Some Symmetry Conditions of
 Homogeneous Siegel Domains

Takaaki NOMURA

(Kyoto University)

Universität Köln
January 30, 2004

Siegel Domains - Introduction -

Introduced by Piatetski-Shapiro (1957), holomorphically equivalent to bounded domains
Motivation for the introduction

- Description of Hermitian symmetric spaces (HSS) by upper-half plane type domains
- There are HSSs that cannot be realized as tube domains $V+i \Omega$
(V : real VS, Ω : open convex cone in V)
- Application to the theory of automorphic functions

The most unexpected application

..... Discovery of "many" non-symmetric homogeneous bounded domains (HBD) (1959)

Earlier study of HBD

É. Cartan, Abh. Math. Sem. Univ. Hamburg, 11 (1935)
$\cdots \cdots \cdot \mathrm{HBDs}$ in \mathbb{C}^{2} and \mathbb{C}^{3} are all symmetric.
Problem : What happens in \mathbb{C}^{n} for $n \geqq 4$?
Remark. Cartan did not make the conjecture that all HBDs are symmetric. What Cartan actually wrote is: ". .. , il semble que là, comme dans beaucoups d'autres problèmes, il faille s'appuyer sur une idée nouvelle."

$\mathscr{D}: \mathrm{HBD}$

Armand Borel (1954), Jean-Louis Koszul (1955)
 \mathscr{D} is a hom. space of ss Lie gr. $\Longrightarrow \mathscr{D}$ is symmetric.

Jun-ichi Hano (1957)

weaken the assumption of ss to unimodular (unimodular $\underset{\text { def }}{\Longleftrightarrow}$ left Haar measure is right invariant)

Piatetski-Shapiro (1959)

Examples of non-symm. homogeneous Siegel domains (type II domains = non-tube domains)

- Gindikin wrote: [lsrael Math. Conf. Proc.]
"It is funny to remember now, how suspiciously we listened for the first time to the proof that this domain is nonsymmetric."

Vinberg (1960)

Non-symm. homogeneous tube domain
\longleftrightarrow Non-selfdual homogenous open convex cone
Min. dimension $=5$

> Naturrall Question. How do we characterize symmetric Siegel domains (among homogeneous Siegel domains)?

Siegel Domains - Definition -

V : a real vector space $(\operatorname{dim} V<\infty)$
\cup
Ω : a regular open convex cone $(\underset{\text { def }}{\leftrightarrows}$ contains no entire line)
$W:=V_{\mathbb{C}} \quad\left(w \mapsto w^{*}:\right.$ conjugation w.r.t. $\left.V\right)$
U : another complex vector space ($\operatorname{dim} U<\infty$)
$Q: U \times U \rightarrow W$, Hermitian sesquilinear Ω-positive

$$
\text { i.e., }\left\{\begin{array}{l}
Q\left(u^{\prime}, u\right)=Q\left(u, u^{\prime}\right)^{*} \\
Q(u, u) \in \bar{\Omega} \backslash\{0\}(0 \neq \forall u \in U)
\end{array}\right.
$$

Siegel domain (of type II)

$$
D:=\left\{(u, w) \in U \times W ; w+w^{*}-Q(u, u) \in \Omega\right\}
$$

- $U=\{0\}$ is allowed. In this case $D=\Omega+i V$. (tube domain or type I domain)

Assume that D is homogeneous

$$
\text { i.e., } \operatorname{Hol}(D) \curvearrowright D \text { transitively }
$$

D : a homogeneous Siegel domain

- D is symmetric

$$
\underset{\text { def }}{\Longleftrightarrow} \forall z \in D, \exists \sigma_{z} \in \operatorname{Hol}(D) \text { s.t. }
$$

$$
\left\{\begin{array}{l}
\sigma_{z}^{2}=\text { identity } \\
z \text { is an isolated fixed point of } \sigma_{z}
\end{array}\right.
$$

Siegel domain of rank 1 (symmetric)

$V=\mathbb{R}, \quad \Omega=\{x \in \mathbb{R} ; x>0\}$,
$W=\mathbb{C}, \quad U=\mathbb{C}^{m}(m=0,1,2, \ldots)$,
$Q\left(u_{1}, u_{2}\right):=\frac{1}{2} u_{1} \bar{u}_{2} \quad\left(u_{1}, u_{2} \in \mathbb{C}\right)$.
$D=\left\{(u, w) ; \operatorname{Re} w>\frac{1}{4}|u|^{2}\right\} \approx B^{m+1} \subset \mathbb{C}^{m+1}=U \times W$
by $\mathscr{C}(u, w)=\left(\frac{u}{w+1}, \frac{w-1}{w+1}\right)$: Cayley transform

