Analysis and Geometry Related to Homogeneous Siegel Domains and Homogeneous Convex Cones

Part I
 Cayley Transforms of Homogeneous Siegel Domains

Takaaki NOMURA
（Kyushu University）

越後湯沢
September 27， 2010

Siegel Domains

- Generalization of the upper half plane to higher dimensions
- Introduced by Piatetski-Shapiro in 1957
- Biholomorphically equivalent to bounded domains
- Question posed by Cartan (1935)

If $n \geqq 4, \exists$? non-symmetric homogeneous bounded domains \mathbb{C}^{n} was solved in the affirmative (1959)

- Dorfmeister-Nakajima (Kazufumi Nakajima) solved (1988) the fundamental conjecture on homogeneous Kähler manifold
(by Vinberg-Gindikin in 1965)
Any Homogeneous Kähler Mfd
$=$ Holomorphic Fiber Bundle over a Homog. Bdd Dom. Fiber = Flat Homog. Kähler Mfd
\times Cpt Simply Connected Homog. Kähler Mfd

Examples of Cayley transform

(I)

(II) $\quad V=\operatorname{Sym}(r, \mathbb{R}), \quad \Omega=\operatorname{Sym}(r, \mathbb{R})^{++}, \quad \Omega+i V$

$$
z=(w-E)(w+E)^{-1} \quad(E: \text { unit matrix })
$$

Siegel right half space $\ni w \mapsto z \in$ Siegel disk

$$
\left\{z \in \operatorname{Sym}(r, \mathbb{C}) ; E-z^{*} z \gg 0\right\} .
$$

(III) General symmetric tube domain
$\Omega+i V \quad$ (Ω : a selfdual open convex cone in V)
V (hence $V_{\mathbb{C}}$) can be equipped with Jordan algebra structure.

$$
z=(w-e)(w+e)^{-1} \quad(e: \text { the unit element in } V)
$$

Symmetric tube domain \longrightarrow Open unit ball (w.r.t some norm)

$$
\text { e.g., Siegel disk }=\left\{z \in \operatorname{Sym}(r, \mathbb{C}) ;\|z\|_{\mathrm{op}}<1\right\} .
$$

(For $\operatorname{Sym}(r, \mathbb{C})$, Jordan algebra product is:

$$
A \circ B=\frac{1}{2}(A B+B A)
$$

Jordan algebra inverse $=$ inverse matrix. Thus $(w-e) \circ(w+e)^{-1}=(w-e)(w+e)^{-1}$.

- Domain D is symmetric

$$
\stackrel{\text { def }}{\Longleftrightarrow} \forall z \in D, \exists \sigma_{z} \in \operatorname{Hol}(D) \text { s.t. }\left\{\begin{array}{l}
(1) \sigma_{z}^{2}=\mathrm{Id} \\
(2) z \text { is an isolated fixed point of } \sigma_{z}
\end{array}\right.
$$

(IV) Siegel domain of rank one

$$
\begin{aligned}
D:=\left\{(u, w) \in \mathbb{C}^{m} \times \mathbb{C}\right. & \left.; \operatorname{Re} w-\|u\|^{2}>0\right\} \\
\mathcal{C}(u, w) & :=\left(\frac{2 u}{w+1}, \frac{w-1}{w+1}\right)
\end{aligned}
$$

$$
\mathcal{C}: D \longrightarrow \text { open unit ball in } \mathbb{C}^{m+1}=\mathbb{C}^{m} \times \mathbb{C}
$$

(V) General symmetric Siegel domain $D \subset Z \cong \mathbb{C}^{N}$

$$
Z=W \oplus U
$$

complex semisimple
natural action

Jordan algebra *-repre. φ of W

Jordan algebra $W=V_{\mathbb{C}}$
with V Euclidean JA

$$
\mathcal{C}(u, w):=\left(2 \varphi(w+e)^{-1} u,(w-e)(w+e)^{-1}\right)
$$

$D \longrightarrow$ Open unit ball (w.r.t spectral norm)
\downarrow Harish-Chandra realization of a non-cpt Hermitian symmetric space

