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Homogeneous Open Convex Cones

V : a real vector space (with inner product, for simplpicity)
V ⊃ Ω : a regular open convex cone

• G(Ω) := {g ∈ GL(V ) ; g(Ω) = Ω}: linear automorphism group of Ω
linear Lie group as a closed subgroup of GL(V )

• Ω is homogeneous
def⇐⇒ G(Ω) y Ω is transitive

Example: V = Sym(r, R) ⊃ Ω := Sym(r, R)++:
GL(r, R) y Ω by GL(r, R)× Ω 3 (g, x) 7→ gxtg ∈ Ω

This is a selfdual homogeneous open convex cone (symmetric cone).

Ω is selfdual
def⇐⇒ ∃h · | · i s.t. Ω =

©
y ∈ V ; hx | y i > 0 (∀x ∈ Ω\{0})

™

(the RHS is the dual cone taken relative to h · | · i)



Symmetric Cones ¿ Euclidean Jordan Algebras

Ω ¿ V : alg. str. in the ambient VS (≡ tangent space at a ref. pt.)

• V with a bilinear product xy is called a Jordan algebra if
(1) xy = yx,
(2) x2(xy) = x(x2y).

• A real Jordan algebra is said to be Euclidean if ∃h · | · i s.t.

hxy | z i = hx | yz i (∀x, y)

List of Irreducible Symmetric Cones:
Ω = Sym(r, R)++ ⊂ V = Sym(r, R), A ◦B := 1

2 (AB + BA)

Ω = Herm(r, C)++ ⊂ V = Herm(r, C)

Ω = Herm(r, H)++ ⊂ V = Herm(r, H)

Ω = Herm(3, O)++ ⊂ V = Herm(3, O)

Ω = Λn ⊂ V = Rn (n-dimensional Lorentz cone)



Non-Selfdual Homogeneous Open Convex Cones:

Vinberg cone (1960)

V =




x =




x1 x2 x4

x2 x3 0
x4 0 x5



 ; x1, . . . , x5 ∈ R




 ⊃ Ω :=




x ∈ V ;
x1 > 0
x1x3 − x2

2 > 0
x1x5 − x2

4 > 0






the lowest-dimensional homogeneous non-selfdual open convex cone

Classification of Irred. Homogeneous Convex Cones (dim ≤ 10)
(Kaneyuki–Tsuji, 1974)

There are 135 (up to linear isom.) in which 12 are selfdual.
R>0, Λn ⊂ Rn (Lorentz cones with dim = 3, 4, . . . , 10),
Sym(3, R)++ (6-dim), Herm(3, C)++ (9-dim), Sym(4, R)++ (10-dim)



By Vinberg’s theory (1963)

Homogeneous Open Convex Cones ¿ Clans with unit element
Ω ¿ V : alg. str. in the ambient VS (≡ tangent space at a ref. pt.)

• V with a bilinear product x∆y = L(x)y = R(y)x is called a Clan if
(1) [L(x), L(y)] = L(x∆y − y∆x),
(2) ∃s ∈ V ∗ s.t. hx∆y, si defines an inner product,
(3) Each L(x) has only real eigenvalues.



(1) The Case of Symmetric Cones:

• G(Ω) is reductive.
• Jordan algebra structure of V :

V ≡ Te(Ω) ≡ “p of the Cartan decomposition g(Ω) = k + p”
Indeed p = {M(x) ; x ∈ V }, the space of Jordan multiplication
operators.

• The Jordan product is commutative.

(2) The Case of General Homogeneous Convex Cones:

• simply transitive action of Iwasawa subgroup of G(Ω)
• Clan structure of V :

V ≡ Te(Ω) ≡ “Iwasawa subalgebra s := a + n of g(Ω)”
Indeed s = {L(x) ; x ∈ V }, the space of left clan multiplication
operators.

• The clan product is non-commutative, in general.
• Of course one can consider the clan structure in the case of

symmetric cones.



Ω: homogeneous open convex cone,
G(Ω): linear automorphism group of Ω,
S: Iwasawa subgroup of G(Ω).
S is a split solvable Lie group, acting simply transitively on Ω.

a function f on Ω is relatively invariant (w.r.t. S)
def⇐⇒ ∃χ : 1-dimensional representation of S s.t.

f (gx) = χ(g)f (x) (for all g ∈ S, x ∈ Ω).