- B^{m+1} is symmetric
$\cdots \cdots \cdot \quad z \mapsto-z$ is the symmetry around $0 \in B^{m+1}$.
Via \mathscr{C}, the symmetry around $(0,1)$ is given by

$$
(u, w) \mapsto\left(-w^{-1} u, w^{-1}\right)
$$

Non-quasisymmetric Siegel domain
$V=\operatorname{Sym}(2, \mathbb{R}), \quad \Omega=\operatorname{Sym}^{++}(2, \mathbb{R})$,
$W=\operatorname{Sym}(2, \mathbb{C}), \quad U=\mathbb{C}$,
$Q\left(u_{1}, u_{2}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 2 u_{1} \bar{u}_{2}\end{array}\right) \quad\left(u_{1}, u_{2} \in \mathbb{C}\right)$.
By $W \ni w=\left(\begin{array}{ll}w_{1} & w_{2} \\ w_{2} & w_{3}\end{array}\right) \longleftrightarrow\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{3}$
$D=\{(u, w) ; 2 \operatorname{Re} w-Q(u, u) \in \Omega\}$

$$
=\left\{\left(u, w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{4} ;\left(\begin{array}{cc}
v_{1} & v_{2} \\
v_{2} & v_{3}-|u|^{2}
\end{array}\right) \gg 0\right\} .
$$

Non-symmetric quasisymmetric Siegel domain
V, Ω, W : as above, $\quad U=\mathbb{C}^{2}$,
$Q\left(u, u^{\prime}\right)=\left(\begin{array}{cc}2 u_{1} \bar{u}_{1}^{\prime} & u_{1} \bar{u}_{2}^{\prime}+u_{2} \bar{u}_{1}^{\prime} \\ u_{1} \bar{u}_{2}^{\prime}+u_{2} \bar{u}_{1}^{\prime} & 2 u_{2} \bar{u}_{2}^{\prime}\end{array}\right) \in W$.
$Q(u, u)=2\left(\begin{array}{cc}\left|u_{1}\right|^{2} & \operatorname{Re} u_{1} \bar{u}_{2} \\ \operatorname{Re} u_{1} \bar{u}_{2} & \left|u_{2}\right|^{2}\end{array}\right) \in \bar{\Omega}$.
$D=\left\{(u, w) ;\left(\begin{array}{cc}v_{1}-\left|u_{1}\right|^{2} & v_{2}-\operatorname{Re} u_{1} \bar{u}_{2} \\ v_{2}-\operatorname{Re} u_{1} \bar{u}_{2} & v_{2}-\left|u_{2}\right|^{2}\end{array}\right) \gg 0\right\}$.

Characterizations of symmetric Siegel domains

Late 1970's : Satake (book published in 1980)
Dorfmeister (Habilitationsschrift, 1978)
... In terms of defining data
D'Atri (1979) ... Diff. Geometric (curvature cond.)
D'Atri, Dorfmeister and Y. Zhao [DDZ] (1985)
... Study of isotropy representation

One of DDZ's results

$\mathbf{D}(D)^{\mathbf{G}}$ is commutative $\Longleftrightarrow D$ is symmetric
$\mathbf{G}:=\operatorname{Hol}(D)^{\circ}$: identity component
$\mathbf{D}(D)^{\mathbf{G}}$: algebra of \mathbf{G}-inv. differential operators on D

Remark.

- If D is symmetric, then $\mathbf{D}(D)^{\mathbf{G}}$ is better:

$$
\mathbf{D}(D)^{\mathbf{G}} \cong \mathbb{C}\left[t_{1}, \ldots, t_{r}\right] \quad(r:=\operatorname{rank}(D))
$$

- If D is non-symmetric, then $\mathbf{D}(D)^{\mathbf{G}}$ is worse [DDZ]: \exists first order $T \in \mathbf{D}(D)^{\mathbf{G}}$

Today's talk

\mathscr{L} : Laplace-Beltrami operator (w.r.t. a standard Kähler metric of D)

Theorem A. [$\mathrm{N}, 2001$]

\mathscr{L} commutes with the Berezin transforms
$\Longleftrightarrow D$ is symmetric and the metric considered is Bergman (up to const. multiple >0).

Theorem B. [$\mathrm{N}, 2003$]

The Poisson-Hua kernel is annihilated by \mathscr{L}
$\Longleftrightarrow D$ is symmetric and the metric considered is Bergman (up to const. multiple >0).

Remark. If one takes the Bergman metric from the beginning in Theorem B, then the theorem is due to Hua-Look ('59), Korányi ('65) for \Leftarrow Xu ('79) for \Rightarrow
However, I think very few people traced Xu's proof (required to understand his own theory of N-Siegel domains, and to read some of his papers written in Chinese that are not available in English translation).

Piatetski-Shapiro algebras - normal j-algebras -

 $\exists G \subset \operatorname{Hol}_{\text {Aff }}(D):$ split solvable $\curvearrowright D$ simply transitively$\mathfrak{g}:=\operatorname{Lie}(G)$ has a str. of Piatetski-Shapiro algebra. (normal j-algebra)
$(\exists J$: integrable almost complex structure on \mathfrak{g},
$\exists \omega$: admissible linear form on \mathfrak{g}, i.e., $\langle x \mid y\rangle_{\omega}:=\langle[J x, y], \omega\rangle$ defines a J-invariant (pos. def.) inner product on \mathfrak{g}.

Example (Koszul '55). Koszul form.

$$
\langle x, \beta\rangle:=\operatorname{tr}(\operatorname{ad}(J x)-J \operatorname{ad}(x)) \quad(x \in \mathfrak{g})
$$

This β is admissible

- In fact, $\langle x \mid y\rangle_{\beta}$ is the real part of the Hermitian inner product on $\mathfrak{g} \equiv T_{\mathrm{e}}(D)$ defined by the Bergman metric on $D \approx G$ (up to a positive scalar multiple).