Siegel domains. - Definition -

V : a real vector space $(\operatorname{dim} V<\infty)$
\cup
Ω : a regular open convex cone ($\stackrel{\text { def }}{\Longleftrightarrow}$ contains no entire line)
$W:=V_{\mathbb{C}} \quad\left(w \mapsto w^{*}:\right.$ conjugation w.r.t. $\left.V\right)$
U : another complex vector space ($\operatorname{dim} U<\infty$)
$Q: U \times U \rightarrow W$, Hermitian sesquilinear Ω-positive

$$
\text { i.e., } Q\left(u^{\prime}, u\right)=Q\left(u, u^{\prime}\right)^{*}, \quad Q(u, u) \in \bar{\Omega} \backslash\{0\} \quad(0 \neq \forall u \in U)
$$

Siegel domain (of type II)

$$
D:=\left\{(u, w) \in U \times W ; w+w^{*}-Q(u, u) \in \Omega\right\}
$$

- $U=\{0\}$ is allowed.

In this case $D=\Omega+i V$ (tube domain or type I domain)
Assume that D is homogeneous, i.e., $\operatorname{Hol}(D) \curvearrowright D$ transitively. Then Ω is also homogeneous.

Piatetski-Shapiro algebras - normal j-algebras -
$\exists G \subset \operatorname{Hol}_{\text {Aff }}(D)$: split solvable $\curvearrowright D$ simply transitively
$\mathfrak{g}:=\operatorname{Lie}(G)$ has a structure of Piatetski-Shapiro algebra. (normal j-algebra)
$\int \exists J$: integrable almost complex structure on \mathfrak{g},
$\left\{\exists \omega\right.$: admissible linear form on \mathfrak{g}, i.e., $\langle x \mid y\rangle_{\omega}:=\langle[J x, y], \omega\rangle$ defines a J-invariant (positive definite) inner product on \mathfrak{g}.

Example of admissible linear form (Koszul '55). $\langle x, \beta\rangle:=\operatorname{tr}(\operatorname{ad}(J x)-J \operatorname{ad}(x)) \quad(x \in \mathfrak{g})$.

- In fact, $\langle x \mid y\rangle_{\beta}$ is the real part of the Hermitian inner product on $\mathfrak{g} \equiv T_{e}(D)$ defined by the Bergman metric on $D \approx G$ (up to a positive scalar multiple).

Structure of \mathfrak{g}
$\mathfrak{g}=\mathfrak{a} \ltimes \mathfrak{n} \quad\left\{\begin{array}{l}\mathfrak{a}: \text { abelian, } \\ \mathfrak{n}: \text { sum of } \mathfrak{a} \text {-root spaces (positive roots only) }\end{array}\right.$
$\exists H_{1}, \ldots, H_{r}$: a basis of $\mathfrak{a}(r:=r a n k \mathfrak{g})$ s.t. if one puts $E_{j}:=-J H_{j} \in \mathfrak{n}$, then $\left[H_{j}, E_{k}\right]=\delta_{j k} E_{k}$.

Possible forms of roots:

$$
\frac{1}{2}\left(\alpha_{k} \pm \alpha_{j}\right)(j<k), \quad \alpha_{1}, \ldots, \alpha_{r}, \frac{1}{2} \alpha_{1}, \ldots, \frac{1}{2} \alpha_{r}
$$

where $\alpha_{1}, \ldots, \alpha_{r}$ is the basis of \mathfrak{a}^{*} dual to H_{1}, \ldots, H_{r}.

- $\mathfrak{g}_{\alpha_{k}}=\mathbb{R} E_{k}(k=1, \ldots, r)$.
- \mathfrak{g}_{α} are mutually orthogonal w.r.t. $\langle\cdot \mid \cdot\rangle_{\omega}\left(\forall \omega \in \mathfrak{g}^{*}\right.$: admissible).
- Putting $\mathfrak{g}(0):=\mathfrak{a}+\sum_{j<k} \mathfrak{g}_{\frac{1}{2}\left(\alpha_{k}-\alpha_{j}\right)}, \mathfrak{g}(1 / 2):=\sum_{j=1}^{r} \mathfrak{g}_{\frac{1}{2} \alpha_{j}}, \mathfrak{g}(1):=\sum_{j \leqq k} \mathfrak{g}_{\frac{1}{2}\left(\alpha_{j}+\alpha_{k}\right)}$, we have $[\mathfrak{g}(i), \mathfrak{g}(j)] \subset \mathfrak{g}(i+j)$.

