrix:

$$
x=\left(\begin{array}{ccccc}
x_{11} & 0 & x_{21} & 0 & y_{11} \\
0 & x_{11} & 0 & x_{21} & y_{12} \\
x_{21} & 0 & x_{22} & 0 & y_{21} \\
0 & x_{21} & 0 & x_{22} & y_{22} \\
y_{11} & y_{12} & y_{21} & y_{22} & z
\end{array}\right)
$$

(in this case $\operatorname{dim} V=8$).

- For Ω, we take the set of positive definite ones in V :

$$
\Omega:=\{x \in V ; x \gg 0\} \quad(\operatorname{rank}(\Omega)=r+1)
$$

Assumption: $m \geqq 2, r \geqq 2$:

$$
\left(m=1 \Rightarrow \Omega=\operatorname{Sym}(r+1, \mathbb{R})^{++}, \quad r=1 \Rightarrow \Omega=\Lambda_{m+2}\right)
$$

Homogeneity of Ω :

$$
\begin{aligned}
& A:=\left\{a=\left(\begin{array}{l|c}
a_{0} \otimes I_{m} & 0 \\
\hline 0 & a_{r+1}
\end{array}\right) ; \begin{array}{l}
a_{0}:=\operatorname{diag}\left[a_{1}, \ldots, a_{r}\right] \text { with } \\
a_{1}>0, \ldots, a_{r}>0 \text { and } a_{r+1}>0
\end{array}\right\}, \\
& N:=\left\{n=\left(\begin{array}{c|l}
n_{0} \otimes I_{m} & 0 \\
{ }^{t} \boldsymbol{\xi} & 1
\end{array}\right) ; \begin{array}{l}
n_{0} \text { is strictly lower triangular in } G L(r, \mathbb{R}), \\
\boldsymbol{\xi} \in \mathbb{R}^{r m}
\end{array}\right\} .
\end{aligned}
$$

We have $H:=N \ltimes A \curvearrowright \Omega$ by $H \times \Omega \ni(h, x) \mapsto h x^{t} h \in \Omega$.
This action is simply transitive. In fact, given $x \in \Omega$, the equation $x=n a^{\dagger} n=n a^{1 / 2} I_{r m+1} a^{1 / 2}\left({ }^{t} n\right)(a \in A, n \in N)$ has unique solution:
for a_{k} we have

$$
\begin{aligned}
& a_{k}=\frac{\Delta_{k}(x)}{\Delta_{k-1}(x)}(k=1,2, \ldots, r+1), \text { with } \Delta_{0}(x) \equiv 1, \text { where } \\
& \begin{cases}\Delta_{k}(x):=\Delta_{k}^{0}\left(x_{0}\right) & (k=1, \ldots, r) \\
\Delta_{r+1}(x):=z \operatorname{det}\left(x_{0}\right)-{ }^{t} \boldsymbol{y}\left({ }^{\mathrm{Co}} x_{0} \otimes I_{m}\right) \boldsymbol{y}\end{cases}
\end{aligned}
$$

${ }^{\mathrm{co}} T$: the cofactor matrix of T - thus $T\left({ }^{\mathrm{co}} T\right)=\left({ }^{\mathrm{c} o} T\right) T=(\operatorname{det} T) I$.

- $\Delta_{1}(x), \ldots, \Delta_{r}(x), \Delta_{r+1}(x)$ are basic relative invariants.

We note $\operatorname{deg} \Delta_{k}(x)=k(k=1,2, \ldots, r+1)$. But Ω is not selfdual.

- understanding $\Delta_{r+1}(x)=z \operatorname{det}\left(x_{0}\right)-{ }^{t} \boldsymbol{y}\left({ }^{(\mathrm{co}} x_{0} \otimes I_{m}\right) \boldsymbol{y}$

For each $x=\left(\begin{array}{c|c}x_{0} \otimes I_{m} & \boldsymbol{y} \\ \hline{ }^{t} \boldsymbol{y} & z\end{array}\right) \in V$, we set

$$
{ }^{\mathrm{d}} x:=\left(\begin{array}{ccc|c}
x_{11} & \cdots & x_{r 1} & \boldsymbol{y}_{1} \\
\vdots & & \vdots & \vdots \\
x_{r 1} & \cdots & x_{r r} & \boldsymbol{y}_{r} \\
\hline{ }^{t} \boldsymbol{y}_{1} & \cdots & { }^{t} \boldsymbol{y}_{r} & z
\end{array}\right), \quad x_{0}=\left(x_{i j}\right), \quad \boldsymbol{y}=\left(\begin{array}{c}
\boldsymbol{y}_{1} \\
\vdots \\
\boldsymbol{y}_{r}
\end{array}\right), \quad \boldsymbol{y}_{j} \in \mathbb{R}^{m}
$$

We have $\Delta_{r+1}(x)=\operatorname{det}{ }^{\mathrm{d}} x$. Here we compute $\operatorname{det}^{\mathrm{d}} x$ as if it were an ordinary determinant, and the product of ${ }^{t} \boldsymbol{y}_{i}$ and \boldsymbol{y}_{j} should be interpreted as the inner product $\boldsymbol{y}_{i} \cdot \boldsymbol{y}_{j}$.