Structure of \mathfrak{g}

$\mathfrak{g}=\mathfrak{a} \ltimes \mathfrak{n} \quad\left\{\begin{array}{l}\mathfrak{a}: \text { abelian, } \\ \mathfrak{n}: \text { sum of } \mathfrak{a} \text {-root spaces (positive roots only) }\end{array}\right.$
Always contains a product of $a x+b$ algebra:
$\exists H_{1}, \ldots, H_{r}$: a basis of $\mathfrak{a}(r:=\operatorname{rank} \mathfrak{g})$ s.t.
if one puts $E_{j}:=-J H_{j} \in \mathfrak{n}$, then $\left[H_{j}, E_{k}\right]=\delta_{j k} E_{k}$.
Possible forms of roots:

$$
\begin{aligned}
& \frac{1}{2}\left(\alpha_{k} \pm \alpha_{j}\right)(j<k), \alpha_{1}, \ldots, \alpha_{r}, \frac{1}{2} \alpha_{1}, \ldots, \frac{1}{2} \alpha_{r} \\
& \alpha_{1}, \ldots, \alpha_{r} \text { : basis of } \mathfrak{a}^{*} \text { dual to } H_{1}, \ldots, H_{r} .
\end{aligned}
$$

- $\mathfrak{g}_{\alpha_{k}}=\mathbb{R} E_{k}(k=1, \ldots, r)$.
- \mathfrak{g}_{α} are mutually orthogonal w.r.t. $\langle\cdot \mid \cdot\rangle_{\omega}(\forall \omega:$ adm.) $E_{k}^{*} \in \mathfrak{g}^{*}:\left\langle E_{k}, E_{k}^{*}\right\rangle=1$ and $=0$ on \mathfrak{a} and $\mathfrak{g}_{\alpha}\left(\alpha \neq \alpha_{k}\right)$.
- Admissible linear forms are $\mathfrak{a}^{*} \oplus\{0\} \oplus \sum_{k=1}^{r} \mathbb{R}_{>0} E_{k}^{*}$.

For $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$, we put $E_{\mathbf{s}}^{*}:=\sum_{k=1}^{r} s_{k} E_{k}^{*} \in \mathfrak{g}^{*}$. If $s_{1}>0, \ldots, s_{r}>0$ ($w e ' l l$ write $s>0$), then
$\langle x \mid y\rangle_{\mathrm{s}}:=\left\langle[J x, y], E_{\mathrm{s}}^{*}\right\rangle$ is a J-inv. inner product on \mathfrak{g} \rightsquigarrow left invariant Riemannian metric on G $\rightsquigarrow \mathscr{L}_{\mathrm{s}}$: the corresponding L-B operator on G.

Berezin transforms

κ : the Bergman kernel of D
the Berezin kernel
$A_{\lambda}\left(z_{1}, z_{2}\right):=\left(\frac{\left|\kappa\left(z_{1}, z_{2}\right)\right|^{2}}{\kappa\left(z_{1}, z_{1}\right) \kappa\left(z_{2}, z_{2}\right)}\right)^{\lambda} \quad\left(z_{j} \in D ; \lambda \in \mathbb{R}\right)$

- A_{λ} is G-invariant: $A_{\lambda}\left(g \cdot z_{1}, g \cdot z_{2}\right)=A_{\lambda}\left(z_{1}, z_{2}\right)$.

Since $D \approx G$, we work on G :

$$
a_{\lambda}(g):=A_{\lambda}(g \cdot \mathrm{e}, \mathrm{e}) \quad(g \in G, \mathrm{e} \in D: \text { fixed ref. pt. })
$$

- $a_{\lambda} \in L^{1}(G)$ if $\lambda>\lambda_{0}\left(0<\lambda_{0}<1\right.$: explicitly calculated $)$.
non-vanishing condition for Hilbert spaces of holomorphic functions on D, in which κ^{λ} is the reproducing kernel.

Berezin transform

$$
B_{\lambda} f(x):=\int_{G} f(y) a_{\lambda}\left(y^{-1} x\right) d y=f * a_{\lambda}(x)
$$

$B_{\lambda} \in \mathbf{B}\left(L^{2}(G)\right)$: selfadjoint, positive.
Recall $\beta \in \mathfrak{g}$: Koszul form. $\left.\quad \beta\right|_{\mathfrak{n}}=\left.E_{\mathbf{c}}^{*}\right|_{\mathfrak{n}}$ with $\mathbf{c}>0$.
Theorem A. $\lambda>\lambda_{0}$: fixed.
B_{λ} commutes with \mathscr{L}_{s}
$\Longleftrightarrow D$ is symmetric and $\mathbf{s}=\gamma \mathbf{c}$ with $\gamma>0$.