Define $E_{k}^{*} \in \mathfrak{g}^{*}$ by $\left\langle E_{k}, E_{k}^{*}\right\rangle=1$, and $=0$ on \mathfrak{a} and $\mathfrak{g}_{\alpha}\left(\alpha \neq \alpha_{k}\right)$.
Fact. Admissible linear forms are $\mathfrak{a}^{*} \oplus\{0\} \oplus \sum_{k=1}^{r} \mathbb{R}_{>0} E_{k}^{*}$.
For $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$, we put $E_{\mathrm{s}}^{*}:=\sum_{k=1}^{r} s_{k} E_{k}^{*} \in \mathfrak{g}^{*}$.
If $s_{1}>0, \ldots, s_{r}>0$ (we will write $\mathbf{s}>0$), then $\langle x \mid y\rangle_{\mathbf{s}}:=\left\langle[J x, y], E_{\mathrm{s}}^{*}\right\rangle$
is a J-invariant inner product on \mathfrak{g}
Fact (Dorfmeister, 1985) The inner products $\langle x \mid y\rangle_{\mathbf{s}}(\mathbf{s}>0)$ exhaust homogeneous Kähler metrics on D (up to conjugations by $\operatorname{Hol}(D)$).

- A Kähler metric f is homogeneous if $\operatorname{Aut}(D, f)$ of biholomorphic isometries acts transitively on D.

Compound power functions (After Gindikin)

$\mathfrak{h}:=\mathfrak{g}(0), H:=\exp \mathfrak{h} . E:=E_{1}+\cdots+E_{r} \in \mathfrak{g}(1)=: V$.
Then $\Omega=H E$ (Adjoint action) and $H \approx \Omega$ (diffeo) by $h \mapsto h E$.

- Note

Then, $G=N \rtimes A, H=N_{0} \rtimes A$ with $A:=\exp \mathfrak{a}, N_{0} \subset N:=\exp \mathfrak{n}$.
For $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$, put $\alpha_{\mathbf{s}}:=\sum_{j=1}^{r} s_{j} \alpha_{j} \in \mathfrak{a}^{*}$ $\left(\alpha_{1}, \ldots, \alpha_{r}\right.$: basis of \mathfrak{a}^{*} dual to $\left.H_{1}, \ldots, H_{r}\right)$.
$\chi_{\mathrm{s}}(\exp x):=\exp \left\langle x, \alpha_{\mathrm{s}}\right\rangle(x \in \mathfrak{a})$ defines a 1-dim. representation of A, hence of H
\rightsquigarrow function $\Delta_{\mathbf{s}}$ on Ω by $\Delta_{\mathbf{s}}(h E):=\chi_{\mathbf{s}}(h)(h \in H)$.

Example: If $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++}$, then $\Delta_{\mathbf{s}}(x)=\Delta_{1}(x)^{s_{1}-s_{2}} \Delta_{2}(x)^{s_{2}-s_{3}} \cdots \Delta_{r}(x)^{s_{r}}$, where $\Delta_{1}(x), \ldots, \Delta_{r}(x)$ are the principal minors of x :

take minors from the left-upper corner

General case

Fact (Gindikin, Ishi (2000)): Δ_{s} extends to a holomorphic function on $\Omega+i V$ as the Laplace transform of the Riesz distribution on the dual cone Ω^{*}, where

$$
\Omega^{*}:=\left\{\xi \in V^{*} ;\langle x, \xi\rangle>0 \quad \forall x \in \bar{\Omega} \backslash\{0\}\right\} .
$$

Pseudoinverse map associated to $\boldsymbol{E}_{\mathrm{S}}^{*}$
For $\forall x \in \Omega$, define $\mathcal{I}_{\mathbf{s}}(x) \in V^{*}$ by $\left\langle v, \mathcal{I}_{\mathbf{s}}(x)\right\rangle:=-D_{v} \log \Delta_{-\mathbf{s}}(x)(v \in V)$.

