Cayley Transforms

of

a Homogeneous Siegel Domain

Takaaki NOMURA
(Kyushu University)

Examples of Cayley transform:

(I)

$$
z=\frac{w-1}{w+1}
$$

(II) $\quad V=\operatorname{Sym}(r, \mathbb{R}), \quad \Omega=\operatorname{Pos}(r, \mathbb{R}), \quad \Omega+i V$ $z=(w-E)(w+E)^{-1} \quad(E:$ unit matrix $)$

Siegel right half space $\ni w \mapsto z \in$ Siegel disk
$\left\{z \in \operatorname{Sym}(r, \mathbb{C}) ; E-z z^{*} \gg 0\right\}$.
(III) General symmetric tube domain
$\Omega+i V \quad$ (Ω : a selfdual open convex cone in V)
V (hence $V_{\mathbb{C}}$) can be equipped with JA structure.
$z=(w-e)(w+e)^{-1}(e$: the unit elemt. in $V)$
Symm. tube domain \longrightarrow Open unit ball (w.r.t some norm)
Siegel disk $=\left\{z \in \operatorname{Sym}(r, \mathbb{C}) ;\|z\|_{\mathrm{op}}<1\right\}$.
(For $\operatorname{Sym}(r, \mathbb{C})$, JA product is:

$$
\left\{\begin{array}{l}
A \circ B=\frac{1}{2}(A B+B A) \\
\mathrm{JA} \text { inverse }=\text { inverse matrix. }
\end{array}\right.
$$

Thus $(w-e) \circ(w+e)^{-1}=(w-e)(w+e)^{-1}$.
(IV) $D:=\left\{(u, w) \in \mathbb{C}^{m} \times \mathbb{C} ; w+\bar{w}-2\|u\|^{2}>0\right\}$. (rank 1 (symmetric) Siegel domain)

$$
\mathscr{C}(u, w):=\left(\frac{2 u}{w+1}, \frac{w-1}{w+1}\right)
$$

$\mathscr{C}: D \longrightarrow$ open unit ball in $\mathbb{C}^{m+1}=\mathbb{C}^{m} \times \mathbb{C}$
(V) General symmetric Siegel domain $D \subset Z$

$$
Z=W \oplus U
$$

W	U

complex semisimple Jordan algebra $W=V_{\mathbb{C}}$
with V Euclidean JA

$$
\mathscr{C}(u, w):=\left(2 \varphi(w+e)^{-1} u,(w-e)(w+e)^{-1}\right)
$$

$D \longrightarrow$ Open unit ball (w.rt spectral norm)

\uparrow Harish-Chandra realization of a non-cpt Hermitian symm. space

For general Siegel domain, one first needs something like $(w+e)^{-1}$. Then

$$
(w-e)(w+e)^{-1}=e-2(w+e)^{-1} .
$$

Recall

- $-\left.\frac{d}{d t} \log \operatorname{det}(x+t v)^{-1}\right|_{t=0}=\operatorname{tr}\left(x^{-1} v\right)$

$$
(x \in \operatorname{Pos}(r, \mathbb{R}), v \in \operatorname{Sym}(r, \mathbb{R}))
$$

- $\operatorname{tr}(x y)$ is the inner product to identify $\operatorname{Sym}(r, \mathbb{R})$ with the dual vector space $\operatorname{Sym}(r, \mathbb{R})^{*}$ so that the cone $\operatorname{Pos}(r, \mathbb{R})$ coincides with its dual cone.

Generalization of determinant functions

(compound power functions by Gindikin)
Example. $\operatorname{Pos}(r, \mathbb{R})$: \quad For $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$
$\Delta_{\mathbf{s}}(x):=\Delta_{1}(x)^{s_{1}-s_{2}} \Delta_{2}(x)^{s_{2}-s_{3}} \cdots \Delta_{r}(x)^{s_{r}}$, where

Ω : a homogeneous regular open convex cone $\subset V$

- homogeneous $\stackrel{\text { def }}{\Longleftrightarrow}$
$G(\Omega):=\{g \in G L(V) ; g \Omega=\Omega\} \curvearrowright \Omega$ transitively.
- regular $\stackrel{\text { def }}{\Longleftrightarrow} \Omega$ contains no entire line.
$\exists H$: split solvable $\subset G(\Omega)$ such that $H \curvearrowright \Omega$ simply transitively.