Poisson-Hua kernel

$S\left(z_{1}, z_{2}\right)$: the Szegö kernel of D (= reprod. kernel of the Hardy space)

- Hardy space

Hilbert space of holomorphic functions F on D s.t.

$$
\sup _{t \in \Omega} \int_{U} d m(u) \int_{V}\left|F\left(u, t+\frac{1}{2} Q(u, u)+i x\right)\right|^{2} d x<\infty
$$

Σ : the Shilov boundary of D
Then, $\Sigma=\{(u, w) \in U \times W ; 2 \operatorname{Re} w=Q(u, u)\}$.
$S(z, \zeta)$ for $z \in D$ and $\zeta \in \Sigma$ still has a meaning.
$P(z, \zeta):=\frac{|S(z, \zeta)|^{2}}{S(z, z)} \quad(z \in D, \zeta \in \Sigma):$
the Poisson kernel of D
$P_{\zeta}^{G}(g):=P(g \cdot \mathrm{e}, \zeta) \quad(g \in G)$.
Theorem B. $\mathscr{L}_{\mathbf{s}} P_{\zeta}^{G}=0$ for $\forall \zeta \in \Sigma$
$\Longleftrightarrow D$ is symmetric and $\mathbf{s}=\gamma \mathbf{c}$ with $\gamma>0$.

Geometric backgrounds

Geometric reason that Theorems A and B are true ?

- Connection with a geometry of bounded models of homogeneous Siegel domains -
geometry u geometric norm equality
- Validity of norm equality
\Longleftrightarrow Symmetry of the domain

Specialists' folklore

There is no (most) canonical bounded model for non-(quasi)symmetric Siegel domains.

My standpoint
Appropriate bounded model varies with problems one treats.

- Canonical bounded model for symmetric Siegel domains Harish-Chandra model
of non-cpt Hermitian symmetric spaces Open unit ball of a positive Hermitian JTS w.r.t the spectral norm
- Canonical bounded model for quasisymmetric Siegel domains by Dorfmeister (1980) Image of Siegel domain under the Cayley transform naturally defined in terms of Jordan algebra structure (but non-convex unless symmetric. By C. Kai, in preparation)
- For general homogeneous Siegel domains

We can consider

- Cayley transf. assoc. to the Szegö kernel
- Cayley transf. assoc. to the Bergman kernel
- Cayley transf. assoc. to the char. ftn of the cone etc. . .

More generally, we can define Cayley transforms associated to the admissible linear forms $E_{\mathbf{s}}^{*}(\mathbf{s}>0)$. [$\mathrm{N}, 2003$]

Compound power functions (After Gindikin)

$\exists H \subset G$: s.t. $H \curvearrowright \Omega$ simply transitively
$E \in \Omega$ (canonically fixed base point)
Then $H \approx \Omega$ (diffeo) by $h \mapsto h E$.

- Note $G=N \rtimes A, H=N_{0} \rtimes A$ with $A:=\operatorname{expa}$

For $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$, put $\alpha_{\mathbf{s}}:=\sum_{j=1}^{r} s_{j} \alpha_{j} \in \mathfrak{a}^{*}$
$\left(\alpha_{1}, \ldots, \alpha_{r}\right.$: basis of \mathfrak{a}^{*} dual to $\left.H_{1}, \ldots, H_{r}\right)$.
$\chi_{\mathfrak{s}}(\exp x):=\exp \left\langle x, \alpha_{\boldsymbol{s}}\right\rangle(x \in \mathfrak{a}):$
1-dim. representation of A, hence of H.
\rightsquigarrow function on Ω by $\Delta_{\mathbf{s}}(h E):=\chi_{\mathbf{s}}(h) \quad(h \in H)$
Example: If $\Omega=\operatorname{Sym}^{++}(r, \mathbb{R})$, then
$\Delta_{\mathbf{s}}(x)=\Delta_{1}(x)^{s_{1}-s_{2}} \Delta_{2}(x)^{s_{2}-s_{3}} \cdots \Delta_{r}(x)^{s_{r}}$. $\Delta_{1}(x), \ldots, \Delta_{r}(x)$: principal minors of x
Δ_{s} extends to a holomorphic function on $\Omega+i V$ as the Laplace transform of the Riesz distribution on the dual cone Ω^{*} (Gindikin, Ishi (2000)), where

$$
\Omega^{*}:=\left\{\xi \in V^{*} ;\langle x, \xi\rangle>0 \forall x \in \bar{\Omega} \backslash\{0\}\right\} .
$$

Pseudoinverse map associated to E_{s}^{*}

For each $x \in \Omega$, define $\mathscr{I}_{\mathbf{s}}(x) \in V^{*}$ by

$$
\begin{gathered}
\left\langle v, \mathscr{I}_{\mathbf{s}}(x)\right\rangle:=-D_{v} \log \Delta_{-\mathbf{s}}(x) \quad(v \in V) . \\
\quad\left(D_{v} f(x):=\left.\frac{d}{d t} f(x+t v)\right|_{t=0}\right) \\
\cdot \mathscr{I}_{\mathbf{s}}(\lambda x)=\lambda^{-1} \mathscr{I}_{\mathbf{s}}(x) \quad(\lambda>0)
\end{gathered}
$$

Proposition. Suppose E_{s}^{*} is admissible.
(1) $\mathscr{I}_{\mathrm{s}}(x) \in \Omega^{*}$ and $\mathscr{I}_{\mathrm{s}}: \Omega \rightarrow \Omega^{*}$ is bijective.
(2) \mathscr{I}_{s} extends analytically to a rational map $W \rightarrow W^{*}$.
(3) One also has an explicit formula for $\mathscr{I}_{\mathrm{s}}^{-1}: \Omega^{*} \rightarrow \Omega$, which continues analytically to a rational map $W^{*} \rightarrow W$.
Thus \mathscr{I}_{s} is birational.
(4) $\mathscr{I}_{\mathrm{s}}: \Omega+i V \rightarrow \mathscr{I}_{\mathrm{s}}(\Omega+i V)$ is biholomorphic.