- $\mathcal{I}_{\mathbf{s}}(\lambda x)=\lambda^{-1} \mathcal{I}_{\mathbf{s}}(x) \quad(\lambda>0)$

$$
\left(D_{v} f(x):=\left.\frac{d}{d t} f(x+t v)\right|_{t=0}\right)
$$

Proposition. Suppose E_{s}^{*} is admissible (i.e., $\mathrm{s}>0$)
(1) $\mathcal{I}_{\mathrm{s}}(x) \in \Omega^{*}$ and $\mathcal{I}_{\mathrm{s}}: \Omega \rightarrow \Omega^{*}$ is bijective.
(2) \mathcal{I}_{s} extends analytically to a rational map $W \rightarrow W^{*}$.
(3) One also has an explicit formula for $\mathcal{I}_{\mathrm{s}}^{-1}: \Omega^{*} \rightarrow \Omega$, which continues analytically to a rational map $W^{*} \rightarrow W$. Thus \mathcal{I}_{s} is birational.
(4) $\mathcal{I}_{\mathrm{s}}: \Omega+i V \rightarrow \mathcal{I}_{\mathrm{s}}(\Omega+i V)$ is biholomorphic.

Remarks. (1) Recall

$$
-D_{v} \log \operatorname{det}(x)^{-1}=\operatorname{tr}\left(x^{-1} v\right) \quad\left(x \in \operatorname{Sym}(r, \mathbb{R})^{++}, v \in \operatorname{Sym}(r, \mathbb{R})\right)
$$

(2) Rationality of \mathcal{I}_{s} can be seen as follows:

Consider $x \triangle y:=[J x, y](x, y \in V:=\mathfrak{g}(1))$.
Then (V, \triangle) is a clan in the sense of Vinberg (\rightsquigarrow Part II).
Fact: $\mathcal{I}_{\mathrm{s}}(y)=E_{\mathrm{s}}^{*} \circ R(y)^{-1}(x \in \Omega)$, where $R(y) x:=x \triangle y$.
The analytic continuation of \mathcal{I}_{s} can be obtained by just considering the complexification of the non-associative algebra (V, \triangle).
(3) The Bergman kernel and the Szegö kernel are of the form

$$
\eta\left(z_{1}, z_{2}\right)=\Delta_{-\mathrm{s}}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right) \quad\left(z_{j}=\left(u_{j}, w_{j}\right) \in D\right)
$$

(up to positive const.) and the characteristic function ϕ of Ω equals
$\Delta_{-\mathrm{s}_{0}}$ for some $\mathrm{s}_{0}>0$ (up to positive const.), where

$$
\phi(x):=\int_{\Omega^{*}} e^{-\langle x, y\rangle} d y \quad(x \in \Omega)
$$

In this case $\mathcal{I}_{\mathrm{s}_{0}}(x)=x^{*}$: Vinberg's $*$-map.
(4) The condition $s>0$ is used to show Δ_{-s} is exploding on $\partial \Omega$:

$$
\text { if } \Omega \ni x \rightarrow x_{0} \in \partial \Omega, \text { then } \Delta_{-s}(x) \rightarrow \infty
$$

(5) $\mathcal{I}_{\mathrm{s}}(\Omega+i V)=\Omega^{*}+i V^{*} \Longleftrightarrow s_{1}=\cdots=s_{r}$ and Ω is selfdual. [Kai-N, 2005]

- Ω is selfdual
$\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ by which regarding $V^{*} \equiv V$, one has $\Omega^{*}=\Omega$.
Example: $\left(\operatorname{Sym}(r, \mathbb{R})^{++}+i \operatorname{Sym}(r, \mathbb{R})\right)^{-1}=\operatorname{Sym}(r, \mathbb{R})^{++}+i \operatorname{Sym}(r, \mathbb{R})$.