Fix $E \in \Omega$. Then $H \approx \Omega$ (diffeo) by $h \mapsto h E$.
For each group hom. $\chi: H \rightarrow \mathbb{R}_{>0}$, define a function Δ_{χ} on Ω by

$$
\Delta_{\chi}(h E):=\chi(h) \quad(h \in H)
$$

Recall $\operatorname{det} x \rightarrow 0$ if $\operatorname{Pos}(r, \mathbb{R}) \ni x \rightarrow x_{0} \in \partial \operatorname{Pos}(r, \mathbb{R})$.
Definition. $\quad \chi: H \rightarrow \mathbb{R}_{>0}$ is admissible $\stackrel{\text { def }}{\Longleftrightarrow} \Delta_{\chi}(x) \rightarrow 0$ if $\Omega \ni x \rightarrow x_{0} \in \partial \Omega$.

Example. $\quad \Omega=\operatorname{Pos}(2, \mathbb{R}), \Delta_{\mathbf{s}}(x)=x_{11}^{s_{1}-s_{2}}(\operatorname{det} x)^{s_{2}}$. If \mathbf{s} is admissible, then considering $x=\left(\begin{array}{ll}\varepsilon & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & \varepsilon\end{array}\right)$, we have necessarily $s_{1}>0, s_{2}>0$.

Conversely, suppose $s_{1}>0, s_{2}>0$. Then, from

$$
x=\left(\begin{array}{ll}
x_{11} & x_{21} \\
x_{21} & x_{22}
\end{array}\right) \in \Omega, \quad h=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right), \quad x=h^{t} h
$$

we get $x_{11}=a^{2}, x_{21}=a b, x_{22}=b^{2}+c^{2}$, so that

$$
\Delta_{\mathbf{s}}(x)=\left(a^{2}\right)^{s_{1}-s_{2}}\left(a^{2} c^{2}\right)^{s_{2}}=a^{2 s_{1}} c^{2 s_{2}}
$$

If $x \rightarrow x_{0} \in \partial \Omega$, then $x_{11}=a^{2}$ and $x_{22}=b^{2}+c^{2}$ (hence c) remain bounded. Then, by

$$
\Delta_{\mathbf{s}}(x)= \begin{cases}a^{2\left(s_{1}-s_{2}\right)}(\operatorname{det} x)^{s_{2}} & \left(s_{1} \geqq s_{2}\right) \\ c^{2\left(s_{2}-s_{1}\right)}(\operatorname{det} x)^{s_{1}} & \left(s_{1}<s_{2}\right)\end{cases}
$$

we see that $\mathbf{s}=\left(s_{1}, s_{2}\right)$ is admissible.

For each admissible χ, define $I_{\chi}(x) \in V^{*}(x \in \Omega)$ by

$$
\left\langle v, I_{\chi}(x)\right\rangle=-\left.\frac{d}{d t} \log \Delta_{\chi}(x+t v)^{-1}\right|_{t=0} \quad(v \in V)
$$

Example. ϕ : the characteristic ftn of Ω, i.e.,

$$
\phi(x):=\int_{\Omega^{*}} e^{-\langle x, \lambda\rangle} d \lambda \quad(x \in \Omega)
$$

where Ω^{*} is the dual cone of Ω :

$$
\Omega^{*}:=\left\{\lambda \in V^{*} ;\langle x, \lambda\rangle>0 \forall x \in \bar{\Omega} \backslash\{0\}\right\} .
$$

Then, ϕ is of the form

$$
\phi(x)=C \Delta_{\chi_{0}}(x)^{-1} \quad(C>0: \text { const. })
$$

for some admissible χ_{0}. (Indeed $\chi_{0}(h)=\operatorname{Det}_{V} h$.)
Then $I_{\chi_{0}}(x)=x^{*}$, the $*$-map defined by Vinberg.
Facts. (1) $I_{\chi}: \Omega \rightarrow \Omega^{*}$ is a bijection.
(2) I_{χ} has an analytic continuation to a birational map $V_{\mathbb{C}}=: W \rightarrow W^{*}$.
(3) I_{χ} is holomorphic on $\Omega+i V$.