Conjecture:
Ω : Irreducible homogeneous open convex cone of rank r,
Ω^{*} : the dual cone of Ω.
If the degrees of basic relative invariants associated to Ω and Ω^{*} are both $1,2, \ldots, r$, then Ω is selfdual.

- The degrees of the basic relative invariants associated to Ω^{*} for the previous Ω with $r=3$ are $1,2,4$.
- The conjecture is proved in a weaker form by Y. Watanabe (Master thesis, Kyoto University, 2006).

Non-selfdual Irreducible Homogeneous Convex Cones linearly isomorphic to the dual cones

- $\Omega \subset V$ with $\langle\cdot \mid \cdot\rangle$ is selfdual
$\Longleftrightarrow \exists T$: positive definite selfadjoint operator s.t. $T(\Omega)=\Omega^{*}$.

$$
\left(\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for } \forall x \in \bar{\Omega} \backslash\{0\}\}\right)
$$

- Even though there is no positive definite selfadjoint operator T s.t. $T(\Omega)=\Omega^{*}$, we might be able to find such T if we do not require the positive definiteness.
- If one accepts reducible ones, then $\Omega_{0} \oplus \Omega_{0}^{*}$ just gives an example. Thus the irreducibility counts for much here.
- In an exercise of Faraut-Korányi's book, a hint is given to prove that the Vinberg cone is never linearly isomorphic to its dual cone. Then the non-selfduality follows from this immediately.
$e:=\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right) \in \mathbb{R}^{m+1}, \quad I_{m+1}:(m+1) \times(m+1)$ unit matrix
$V:=\left\{x:=\left(\begin{array}{cccc}x_{1} I_{m+1} & e^{t} x^{\prime} & \xi \\ x^{\prime \prime t} e & X & x^{\prime \prime} \\ { }^{\boldsymbol{t}} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) ; \quad \begin{array}{lll}x_{1} \in \mathbb{R}, & x_{2} \in \mathbb{R}, & X \in \operatorname{Sym}(m, \mathbb{R}) \\ \boldsymbol{\xi} \in \mathbb{R}^{m+1}, & x^{\prime} \in \mathbb{R}^{m}, & x^{\prime \prime} \in \mathbb{R}^{m}\end{array}\right\}$
We note $V \subset \operatorname{Sym}(2 m+2, \mathbb{R})$, and take $\Omega:=\{x \in V ; x \gg 0\}$.
When $m=1$, we have $x=\left(\begin{array}{cccc}x_{1} & 0 & x^{\prime} & \xi_{1} \\ 0 & x_{1} & 0 & \xi_{2} \\ x^{\prime} & 0 & X & x^{\prime \prime} \\ \xi_{1} & \xi_{2} & x^{\prime \prime} & x_{2}\end{array}\right)$.

Homogeneity of Ω
$\left.\mathbf{H}:=\left\{\begin{array}{c|cc}h_{1}>0, h_{2}>0 \\ h_{1} I_{m+1} & 0 & 0 \\ \boldsymbol{h}^{\prime t} \boldsymbol{e} & H & 0 \\ { }^{t} \boldsymbol{\zeta} & { }^{t} \boldsymbol{h}^{\prime \prime} & h_{2}\end{array}\right) ; \begin{array}{c}\boldsymbol{\zeta} \in \mathbb{R}^{m+1}, \boldsymbol{h}^{\prime} \in \mathbb{R}^{m}, \boldsymbol{h}^{\prime \prime} \in \mathbb{R}^{m}, \\ H \in G L(m, \mathbb{R}) \text { is lower triangular } \\ \text { with positive diagonals }\end{array}\right\}$.
H acts on Ω by $\mathbf{H} \times \Omega \ni(h, x) \mapsto h x^{t} h$.
This action is simply transitive. We have $\mathrm{H}=\mathrm{N} \rtimes \mathrm{A}$ with

$$
\left.\begin{array}{l}
\mathbf{A}:=\left\{a:=\left(\begin{array}{c|cc}
a_{1} I_{m+1} & 0 & 0 \\
\hline 0 & A & 0 \\
0 & 0 & a_{2}
\end{array}\right) ; \quad \begin{array}{c}
a_{j}>0(j \in G L(m, \mathbb{R}) \text { is a diagonal } \\
\text { matrix with positive diagonals }
\end{array}\right\}, \\
\left.\mathbf{N}:=\left\{n:=\left(\begin{array}{c|cc}
I_{m+1} & 0 & 0 \\
\hline \boldsymbol{n}^{\prime t} \boldsymbol{e} & N & 0 \\
t_{\boldsymbol{\nu}} & t^{\prime} \boldsymbol{n}^{\prime \prime} & 1
\end{array}\right) ; \begin{array}{c}
\boldsymbol{n}^{\prime}, \boldsymbol{n}^{\prime \prime} \in \mathbb{R}^{m}, \boldsymbol{\nu} \in \mathbb{R}^{m+1} \\
\text { lower triangular }
\end{array}\right\}, \mathbb{R}\right) \text { is strictly }
\end{array}\right\} .
$$

In solving $x=n a^{t} n$ ($x \in \Omega$: given) we obtain basic relative invariants as before.