Cayley transform for tube domains

Note

$$
\frac{w-1}{w+1}=1-\frac{2}{w+1} .
$$

For s > 0, we define

$$
C_{\mathbf{s}}(w):=\mathcal{I}_{\mathbf{s}}(E)-2 I_{\mathbf{s}}(w+E) \quad(w \in \Omega+i V) .
$$

Remark. If we use $\langle x \mid y\rangle_{\mathrm{s}}=\left\langle[J x, y], E_{\mathrm{s}}^{*}\right\rangle(x, y \in V=\mathfrak{g}(1))$ to identify V^{*} with V, then $\mathcal{I}_{\mathrm{s}}(E)=E$.

Cayley transform for homogeneous Siegel domains
For $\mathrm{s}>0$, we set

$$
\mathcal{C}_{\mathbf{s}}(u, w):=2\left\langle Q(u, \cdot), \mathcal{I}_{\mathbf{s}}(w+E)\right\rangle \oplus C_{\mathbf{s}}(w) \quad((u, w) \in D)
$$

Note $U \ni u^{\prime} \mapsto\left\langle Q\left(u, u^{\prime}\right), \mathcal{I}_{\mathbf{s}}(w+E)\right\rangle$ is \mathbb{C} anti-linear. Thus $\mathcal{C}_{\mathbf{s}}(u, w) \in U^{\dagger} \oplus W^{*}\left(U^{\dagger}=\right.$ the space of anti-linear forms on $\left.U\right)$.

Theorem (N. 2003). $\mathcal{C}_{\mathbf{s}}(D)$ is bounded.

Examples. (1) The Bergman kernel and the Szegö kernel are of the form $C \Delta_{-s}\left(w+w^{*}-Q\left(u_{1} \cdot u_{2}\right)\right)(C>0)$. Then we have the Cayley transforms corresponding to the Bergman and the Szegö kernels.
(2) We already know $\phi=C_{0} \Delta_{-s_{0}}\left(C_{0}>0\right)$. Then the Cayley transform $\mathcal{C}_{\mathrm{s}_{0}}$ is the one introduced by Penney in 1996.

Remarks. (1) Take $\langle\cdot \mid \cdot\rangle_{\mathrm{s}}$ on V defined earlier. Extend it to a \mathbb{C}-bilinear form on $W=V_{\mathbb{C}}$. Then, $\left(u_{1} \mid u_{2}\right)_{\mathrm{s}}:=\left\langle Q\left(u_{1}, u_{2}\right) \mid E\right\rangle_{\mathrm{s}}$ is a Hermitian inner product in U. Use these to identify $U^{\dagger} \oplus W^{*}$ with $U \oplus W$. Moreover, for $w \in W$, define an operator $\varphi_{\mathrm{s}}(w)$ by

$$
\left(\varphi_{\mathbf{s}}(w) u_{1} \mid u_{2}\right)_{\mathbf{s}}=\left\langle Q\left(u_{1}, u_{2}\right) \mid w\right\rangle_{\mathbf{s}}
$$

Then, our Cayley transform \mathcal{C}_{s} can be rewritten as

$$
\mathcal{C}_{\mathbf{s}}(u, w)=\left(2 \varphi_{\mathbf{s}}\left(I_{\mathbf{s}}(w+E)\right) u, C_{\mathbf{s}}(w)\right) .
$$

(2) The image $\mathcal{C}_{\mathrm{s}_{b}}(D)$ is the representative domain of D (up to a positive \# multiple) studied by Ishi-Kai (2010).

Example. The case of quasisymmetric Siegel domains
Suppose $\mathbf{s}=\mathbf{s}_{b}$: the Bergman parameter.
Then, D is quasisymmetric $\stackrel{\text { def }}{\Longleftrightarrow} \Omega$ is selfdual w.r.t $\langle\cdot \mid \cdot\rangle_{s_{b}}$.
Suppose now that D is quasisymmetric.
Then V has a structure of Euclidean Jordan algebra:

$$
\begin{aligned}
& \text { - } x y=x y, \quad x^{2}(x y)=x\left(x^{2} y\right) \\
& \text { - }\langle x y \mid z\rangle_{\mathrm{s}_{b}}=\langle x \mid y z\rangle_{\mathrm{s}_{b}}
\end{aligned}
$$