Theorem (Kai-N. 2005).
$I_{\chi}(\Omega+i V)=\Omega^{*}+i V^{*}$
$\Longleftrightarrow \Omega$ is selfdual and $\Delta_{\chi}(x)=\operatorname{det}(x)^{\lambda}$.
($\lambda>0$ and det is the JA alg. determinant ftn.)
Ω is selfdual $\stackrel{\text { def }}{\Longleftrightarrow} \Omega=\Omega^{*}$ by some inner product through which we identify V^{*} with V.

Example.

$$
(\operatorname{Pos}(r, \mathbb{R})+i \operatorname{Sym}(r, \mathbb{R}))^{-1}=\operatorname{Pos}(r, \mathbb{R})+i \operatorname{Sym}(r, \mathbb{R}) .
$$

Cayley transform for tube domains:

For admissible χ, we define

$$
C_{\chi}(w):=I_{\chi}(E)-2 I_{\chi}(w+E) \quad(w \in \Omega+i V) .
$$

Remark. If χ is admissible, then one can define an inner product in V by

$$
\left\langle v_{1} \mid v_{2}\right\rangle_{\chi}:=D_{v_{1}} D_{v_{2}} \log \Delta_{\chi}^{-1}(E) .
$$

$\left(D_{v} f(x):=\left.\frac{d}{d t} f(x+t v)\right|_{t=0}\right)$. If we use this $\langle\cdot \mid \cdot\rangle_{\chi}$ to identify V^{*} with V, then $I_{\chi}(E)=E$.

Siegel domains. - Definition -
V : a real vector space $(\operatorname{dim} V<\infty)$
\cup
Ω : a regular open convex cone
$W:=V_{\mathbb{C}} \quad\left(w \mapsto w^{*}:\right.$ conjugation w.r.t. $\left.V\right)$
U : another complex vector space $(\operatorname{dim} U<\infty)$
$Q: U \times U \rightarrow W$, Hermitian sesquilinear Ω-positive

$$
\text { i.e., }\left\{\begin{array}{l}
Q\left(u^{\prime}, u\right)=Q\left(u, u^{\prime}\right)^{*} \\
Q(u, u) \in \bar{\Omega} \backslash\{0\} \quad(0 \neq \forall u \in U)
\end{array}\right.
$$

Siegel domain (of type II)

$$
D:=\left\{(u, w) \in U \times W ; w+w^{*}-Q(u, u) \in \Omega\right\}
$$

- $U=\{0\}$ is allowed. In this case $D=\Omega+i V$.

Assume that D is homogeneous

$$
\text { i.e., } \operatorname{Hol}(D) \curvearrowright D \text { transitively. }
$$

Then Ω is also homogeneous.

Cayley transform for homogeneous Siegel domains

For admissible χ,
$\mathscr{C}_{\chi}(u, w):=2\left\langle Q(u, \cdot), I_{\chi}(w+E)\right\rangle \oplus C_{\chi}(w)((u, w) \in D)$.
Note $U \ni u^{\prime} \mapsto\left\langle Q\left(u, u^{\prime}\right), I_{\chi}(w+E)\right\rangle$ is \mathbb{C} anti-linear. Thus $\mathscr{C}_{\chi}(u, w) \in U^{\dagger} \oplus W^{*}$.
$\left(U^{\dagger}\right.$: the space of anti-linear forms on U)

Theorem (N. 2003). $\mathscr{C}_{\chi}(D)$ is bounded.

To give examples we need:

Lemma (Gindikin 1975, Ishi 2000). For any χ, the function Δ_{χ} extends holomorphically to $\Omega+i V$.
(Laplace trsfm of a distribution supported by $\overline{\Omega^{*}}$.)