Theorem [Ishi 2001]. One can find irreducible relatively
invariant polynomial functions

∆1, . . . , ∆r (r := rank(Ω))

on V s.t. any relatively invariant polynomial function P (x) on
V is written as

P (x) = c ∆1(x)m1 · · ·∆r(x)mr (c = const., (m1, . . . , mr) ∈ Zr
=0).



More intrinsic description of ∆1, . . . , ∆r

Theorem [Ishi–N., 2008].
W = VC : the complexification of the Clan V ,
R(w) : the right multiplication operator by w in W :

R(w)z = z4w.
=⇒ irreducible factors of det R(w) are just ∆1(w), . . . , ∆r(w).

• ∆1, . . . , ∆r: Basic relative invariants associated to Ω.
• Just avoid the zeros of ∆1, . . . , ∆r

=⇒ we are safe for holomorphy for the pseudo-inverse map
Is(w) = E∗

s ◦R(w)−1.



Example: Ω = Sym(r, R)++ ⊂ V = Sym(r, R).

GL(r, R) acts on Ω by ρ(g)x := gxtg (g ∈ GL(r, R), x ∈ Ω).

Let GL(r, R) ⊃ S :=










a1

a2 0

*
. . .

ar



 ; a1 > 0, . . . , ar > 0





.

The basic relative S-invariants are

∆1

∆2

∆3

∆r = det

····

µ
A O
B C

∂µ
X Y
tY Z

∂µ
tA tB
O tC

∂
=

µ
AX tA ∗
∗ ∗

∂



Product in V = Sym(r, R) as a clan: x∆y = x y + yt(x),

where for x = (xij) ∈ Sym(r, R), we put

x :=





1
2x11

x21
1
2x22 0

... . . .

xr1 xr2
1
2xrr




∈ s := Lie(S).

Thus x = x + t(x).

In this case we have det R(y) = ∆1(y) · · ·∆r(y).

Remark: This can be seen without computation, once one accepts
the previous theorem.

• In fact, deg det R(y) = V = 1
2 · r(r + 1).

• On the other hand, deg
°
∆1(y) · · ·∆r(y)

¢
= 1 + · · · + r = 1

2 · r(r + 1).



The case of general irreducible symmetric cone Ω ⊂ V

• ∆k(y) is the k-th Jordan algebra principal minor of y ∈ V .
• Iwasawa subgroup S ⊂ G(Ω) acts on Ω simply transitively

√ The orbit map S 3 g 7→ ge ∈ Ω is a diffeomorphism
(e ∈ Ω is the unit element of V )

The differential s 3 X 7→ Xe ∈ V is a linear isomorphism.
• The inverse map is denoted as V 3 v 7→ Xv ∈ s.

√ Then Xve = v for any v ∈ V .

• Euclidean Jordan algebra V now has a structure of clan by
x4 y := Xxy = R(y)x.

Proposition [N, Preprint]: det R(y) = ∆1(y)d · · ·∆r−1(y)d∆r(y),
where d = 1 for Sym(r, R), d = dimR K for Herm(r, K) (K = C, H, O),

r = 2, d = n− 2 for Ω = Λn (n = 3).

• The formula is nice in view of dim V = r + d
2 · r(r − 1), because

deg
°
∆1(y)d · · ·∆r−1(y)d∆r(y)

¢
= d

°
1 + · · · + (r − 1)

¢
+ r = r + d

2 · r(r − 1).



Inductive structure of right multiplications

• Just computing det R(y) is not so difficult.
One can see the corresponding one-dimensional representation
of S without much difficulty.

V = V 0 Ξ

Ξ Rcr

rank(V ) = r, rank(V 0) = r − 1

V = V 0 ⊕ Ξ⊕ Rcr

W := Ξ⊕ Rcr

• W is a 2-sided ideal in the clan structure of V .



According to the decomposition V = V 0 ⊕ Ξ⊕ Rcr| {z }
W

, we have

Rv =




R0(v0) O

* φ(v0) h · | cr iW ξ
h · | ξ iW cr vrIVrr



 (v = v0 + ξ + vrcr)

h · | · i : renormalized inner product in W ,
φ(v0)ξ0 := R(v0)ξ0 (by definition)

Ξ 4 V 0

Proposition: R(V 0)Ξ ⊂ Ξ, and v0 7→ φ(v0) := R(v0)
ØØ
Ξ
∈ End(Ξ) is a

Jordan algebra representation of V 0:

φ(v01v
0
2) = 1

2(φ(v01)φ(v02) + φ(v02)φ(v01))



Question: Ω: irred. homogeneous open convex cone of rank r.
Then Ω is selfdual
⇐⇒ the degrees of basic relative invariants are 1, 2, . . . , r.