Remark. Bergman kernel and Szegö kernel are of the form (up to positive const.)
$\eta\left(z_{1}, z_{2}\right)=\Delta_{-s}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)\left(z_{j}=\left(u_{j}, w_{j}\right)\right)$, and the characteristic function of Ω is Δ_{-s} for some $\mathbf{s}>0$ (up to positive const.).

- $\mathscr{I}_{\mathrm{s}}(\Omega+i V)=\Omega^{*}+i V^{*}$
$\Longleftrightarrow s_{1}=\cdots=s_{r}$ and Ω is selfdual.
[Kai-N, preprint, 2003]

Cayley transform

One has $E_{\mathrm{s}}^{*}=\mathscr{I}_{\mathbf{s}}(E) \in \Omega^{*} . \quad\left(1-\frac{2}{w+1}=\frac{w-1}{w+1}\right)$
$C_{\mathbf{s}}(w):=E_{\mathbf{s}}^{*}-2 \mathscr{I}_{\mathbf{s}}(w+E) \quad$ for tube domains
$\mathscr{C}_{\mathbf{s}}(u, w):=\frac{2\left\langle Q(u, \cdot), \mathscr{I}_{\mathbf{s}}(w+E)\right\rangle}{\in U^{\dagger}} \oplus \frac{C_{\mathbf{s}}(w)}{\in W^{*}}$
U^{\dagger} : the space of antilinear forms on U

Proposition.

(1) $\mathscr{C}_{\mathbf{s}}: D \rightarrow \mathscr{C}_{\mathbf{s}}(D)$ is birat. and biholomorphic.
(2) $\mathscr{C}_{\mathbf{s}}^{-1}$ can be written explicitly.

Theorem. [$\mathrm{N}, 2003$] $\mathscr{C}_{\mathbf{s}}(\mathrm{D})$ is bounded (in $U^{\dagger} \oplus W^{*}$).

Remark. For general $\mathbf{s}>0, \mathscr{C}_{\mathbf{s}}(D)$ for symmetric D is not the standard Harish-Chandra model of a non-compact Hermitian symmetric space (can be even non-convex, for example).

- $C_{\mathbf{s}}(\Omega+i V)$ is convex
$\Longleftrightarrow s_{1}=\cdots=s_{r}$ and Ω is selfdual.
[Kai-N, in writing]

Norm equality I

$\langle x \mid y\rangle_{\mathrm{s}}: J$-invariant inner product on \mathfrak{g}
\rightsquigarrow Upon $G \equiv D$ by $g \mapsto g \cdot \mathrm{e}$, we have Hermitian inner prod. on $T_{\mathrm{e}}(D) \equiv U \oplus W$
\rightsquigarrow Hermitian inner product $(\cdot \mid \cdot)_{s}$ and norm $\|\cdot\|_{s}$ on the "dual' vector space $U^{\dagger} \oplus W^{*}$.

Take $\Psi_{\mathrm{s}} \in \mathfrak{g}$ so that $\operatorname{trad}(x)=\left\langle x \mid \Psi_{\mathrm{s}}\right\rangle_{\mathrm{s}}(\forall x \in \mathfrak{g})$.
Then we know $\Psi_{s} \in \mathfrak{a}$.
Recall that $\left.\beta\right|_{\mathfrak{n}}=\left.E_{\mathbf{c}}^{*}\right|_{\mathfrak{n}}$ for some $\mathbf{c}>0$, so that $\Delta_{-\mathbf{c}}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)$ is the Bergman kernel of D (up to positive const.).

> Proposition. For any $g \in G$ $\mathscr{L}_{\mathrm{s}} a_{\lambda}(g)=\lambda a_{\lambda}(g)\left(-\lambda\left\|\mathscr{C}_{\mathrm{c}}(g \cdot \mathrm{e})\right\|_{\mathrm{s}}^{2}+\left\langle\Psi_{\mathrm{s}}, \alpha_{\mathrm{c}}\right\rangle\right)$.

Observations. (1) $a_{\lambda}(g)=a_{\lambda}\left(g^{-1}\right)$ for $\forall g \in G$.
(2) B_{λ} commutes with \mathscr{L}_{s}

$$
\Longleftrightarrow \mathscr{L}_{\mathrm{s}} a_{\lambda}(g)=\mathscr{L}_{\mathrm{s}} a_{\lambda}\left(g^{-1}\right) \text { for } \forall g \in G .
$$

Therefore:
B_{λ} commutes with \mathscr{L}_{s}

$$
\Longleftrightarrow\left\|\mathscr{C}_{\mathbf{c}}(g \cdot \mathrm{e})\right\|_{\mathrm{s}}=\left\|\mathscr{C}_{\mathbf{c}}\left(g^{-1} \cdot \mathrm{e}\right)\right\|_{\mathbf{s}} \quad(\forall g \in G)
$$

Theorem. [$\mathrm{N}, 2001$]