Examples. K : Bergman kernel, S : Szegö kernel Then for $z_{j}=\left(u_{j}, w_{j}\right) \in D(j=1,2)$, we have

$$
\begin{aligned}
K\left(z_{1}, z_{2}\right) & =\Delta_{\chi_{1}}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)^{-1} \\
S\left(z_{1}, z_{2}\right) & =\Delta_{\chi_{2}}\left(w_{1}+w_{2}^{*}-Q\left(u_{1}, u_{2}\right)\right)^{-1}
\end{aligned}
$$

upto positive $\#$ multiples for some admissible χ_{1}, χ_{2}. Then we have the corresponding Cayley transforms:

$$
\mathscr{C}_{\chi_{1}}, \quad \mathscr{C}_{\chi_{2}}
$$

If $\chi=\chi_{0}$ is s.t. $\phi=C \Delta_{\chi_{0}}^{-1}$, then the Cayley transform $\mathscr{C}_{\chi_{0}}$ is the one introduced by Penney in 1996.

Remark. $\langle\cdot \mid \cdot\rangle_{\chi}$: inner product in V defined earlier $\rightsquigarrow \mathbb{C}$ bilinear form on W.
$\left(u_{1} \mid u_{2}\right)_{\chi}:=\left\langle Q\left(u_{1}, u_{2}\right) \mid E\right\rangle_{\chi}$ defines a Hermitian inner product in U.
Let us use these to identify $U^{\dagger} \oplus W^{*}$ with $U \oplus W$. Moreover, for $w \in W$, define an operator $\varphi_{\chi}(w)$ by

$$
\left(\varphi_{\chi}(w) u_{1} \mid u_{2}\right)_{\chi}=\left\langle Q\left(u_{1}, u_{2}\right) \mid w\right\rangle_{\chi}
$$

Then, our Cayley transform \mathscr{C}_{χ} can be rewritten as

$$
\mathscr{C}_{\chi}(u, w)=\left(2 \varphi_{\chi}\left(I_{\chi}(w+E)\right) u, C_{\chi}(w)\right) .
$$

Example. The case of quasisymmetric Siegel domains
Suppose $\chi=\chi_{1}$: the Bergman parameter.
Then, D is quasisymmetric

$$
\stackrel{\text { def }}{\Longleftrightarrow} \Omega \text { is selfdual w.r.t }\langle\cdot \mid \cdot\rangle_{\chi_{1}} .
$$

Suppose D quasisymmetric.
Then V has a structure of Euclidean Jordan algebra ($\langle\cdot \mid \cdot\rangle_{\chi_{1}}$ is an associative inner product), so that we have $I_{\chi_{1}}(w)=w^{-1}$, the JA inverse. Moreover

$$
\varphi_{\chi_{1}}: W \ni w \mapsto \varphi_{\chi_{1}}(w) \in \operatorname{End}_{\mathbb{C}}(U)
$$

is a $* \mathrm{JA}$ representation of W :

$$
\left\{\begin{array}{l}
\varphi_{\chi_{1}}\left(w^{*}\right)=\varphi_{\chi_{1}}(w)^{*} \\
\varphi_{\chi_{1}}\left(w_{1} w_{2}\right)=\frac{1}{2}\left(\varphi_{\chi_{1}}\left(w_{1}\right) \varphi_{\chi_{1}}\left(w_{2}\right)+\varphi_{\chi_{1}}\left(w_{2}\right) \varphi_{\chi_{1}}\left(w_{1}\right)\right)
\end{array}\right.
$$

Then

$$
\mathscr{C}_{\chi_{1}}(u, w)=\left(2 \varphi_{\chi_{1}}(w+E)^{-1} u,(w-E)(w+E)^{-1}\right) .
$$

This coincides with Dorfmeister's Cayley transform for quasisymmetric Siegel domains introduced in 1980.
Moreover, if D is symmetric, then $\mathscr{C}_{\chi_{1}}$ coincides with (the inverse map) of the Cayley transform defined by Korány-Wolf in 1965.