In this case $I_{\mathrm{s}_{b}}(w)=w^{-1}$ (JA inverse). Moreover

$$
\varphi_{\mathbf{s}_{b}}: W \ni w \mapsto \varphi_{\mathrm{s}_{b}}(w) \in \operatorname{End}_{\mathbb{C}}(U)
$$

is a JA *-representation of W :

$$
\left\{\begin{array}{l}
\varphi_{\mathrm{s}_{b}}\left(w^{*}\right)=\varphi_{\mathrm{s}_{b}}(w)^{*} \\
\varphi_{\mathrm{s}_{b}}\left(w_{1} w_{2}\right)=\frac{1}{2}\left(\varphi_{\mathrm{s}_{b}}\left(w_{1}\right) \varphi_{\mathrm{s}_{b}}\left(w_{2}\right)+\varphi_{\mathrm{s}_{b}}\left(w_{2}\right) \varphi_{\mathrm{s}_{b}}\left(w_{1}\right)\right)
\end{array}\right.
$$

Then

$$
\mathcal{C}_{\mathrm{s}_{b}}(u, w)=\left(2 \varphi_{\mathrm{s}_{b}}(w+E)^{-1} u,(w-E)(w+E)^{-1}\right)
$$

This coincides with Dorfmeister's Cayley transform for quasisymmetric Siegel domains introduced in 1980.
Moreover, if D is symmetric, then $\mathcal{C}_{\mathrm{s}_{b}}$ coincides with (the inverse map) of the Cayley transform defined by Korány-Wolf in 1965.

Theorem (Kai, 2007).
$\mathcal{C}_{\mathbf{s}}(D)$ is convex $\Longleftrightarrow\left\{\begin{array}{l}D \text { is symmetric }, \\ s_{1}=\cdots=s_{r} .\end{array}\right.$
Remark. If D is symmetric, then $C_{\mathrm{s}_{b}}(D)$ is the Harish-Chandra realization of a noncompact Hermitian symmetric space. Thus it is the open unit ball w.r.t a certain norm (the spectral norm of the underlying JTS), so that it is convex.

Application to Poisson-Hua kernel

S : the Szegö kernel of $D, \quad \Sigma$: the Shilov boundary of D. One knows

$$
\Sigma=\left\{(u, w) ; w+w^{*}-Q(u, u)=0\right\} .
$$

$\mathrm{s}=\mathrm{s}_{s}$: Szegö parameter
The explicit expression by $\Delta_{\mathrm{s}_{s}}$ assures us that $S(z, \zeta)(z \in D, \zeta \in \Sigma)$ still has a meaning.
The Poisson-Hua kernel is defined to be

$$
P(z, \zeta):=\frac{|S(z, \zeta)|^{2}}{S(z, z)} \quad(z \in D, \zeta \in \Sigma)
$$

$G \curvearrowright D$ simply transitively by affine maps.
Fix e $:=(0, E) \in D$. Then $G \approx D$ (diffeo) by $g \mapsto g \cdot \mathbf{e}$.
Put $p_{\zeta}(g):=P(g \cdot \mathbf{e}, \zeta) \quad(g \in G)$.
$\mathcal{L}_{\mathrm{s}}^{G}$: the L. - B. operator on G corresponding to $\mathcal{L}_{\mathbf{s}} \leftrightarrow\langle x \mid y\rangle_{\mathrm{s}}$.
Key formula. $\quad \mathcal{L}_{\mathrm{s}}^{G} p_{\zeta}=\left(-\left\|\mathcal{C}_{\mathrm{s}_{s}}(\zeta)\right\|_{\mathrm{s}}^{2}+c_{2}\right) p_{\zeta}$.
c_{2} : explicitly given const. (>0) independent of ζ.

> Theorem. [N, 2003]
> $\mathcal{L}_{\mathbf{s}} P(\cdot, \zeta)=0 \quad(\forall \zeta \in \Sigma) \Longleftrightarrow D$ is symmetric and $s_{1}=\cdots=s_{r}$

Remark. For the case $s=s_{b}$,
\Longleftarrow Hua-Look (classical domains, 1959), Korányi (general 1965).
$\Longrightarrow \mathrm{Xu}$ (difficult computation, 1979).