[⇒] Jordan algebra principal minors are of degree 1, 2, . . . , r.
[⇐] False in any rank ≥ 3:

∃Ω: non-selfdual homogeneous open convex cone
s.t. the associated basic relative invariants are of

degree 1, 2, . . . , r.



Example

Im: m×m unit matrix, Rrm: column vectors of size r ×m.

V :=

Ω
x =

µ
x0 ⊗ Im y

ty z

∂
; x0 ∈ Sym(r, R), y ∈ Rrm, z ∈ R

æ
.

Note V ⊂ Sym(rm + 1, R).

When m = r = 2, x is the following 5× 5 matrix:

x =





x11 0 x21 0 y11
0 x11 0 x21 y12

x21 0 x22 0 y21
0 x21 0 x22 y22

y11 y12 y21 y22 z




(in this case dim V = 8).

• For Ω, we take the set of positive definite ones in V :

Ω := {x ∈ V ; x ¿ 0} (rank(Ω) = r + 1).

Assumption: m = 2, r = 2 :

(m = 1 ⇒ Ω = Sym(r + 1, R)++, r = 1 ⇒ Ω = Λm+2)



Homogeneity of Ω:

A :=

Ω
a =

µ
a0 ⊗ Im 0

0 ar+1

∂
;

a0 := diag[a1, . . . , ar] with
a1 > 0, . . . , ar > 0 and ar+1 > 0

æ
,

N :=

Ω
n =

µ
n0 ⊗ Im 0

tξ 1

∂
;

n0 is strictly lower triangular in GL(r, R),
ξ ∈ Rrm

æ
.

We have H := N n A y Ω by H × Ω 3 (h, x) 7→ hx th ∈ Ω.

This action is simply transitive. In fact, given x ∈ Ω, the equation
x = natn = na1/2Irm+1a1/2(tn) (a ∈ A, n ∈ N) has unique solution:
for ak we have

ak =
∆k(x)

∆k−1(x)
(k = 1, 2, . . . , r + 1), with ∆0(x) ≡ 1, where

(
∆k(x) := ∆0

k(x0) (k = 1, . . . , r),

∆r+1(x) := z det(x0)− ty(cox0 ⊗ Im)y.
coT : the cofactor matrix of T — thus T (coT ) = (coT )T = (det T )I.



• ∆1(x), . . . , ∆r(x), ∆r+1(x) are basic relative invariants.
We note deg ∆k(x) = k (k = 1, 2, . . . , r + 1). But Ω is not selfdual.

• understanding ∆r+1(x) = z det(x0)− ty(cox0 ⊗ Im)y

For each x =

µ
x0 ⊗ Im y

ty z

∂
∈ V , we set

dx :=





x11 · · · xr1 y1
... ... ...

xr1 · · · xrr yr
ty1 · · · tyr z



, x0 = (xij), y =




y1
...
yr



 , yj ∈ Rm

We have ∆r+1(x) = det dx. Here we compute det dx as if it were an
ordinary determinant, and the product of tyi and yj should be
interpreted as the inner product yi · yj.



Conjecture:
Ω: Irreducible homogeneous open convex cone of rank r,
Ω∗: the dual cone of Ω.
If the degrees of basic relative invariants associated to Ω and
Ω∗ are both 1, 2, . . . , r, then Ω is selfdual.

• The degrees of the basic relative invariants associated to Ω∗

for the previous Ω with r = 3 are 1, 2, 4.
• The conjecture is proved in a weaker form by

Y. Watanabe (Master thesis, Kyoto University, 2006).



Non-selfdual Irreducible Homogeneous Convex Cones
linearly isomorphic to the dual cones

• Ω ⊂ V with h · | · i is selfdual
⇐⇒ ∃T : positive definite selfadjoint operator s.t. T (Ω) = Ω∗.°

Ω∗ :=
©
y ∈ V ; hx | y i > 0 for ∀x ∈ Ω \ {0}

™¢

• Even though there is no positive definite selfadjoint operator T
s.t. T (Ω) = Ω∗, we might be able to find such T if we do not
require the positive definiteness.