Theorem (Kai, preprint 2006). $\mathscr{C}_{\chi}(D)$ is convex \Longleftrightarrow $\left\{\begin{array}{l}D \text { is symmetric, } \\ \chi \text { is a positive power of } \chi_{1} .\end{array}\right.$

Remark. If D is symmetric, then $C_{\chi_{1}}(D)$ is the HarishChandra model of a noncompact Hermitian symmetric space. Thus it is the open unit ball w.r.t a certain norm (the spectral norm of the underlying JTS), so that it is convex.

Application to Poisson-Hua kernel

S : the Szegö kernel of D,
Σ : the Shilov boundary of D.
One knows

$$
\Sigma=\left\{(u, w) ; w+w^{*}-Q(u, u)=0\right\}
$$

The explicit expression through $\Delta_{\chi_{2}}$ assures us that $S(z, \zeta)(z \in D, \zeta \in \Sigma)$ still has a meaning.
The Poisson-Hua kernel is defined to be

$$
P(z, \zeta):=\frac{|S(z, \zeta)|^{2}}{S(z, z)} \quad(z \in D, \zeta \in \Sigma)
$$

Theorem (Hua-Look-Korányi-Xu).
\mathscr{L} : Laplace-Beltrami operator on D (w.r.t. the Bergman metric)

Then

$$
\mathscr{L} P(\cdot, \zeta)=0(\forall \zeta \in \Sigma) \Longleftrightarrow D \text { is symmetric. }
$$

Remark. \Longleftarrow Hua-Look (classical domains, 1959), Korányi (general 1965).
$\Longrightarrow \mathrm{Xu}$ (difficult computation, 1979).

Interpretation through Cayley transform

$\exists G \subset \operatorname{Aff}_{\mathbb{C}}(D)$ s.t. $G \curvearrowright D$ simply transitively.
Fix e $:=(0, E) \in D$.
Then $G \approx D$ (diffeo) by $g \mapsto g \cdot \mathrm{e}$.
$p_{\zeta}(g):=P(g \cdot \mathrm{e}, \zeta)(g \in G)$.
\mathscr{L}^{G} : the L.-B. operator on G corresponding to \mathscr{L}.

Key formula.

$$
\mathscr{L}^{G} p_{\zeta}=\left(-\left\|\mathscr{C}_{\chi_{2}}(\zeta)\right\|^{2}+c_{2}\right) p_{\zeta}
$$

$\mathscr{C}_{\chi_{2}}$: the Cayley transform with Szegö parameter χ_{2}.
$\|\cdot\|:$ the norm on the tangent space $T_{0}\left(\mathscr{C}_{\chi_{2}}(D)\right)$ def'd by the Bergman metric (note $\mathscr{C}_{\chi_{2}}(\mathrm{e})=0$).
c_{2} : explicitly given const. (>0) independent of ζ.
Therefore
$\mathscr{L}^{G} p_{\zeta}=0(\forall \zeta \in \Sigma) \Longleftrightarrow\left\|\mathscr{C}_{\chi_{2}}(\zeta)\right\|^{2}=c_{2}(\forall \zeta \in \Sigma)$.

\qquad

Theorem (N. 2003).
$\left\|\mathscr{C}_{\chi_{2}}(\zeta)\right\|^{2}=c_{2}(\forall \zeta \in \Sigma) \Longleftrightarrow D$ is symmetric.
Remark. If D is symmetric, then χ_{2} is a positive power of χ_{1}, so that $\mathscr{D}:=\mathscr{C}_{\chi_{1}}(D)$ is essentially the Harish-Chandra model of a Hermitian symmetric space. Since

$$
\mathscr{C}_{\chi_{2}}(\Sigma) \subset \text { Shilov boundary } \Sigma_{\mathscr{D}} \text { of } \mathscr{D}
$$

and since
$\Sigma_{\mathscr{D}}$ lies on the sphere mentioned in Theorem, we have \Longleftarrow.