$\left\|\mathscr{C}_{\mathrm{c}}(\mathrm{g} \cdot \mathrm{e})\right\|_{\mathrm{s}}=\left\|\mathscr{C}_{\mathrm{c}}\left(g^{-1} \cdot \mathrm{e}\right)\right\|_{\mathrm{s}}$ for $\forall g \in G$
$\Longleftrightarrow D$ is symmetric and $\mathbf{s}=\gamma \mathbf{c}$ with $\gamma>0$.
Since $\mathscr{C}_{\mathbf{c}}(\mathrm{e})=0$, this can be rephrased as:

> Theorem.
> $\|h \cdot 0\|_{\mathbf{s}}=\left\|h^{-1} \cdot 0\right\|_{\mathbf{s}}$ for $\forall h \in \mathscr{C}_{\mathbf{c}} \circ G \circ \mathscr{C}_{\mathbf{c}}^{-1} \Longleftrightarrow$ $\mathscr{D}:=\mathscr{C}_{\mathbf{c}}(D)$ is symmetric and $\mathbf{s}=\gamma \mathbf{c}$ with $\gamma>0$.

If D is symmetric, \mathscr{D} is essentially the Harish-Chandra model of a non-cpt Hermitian symmetric space.
$\mathrm{G}:=\operatorname{Hol}(\mathscr{D})^{\circ}$: semisimple Lie group
$\mathrm{K}:=\operatorname{Stab}_{\mathrm{G}}(0)$: maximal cpt subgroup of G .
Using $\mathrm{G}=\mathrm{KAK}$ with $\mathrm{A}:=\mathscr{C}_{\mathbf{c}} \circ A \circ \mathscr{C}_{\mathbf{c}}^{-1}$, one can prove easily that $\|h \cdot 0\|_{\mathbf{c}}=\left\|h^{-1} \cdot 0\right\|_{\mathbf{c}}$ for any $h \in \mathrm{G}$.

The case of unit disk $\mathbb{D} \subset \mathbb{C}$

$\mathrm{G}=\operatorname{SU}(1,1)=\left\{g=\left(\frac{\alpha}{\beta} \frac{\beta}{\alpha}\right) ;|\alpha|^{2}-|\beta|^{2}=1\right\}$
with $\quad g \cdot z=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}} \quad(z \in \mathbb{D})$.

$$
\left\{\begin{array}{l}
g \cdot 0=\frac{\beta}{\bar{\alpha}} \\
g^{-1} \cdot 0=-\frac{\beta}{\alpha}
\end{array} \quad \Longrightarrow|g \cdot 0|=\left|g^{-1} \cdot 0\right| .\right.
$$

However, if one stays within the Iwasawa solvable subgroup, we have an interesting picture.

$$
\begin{aligned}
& \mathrm{A}:=\left\{a_{t}:=\left(\begin{array}{cc}
\cosh \frac{t}{2} & \sinh \frac{t}{2} \\
\sinh \frac{t}{2} & \cosh \frac{t}{2}
\end{array}\right) ; t \in \mathbb{R}\right\}, \\
& \mathrm{N}:=\left\{n_{\xi}:=\left(\begin{array}{cc}
1-\frac{i}{2} \xi & \frac{i}{2} \xi \\
-\frac{i}{2} \xi & 1+\frac{i}{2} \xi
\end{array}\right) ; \xi \in \mathbb{R}\right\} .
\end{aligned}
$$

Then $\mathscr{C}_{c} \circ G \circ \mathscr{C}_{c}^{-1}=N A$.

$r:=a_{t} \cdot 0=\tanh (t / 2)$
$P: n_{\xi} a_{t} \cdot 0=n_{\xi} \cdot r \in \mathrm{~N} \cdot r:$
horocycle emanating from $1 \in \partial \mathbb{D}$ cutting \mathbb{R} at r.
$Q:\left(n_{\xi} a_{t}\right)^{-1} \cdot 0=n_{-e^{-t \xi}} a_{-t} \cdot 0=n_{-e^{-t} \xi} \cdot(-r) \in N \cdot(-r):$ horocycle emanating from $1 \in \partial \mathbb{D}$ cutting \mathbb{R} at $-r$.

Norm equality II

Take $\mathbf{b}>0$ so that $\Delta_{-\mathbf{b}}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)$ is the Szegö kernel of D (up to positive const.).

Proposition.

$$
\mathscr{L}_{\mathbf{s}} P_{\zeta}^{G}(e)=\left(-\left\|\mathscr{C}_{\mathbf{b}}(\zeta)\right\|_{\mathbf{s}}^{2}+\left\langle\Psi_{\mathbf{s}}, \alpha_{\mathbf{b}}\right\rangle\right) P_{\zeta}^{G}(e) .
$$

Remark. By $P(g \cdot z, \zeta)=\chi_{-\mathbf{b}}(g) P\left(z, g^{-1} \cdot \zeta\right)(g \in G)$,

$$
\mathscr{L}_{s} P_{\zeta}^{G}=0 \forall \zeta \in \Sigma \Longleftrightarrow \mathscr{L}_{s} P_{\zeta}^{G}(e)=0 \forall \zeta \in \Sigma .
$$