• If one accepts reducible ones, then Ω0 ⊕ Ω∗0 just gives an example.
Thus the irreducibility counts for much here.

• In an exercise of Faraut–Korányi’s book, a hint is given to prove
that the Vinberg cone is never linearly isomorphic to its dual
cone. Then the non-selfduality follows from this immediately.



e :=





1
0
...
0



 ∈ Rm+1, Im+1: (m + 1)× (m + 1) unit matrix

V :=




x :=




x1Im+1 e tx0 ξ
x0 te X x00

tξ tx00 x2



 ;
x1 ∈ R, x2 ∈ R, X ∈ Sym(m, R)

ξ ∈ Rm+1, x0 ∈ Rm, x00 ∈ Rm






We note V ⊂ Sym(2m + 2, R), and take Ω := {x ∈ V ; x ¿ 0}.

When m = 1, we have x =





x1 0 x0 ξ1

0 x1 0 ξ2

x0 0 X x00

ξ1 ξ2 x00 x2



 .



Homogeneity of Ω

H :=





h :=




h1Im+1 0 0
h0 te H 0

tζ th00 h2



 ;

h1 > 0, h2 > 0
ζ ∈ Rm+1, h0 ∈ Rm, h00 ∈ Rm,

H ∈ GL(m, R) is lower triangular
with positive diagonals





.

H acts on Ω by H× Ω 3 (h, x) 7→ hxth.
This action is simply transitive. We have H = N o A with

A :=




a :=




a1Im+1 0 0

0 A 0
0 0 a2



 ;
aj > 0 (j = 1, 2),

A ∈ GL(m, R) is a diagonal
matrix with positive diagonals




 ,

N :=




n :=




Im+1 0 0
n0 te N 0

tν tn00 1



 ;
n0, n00 ∈ Rm, ν ∈ Rm+1

N ∈ GL(m, R) is strictly
lower triangular




 .

In solving x = natn (x ∈ Ω: given) we obtain basic relative invariants
as before.



Basic relative invariants: For x =




x1Im+1 e tx0 ξ
x0 te X x00

tξ tx00 x2



 ∈ V ,

∆1(x):= x1,

∆j(x):= det

√
x1

tx0j−1

x0j−1 Xj−1

!

(j = 2, . . . , m + 1)



Xk :=




x11 · · · xk1
... ...

xk1 · · · xkk



 , x0k :=




x01
...
x0k



 ∈ Rk



 ,

∆m+2(x):= x1 det




x1

tx0 ξ1

x0 X x00

ξ1
tx00 x2



−
°
kξk2 − ξ2

1

¢
det

√
x1

tx0

x0 X

!

°
tξ = (ξ1, . . . , ξm+1)

¢
.

• deg ∆m+2 = m + 3.



For x =




x1Im+1 e tx0 ξ
x0 te X x00

tξ tx00 x2



, y =




y1Im+1 e ty0 η
y0 te Y y00

tη ty00 y2



 we set

hx | y i := x1y1 + tr(XY ) + x2y2 + 2(x0 · y0 + x00 · y00 + ξ · η).

Let Ω∗ :=
©
y ∈ V ; hx | y i > 0 for ∀x ∈ Ω \ {0}

™
.

Define T0 ∈ End(V ) by T0x =




x2Im+1 e tx00J ξ

Jx00 te JXJ Jx0
tξ tx0J x1



 (x ∈ V ), where

J ∈ Sym(m, R) is given by J =




0 1

. . .
1 0



.

Theorem: Ω∗ = T0(Ω).



• Current works with students

(1) V : Euclidean Jordan algebra
√ selfadjoint Jordan algebra representation of V
√ define a clan without unit element
√ What are the irreducible factors of det R(y)?

(2) To get concrete ordinary matrix realizations of homogeneous
convex cones, in particular those cones for dim ≤ 10.
The description should be free from the general theory of
T -algebra developed by Vinberg.

(3) Rewrite Vinberg’s correspondence clan ↔ homogeneous cone
in a more straightforward way.

(4) Write up homogeneous open convex cones which are
root-multiplicity-free.

• Long-term project

Develop a harmonic analysis, group-invariant decomposition
of L2-space over homogeneous convex cones and homogeneous
Siegel domains