Example. Non-symmetric 4-dim. Siegel domain
$V=\operatorname{Sym}(2, \mathbb{R}), \Omega:=\operatorname{Pos}(2, \mathbb{R})$.
Then $W:=V_{\mathbb{C}}=\operatorname{Sym}(2, \mathbb{C}) . \quad U=\mathbb{C}$.
$Q\left(u_{1}, u_{2}\right):=2\left(\begin{array}{cc}0 & 0 \\ 0 & u_{1} \bar{u}_{2}\end{array}\right)$.
Then $Q: U \times U \rightarrow W$, Hermitian and Ω-positive.

$$
\begin{aligned}
& D=\left\{(u, w) ; w+w^{*}-Q(u, u) \in \Omega\right\} \\
&=\left\{\left(u, w_{1}, w_{2}, w_{3}\right) \in \mathbb{C}^{4} ; \begin{array}{c}
v_{1}\left(v_{3}-|u|^{2}\right)-v_{2}^{2}>0, \\
v_{3}>|u|^{2}
\end{array}\right\} \\
&\left(v_{j}:=\operatorname{Re} w_{j}\right) .
\end{aligned}
$$

χ : admissible positive character of

$$
H:=\left\{\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right) ; a>0, c>0, b \in \mathbb{R}\right\} .
$$

The inner product $\langle\cdot \mid \cdot\rangle_{\chi}$ in V is expressed as

$$
\left\langle v \mid v^{\prime}\right\rangle_{\mathrm{s}}:=s_{1} v_{11} v_{11}^{\prime}+2 s_{2} v_{21} v_{21}^{\prime}+s_{2} v_{22} v_{22}^{\prime} \quad\left(s_{j}>0\right)
$$

Using $\langle\cdot \mid \cdot\rangle_{\mathrm{s}}$ to identify V^{*} with V, we get

$$
\begin{aligned}
\Omega^{*} & =\left\{\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{3}
\end{array}\right) ; y_{1} y_{3}-\frac{s_{2}}{s_{1}} y_{2}^{2}>0, y_{3}>0\right\}, \\
I_{\mathbf{s}}(w) & =\frac{1}{\operatorname{det} w}\left(\begin{array}{cr}
w_{3}-s_{1}^{-1}\left(s_{1}-s_{2}\right) w_{1}^{-1} w_{2}^{2} & -w_{2} \\
-w_{2}
\end{array}\right) .
\end{aligned}
$$

If one uses $\operatorname{tr}\left(v v^{\prime}\right)$ to identify V^{*} with V, then $\Omega^{*}=\Omega$ and

$$
I_{\mathrm{s}}^{0}(w)=\frac{1}{\operatorname{det} w}\left(\begin{array}{cc}
s_{1} w_{3}-\left(s_{1}-s_{2}\right) w_{1}^{-1} w_{2}^{2} & -s_{2} w_{2} \\
-s_{2} w_{2} & s_{2} w_{1}
\end{array}\right) .
$$

Geatti's parameter (1982): $s_{1}=s_{2} \rightsquigarrow I_{\mathbf{s}}(w)=w^{-1}$, Bergman parameter: $s_{1}=3, s_{2}=4$,

$$
\text { (} \rightsquigarrow D \text { is not even quasisymmetric). }
$$

Szegö parameter: $s_{1}=\frac{3}{2}, s_{2}=\frac{5}{2}$,
Penney's parameter: $s_{1}=s_{2}=\frac{3}{2}$.
Geatti's Cayley transform (\equiv Penney's)

$$
\mathscr{C}(u, w)=\left(\frac{2\left(w_{1}+1\right)}{\operatorname{det}(w+E)} u,(w-E)(w+E)^{-1}\right) .
$$

But CT with Bergman param. and Szegö param. both look strange:

$$
\mathscr{C}_{\chi}(u, w)=\left(\frac{2\left(w_{1}+1\right)}{\operatorname{det}(w+E)} u, E-2 I_{\mathbf{s}}(w+E)\right) .
$$

Nevertheless CT with Szegö parameter appeared in my analysis of Poisson-Hua kernel.