Basic relative invariants: \quad For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\prime t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right) \in V$,

$$
\begin{aligned}
& \Delta_{1}(x):=x_{1}, \\
& \Delta_{j}(x):=\operatorname{det}\left(\begin{array}{c|c}
x_{1} & { }^{t} \boldsymbol{x}_{j-1}^{\prime} \\
\boldsymbol{x}_{j-1}^{\prime} \mid X_{j-1}
\end{array}\right) \quad(j=2, \ldots, m+1) \\
& \left(\begin{array}{ccc}
\left.X_{k}:=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{k 1} \\
\vdots & & \vdots \\
x_{k 1} & \cdots & x_{k k}
\end{array}\right), \quad \boldsymbol{x}_{k}^{\prime}:=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{k}^{\prime}
\end{array}\right) \in \mathbb{R}^{k}\right), \\
\Delta_{m+2}(x):=x_{1} \operatorname{det}\left(\begin{array}{ccc}
x_{1} & { }^{t} \boldsymbol{x}^{\prime} & \xi_{1} \\
\boldsymbol{x}^{\prime} & X & \boldsymbol{x}^{\prime \prime} \\
\xi_{1} & { }^{t} \boldsymbol{x}^{\prime \prime} & x_{2}
\end{array}\right)-\left(\|\boldsymbol{\xi}\|^{2}-\xi_{1}^{2}\right) \operatorname{det}\binom{x_{1}{ }^{t} \boldsymbol{x}^{\prime}}{\boldsymbol{x}^{\prime} \mid} \\
\quad\left({ }^{t} \boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{m+1}\right)\right) .
\end{array}\right.
\end{aligned}
$$

- $\operatorname{deg} \Delta_{m+2}=m+3$.

For $x=\left(\begin{array}{c|cc}x_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime} & \boldsymbol{\xi} \\ \hline \boldsymbol{x}^{\prime t t} \boldsymbol{e} & X & \boldsymbol{x}^{\prime \prime} \\ \boldsymbol{}_{\boldsymbol{t}} \boldsymbol{\xi} & \boldsymbol{x}^{\prime \prime} & x_{2}\end{array}\right), \quad y=\left(\begin{array}{c|cc}y_{1} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{y}^{\prime} & \boldsymbol{\eta} \\ \hline \boldsymbol{y}^{\prime t} \boldsymbol{e} & Y & \boldsymbol{y}^{\prime \prime} \\ { }^{t} \boldsymbol{\eta} & \boldsymbol{y}^{\prime \prime} & y_{2}\end{array}\right)$ we set

$$
\langle x \mid y\rangle:=x_{1} y_{1}+\operatorname{tr}(X Y)+x_{2} y_{2}+2\left(\boldsymbol{x}^{\prime} \cdot \boldsymbol{y}^{\prime}+\boldsymbol{x}^{\prime \prime} \cdot \boldsymbol{y}^{\prime \prime}+\boldsymbol{\xi} \cdot \boldsymbol{\eta}\right) .
$$

Let $\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad$ for $\forall x \in \bar{\Omega} \backslash\{0\}\}$.
Define $T_{0} \in \operatorname{End}(V)$ by $T_{0} x=\left(\begin{array}{c|c|cc}x_{2} I_{m+1} & \boldsymbol{e}^{t} \boldsymbol{x}^{\prime \prime} J & \boldsymbol{\xi} \\ \hline J \boldsymbol{x}^{\prime \prime} \boldsymbol{e} & J X J & J \boldsymbol{x}^{\prime} \\ { }^{t} \boldsymbol{\xi} & { }^{t} \boldsymbol{x}^{\prime} J & x_{1}\end{array}\right) \quad(x \in V)$, where
$J \in \operatorname{Sym}(m, \mathbb{R})$ is given by $J=\left(\begin{array}{lll}0 & & 1 \\ & . & \\ 1 & & 0\end{array}\right)$.
Theorem: $\Omega^{*}=T_{0}(\Omega)$.

- Current works with students
(1) V : Euclidean Jordan algebra
\leadsto selfadjoint Jordan algebra representation of V
\leadsto define a clan without unit element
\rightsquigarrow What are the irreducible factors of $\operatorname{det} R(y)$?
(2) To get concrete ordinary matrix realizations of homogeneous convex cones, in particular those cones for $\operatorname{dim} \leq 10$.
The description should be free from the general theory of T-algebra developed by Vinberg.
(3) Rewrite Vinberg's correspondence clan \leftrightarrow homogeneous cone in a more straightforward way.
(4) Write up homogeneous open convex cones which are root-multiplicity-free.
- Long-term project

Develop a harmonic analysis, group-invariant decomposition of L^{2}-space over homogeneous convex cones and homogeneous Siegel domains