Therefore:
$\mathscr{L}_{\mathbf{s}} P_{\zeta}^{G}=0 \forall \zeta \in \Sigma \Longleftrightarrow\left\|\mathscr{C}_{\mathbf{b}}(\zeta)\right\|_{\mathrm{s}}^{2}=\left\langle\Psi_{\mathbf{s}}, \alpha_{\mathbf{b}}\right\rangle \forall \zeta \in \Sigma$.
Theorem. [$\mathrm{N}, 2003$]
$\left\|\mathscr{C}_{\mathbf{b}}(\zeta)\right\|_{\mathrm{s}}^{2}=\left\langle\Psi_{\mathrm{s}}, \alpha_{\mathbf{b}}\right\rangle$ for $\forall \zeta \in \Sigma$
$\Longleftrightarrow D$ is symmetric and $\mathbf{s}=\gamma \mathbf{b}$ with $\gamma>0$.
In this case we also have $\mathbf{s}=\gamma^{\prime} \mathbf{c}$ with $\gamma^{\prime}>0$.
Recall $\mathbf{c}>0$ is taken so that $\left.\beta\right|_{\mathfrak{n}}=\left.E_{\mathbf{c}}^{*}\right|_{\mathfrak{n}}$, where β is the Koszul form.

Validity of NE for symmetric $D(\mathbf{s}=\mathbf{c})$

D : symmetric $\Longrightarrow \mathscr{D}:=\mathscr{C}_{\mathbf{c}}(D)$ is the Harish-Chandra model of a Hermitian symmetric space In particular, \mathscr{D} is circular (Note $\left.\mathscr{C}_{c}(\mathrm{e})=0\right)$.
$\mathrm{G}:=\operatorname{Hol}(\mathscr{D})^{\circ}$: semisimple Lie gr. (with trivial center) $\mathrm{K}:=\operatorname{Stab}_{\mathrm{G}}(0)$: maximal cpt subgr. of G

Circularity of $\mathscr{D}(\Longrightarrow \mathrm{K}$ is linear)

+ K-invariance of the Bergman metric
$\Longrightarrow \mathrm{K} \subset$ Unitary group

$$
\left\{\begin{array}{l}
\mathscr{C}_{\mathbf{c}}: \Sigma \ni 0 \mapsto-E_{\mathbf{c}}^{*}, \\
\text { Shilov boundary } \Sigma_{\mathscr{D}} \text { of } \mathscr{D}=\mathrm{K} \cdot\left(-E_{\mathbf{c}}^{*}\right) .
\end{array}\right.
$$

Since $\Sigma_{\mathscr{D}}$ is also a G-orbit $\Sigma_{\mathscr{D}}=\mathrm{G} \cdot\left(-E_{\mathrm{c}}^{*}\right)$ and since Σ is an orbit of a nilpotent subgroup of $G \subset \operatorname{Hol}(D)^{\circ}$, we get

$$
\begin{aligned}
\mathscr{C}_{\mathbf{c}}(\Sigma) & \subset G \cdot\left(-E_{\mathrm{c}}^{*}\right)=\Sigma_{\mathscr{D}} \\
& =\mathrm{K} \cdot\left(-E_{\mathbf{c}}^{*}\right) \\
& \subset\left\{z ;\|z\|_{\mathbf{c}}=\left\|E_{\mathbf{c}}^{*}\right\|_{\mathbf{c}}\right\} .
\end{aligned}
$$

We see easily that $\left\|E_{\mathbf{c}}^{*}\right\|_{\mathbf{c}}^{2}=\left\langle\Psi_{\mathbf{c}}, \alpha_{\mathbf{b}}\right\rangle$ in this case (because \mathbf{b} is a multiple of \mathbf{c}).

Norm equality \Longrightarrow symmetry of D

Assumption

(i) $\left\|\mathscr{C}_{\mathbf{c}}(g \cdot \mathrm{e})\right\|_{\mathrm{s}}=\left\|\mathscr{C}_{\mathbf{c}}\left(g^{-1} \cdot \mathrm{e}\right)\right\|_{\mathrm{s}}$ for $\forall g \in G$.
or
(ii) $\left\|\mathscr{C}_{\mathbf{b}}(\zeta)\right\|_{s}^{2}=\left\langle\Psi_{\mathbf{s}}, \alpha_{\mathbf{b}}\right\rangle$ for $\forall \zeta \in \Sigma$.

What we do is substitute specific $g \in G$ in (i) (resp.
$\zeta \in \Sigma$ in (ii)) and extract informations.
(1) Reduction to a quasisymmetric domain
κ : the Bergman kernel of D
Recall that $\kappa\left(z_{1}, z_{2}\right)=\Delta_{-c}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)$
(up to positive const.).
If $x, y \in V$, define $\langle x \mid y\rangle_{\kappa}:=D_{x} D_{y} \log \Delta_{-c}(E)$.
Definition. $D=D(\Omega, Q)$ is quasisymmetric $\underset{\text { def }}{\leftrightarrows} \Omega$ is selfdual w.r.t. $\langle\cdot \mid \cdot\rangle_{K}$.