- application to Berezin transforms (omitted).

Example. Non-symmetric 4-dimensional Siegel domain
$V=\operatorname{Sym}(2, \mathbb{R}), \quad \Omega:=\operatorname{Sym}(2, \mathbb{R})^{++}$.
Then, $W:=V_{\mathbb{C}}=\operatorname{Sym}(2, \mathbb{C})$.
Take $U=\mathbb{C}$, and define $Q\left(u_{1}, u_{2}\right):=2\left(\begin{array}{cc}0 & 0 \\ 0 & u_{1} \bar{u}_{2}\end{array}\right)$.
Then $Q: U \times U \rightarrow W$, Hermitian and Ω-positive.

$$
\begin{aligned}
D & =\left\{(u, w) ; w+w^{*}-Q(u, u) \in \Omega\right\} \\
& =\left\{\left(u, w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{4} ; \begin{array}{c}
v_{1}\left(v_{3}-|u|^{2}\right)-v_{2}^{2}>0, \\
v_{3}>|u|^{2}
\end{array}\right\} \quad\left(v_{j}:=\operatorname{Re} w_{j}\right) .
\end{aligned}
$$

The inner product $\langle\cdot \mid \cdot\rangle_{\mathrm{s}}$ in V is expressed as

$$
\left\langle v \mid v^{\prime}\right\rangle_{\mathrm{s}}:=s_{1} v_{11} v_{11}^{\prime}+2 s_{2} v_{21} v_{21}^{\prime}+s_{2} v_{22} v_{22}^{\prime} \quad\left(s_{j}>0\right) .
$$

Using $\langle\cdot \mid \cdot\rangle_{\mathrm{s}}$ to identify V^{*} with V, we get

$$
\Omega^{*}=\left\{\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{3}
\end{array}\right) ; y_{1} y_{3}-\frac{s_{2}}{s_{1}} y_{2}^{2}>0, y_{3}>0\right\}
$$

$$
\mathcal{I}_{\mathbf{s}}(w)=\frac{1}{\operatorname{det} w}\left(\begin{array}{cr}
w_{3}-s_{1}^{-1}\left(s_{1}-s_{2}\right) w_{1}^{-1} w_{2}^{2} & -w_{2} \\
-w_{2} & w_{1}
\end{array}\right)
$$

If one uses $\operatorname{tr}\left(v v^{\prime}\right)$ to identify V^{*} with V, then $\Omega^{*}=\Omega$ and

$$
\mathcal{I}_{\mathrm{s}}^{0}(w)=\frac{1}{\operatorname{det} w}\left(\begin{array}{cr}
s_{1} w_{3}-\left(s_{1}-s_{2}\right) w_{1}^{-1} w_{2}^{2} & -s_{2} w_{2} \\
-s_{2} w_{2} & s_{2} w_{1}
\end{array}\right)
$$

Geatti's parameter (1982): $s_{1}=s_{2} \rightsquigarrow \mathcal{I}_{\mathbf{s}}(w)=w^{-1}$,
Bergman parameter $\mathrm{s}_{b}: s_{1}=3, s_{2}=4$,
($\rightsquigarrow D$ is not even quasisymmetric).
Szegö parameter s_{s} : $s_{1}=\frac{3}{2}, s_{2}=\frac{5}{2}$,
Penney's parameter $\mathrm{s}_{0}: s_{1}=s_{2}=\frac{3}{2}$.
Geatti's Cayley transform (\equiv Penney's)

$$
\mathcal{C}(u, w)=\left(\frac{2\left(w_{1}+1\right)}{\operatorname{det}(w+E)} u,(w-E)(w+E)^{-1}\right) .
$$

But CT with Bergman param. and Szegö param. both look strange:

$$
\mathcal{C}_{\mathbf{s}}(u, w)=\left(\frac{2\left(w_{1}+1\right)}{\operatorname{det}(w+E)} u, E-2 \mathcal{I}_{\mathbf{s}}(w+E)\right)
$$

Nevertheless CT with Szegö parameter appeared in my analysis of Poisson-Hua kernel.