Define a non-associative product $x y$ in V by

$$
\langle x y \mid z\rangle_{\kappa}=-\frac{1}{2} D_{x} D_{y} D_{z} \log \Delta_{-\mathbf{c}}(E)
$$

Prop. (Dorfmeister-D'Atri-Dotti-Vinberg)

D is quasisymmetric \Longleftrightarrow product $x y$ is Jordan.
In this case, V is a Euclidean Jordan algebra.
My tool is the following
Proposition. (D'Atri-Dotti) D : irreducible.
D is quasisymmetric

$$
\Longleftrightarrow\left\{\begin{array}{l}
(1) \operatorname{dim} \mathfrak{g}_{\left(\alpha_{k}+\alpha_{j}\right) / 2} \text { is indep. of } j, k, \\
(2) \operatorname{dim} \mathfrak{g}_{\alpha_{k} / 2} \text { is indep. of } k .
\end{array}\right.
$$

Extend $\langle\cdot \mid \cdot\rangle_{\kappa}$ to a \mathbb{C}-bilinear form on $W \times W$.

$$
\left(u_{1} \mid u_{2}\right)_{\kappa}:=\left\langle Q\left(u_{1}, u_{2}\right) \mid E\right\rangle_{\kappa}
$$

defines a Hermitian inner product on U.
For each $w \in W$, define $\varphi(w) \in \operatorname{End}_{\mathbb{C}}(U)$ by

$$
\left(\varphi(w) u_{1} \mid u_{2}\right)_{\kappa}=\left\langle Q\left(u_{1}, u_{2}\right) \mid w\right\rangle_{\kappa} .
$$

Clearly $\varphi(E)=$ identity operator on U.

Proposition. (Dorfmeister). D is quasisymm.
$\Longrightarrow w \mapsto \varphi(w)$ is a Jordan $*$-repre. of $W=V_{\mathbb{C}}$

$$
\left\{\begin{aligned}
\varphi\left(w^{*}\right) & =\varphi(w)^{*}, \\
\varphi\left(w_{1} w_{2}\right) & =\frac{1}{2}\left(\varphi\left(w_{1}\right) \varphi\left(w_{2}\right)+\varphi\left(w_{2}\right) \varphi\left(w_{1}\right)\right) .
\end{aligned}\right.
$$

(2) Reduction: quasisymmetric \Longrightarrow symmetric

Quasisymmetric Siegel domain
$\leftrightarrow\left\{\begin{array}{l}\text { Euclidean Jordan algebra } V \text { and } \\ \text { Jordan } * \text {-representation } \varphi \text { of } W=V_{\mathbb{C}} .\end{array}\right.$

Symmetric Siegel domain \leftrightarrow Positive Hermitian JTS

The following strange formula fills the gap:

$$
\varphi(w) \varphi\left(Q\left(u, u^{\prime}\right)\right) u=\varphi\left(Q\left(\varphi(w) u, u^{\prime}\right)\right) u
$$

where $u, u^{\prime} \in U$ and $w \in W$.

$Z=W \oplus U$

W	U

complex semisimple Jordan algebra
$W=V_{\mathbb{C}}$
with V Euclidean JA

Proposition. (Satake) Quasisymm. D is symm.
$\Longleftrightarrow V$ and φ come from a positive Hermitian JTS this way.

Definition of triple product: $z_{j}=\left(u_{j}, w_{j}\right)(j=1,2,3)$, $\left\{z_{1}, z_{2}, z_{3}\right\}:=(u, w)$, where

$$
\begin{aligned}
u:= & \frac{1}{2} \varphi\left(w_{3}\right) \varphi\left(w_{2}^{*}\right) u_{1}+\frac{1}{2} \varphi\left(w_{1}\right) \varphi\left(w_{2}^{*}\right) u_{3} \\
& +\frac{1}{2} \varphi\left(Q\left(u_{1}, u_{2}\right)\right) u_{3}+\frac{1}{2} \varphi\left(Q\left(u_{3}, u_{2}\right)\right) u_{1} \\
w:= & \left(w_{1} w_{2}^{*}\right) w_{3}+w_{1}\left(w_{2}^{*} w_{3}\right)-w_{2}^{*}\left(w_{1} w_{3}\right) \\
& +\frac{1}{2} Q\left(u_{1}, \varphi\left(w_{3}^{*}\right) u_{2}\right)+\frac{1}{2} Q\left(u_{3}, \varphi\left(w_{1}^{*}\right) u_{2}\right) .
\end{aligned}
$$

Proposition. (Dorfmeister)

Irreducible quasisymmetric D is symmetric
$\Longleftrightarrow \exists f_{1}, \ldots, f_{r}$: Jordan frame of V s.t.

$$
\begin{aligned}
& \text { with } U_{k}:=\varphi\left(f_{k}\right) U \text { we have } \\
& \varphi\left(Q\left(u_{1}, u_{2}\right)\right) u_{1}=0 \\
& \text { for } \forall u_{1} \in U_{1} \text { and } \forall u_{2} \in U_{2} \text {. }
\end{aligned}
$$

References

[1] On Penney's Cayley transform of a homogeneous Siegel domain, J. Lie Theory, 11 (2001), 185-206.
[2] A characterization of symmetric Siegel domains through a Cayley transform, Transform. Groups, 6 (2001), 227-260.
[3] Berezin transforms and Laplace-Beltrami operators on homogeneous Siegel domains, Diff. Geom. Appl., 15 (2001), 91-106.
[4] Family of Cayley transforms of a homogeneous Siegel domain parametrized by admissible linear forms, Diff. Geom. Appl., 18 (2003), 55-78.
[5] Geometric norm equality related to the harmonicity of the Poisson kernel for homogeneous Siegel domains, J. Funct. Anal., 198 (2003), 229-267.

