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• Homogeneous bounded domains

The case of C:
Riemann mapping theorem implies:

biholomorphically equivalent to D (open unit disk).

The Lie group

SU(1, 1) :=

Ω
g =

µ
α β
β α

∂
;

α, β ∈ C,
|α|2 − |β|2 = 1

æ
acts on D by linear fractional transformations:

g · z =
αz + β

βz + α
(z ∈ D).

? The action is transitive — thus D is homogeneous.
? D is symmetric : σ : D 3 z 7→ −z ∈ D (α = i, β = 0) satisfies

(1) σ2 = Identity,
(2) 0 is an isolated (in fact unique) fixed point of σ.



By homogeneity you can show: for 8z ∈ D, 9σz such that
(1) σ2

z = Identity,
(2) z is an isolated fixed point of σz.

The cases C2, C3:
E. Cartan’s work (1935):
? Any homogeneous bounded domain in C2 or C3 is symmetric.

Cartan’s problem: What happens in Cn (n = 4).

Cartan’s conjecture:
To find non-symmetric domains, some new idea is necessary.



D: a (bounded) domain.

Hol(D) := {holomorphic automorphisms of D}.
(finite dim. Lie group by cpt open topology if D ≈ bdd domain)

D is homogenous
def() Hol(D) acts on D transitively.

D is symmetric
def() for 8z ∈ D, 9σz ∈ Hol(D) such that

(1) σ2
z = Identity,

(2) z is an isolated fixed point of σz.

Cartan’s problem: What happens in Cn (n = 4) ?

Cartan’s conjecture:
To find non-symmetric homogeneous bounded domains,
some new idea is necessary.



Piatetski-Shapiro (1959)
found non-symmetric homogeneous Siegel domains in C4 and C5.

? Siegel domain ≈ bounded domain (biholomorphically)
? Later P.-S. showed that in dim = 7, there are continuum cardinality

of inequivalent homogeneous Siegel domains.
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=) generalization to higher dimensions

Siegel domains
Cayley transform−−−−−−−−−−−−−−−−−−→ bounded domains



Siegel domains. — Definition —

V : a real vector space (dim V < 1)
∪
≠ : a proper (

def() contains no entire line) open convex cone
W := VC (w 7→ w§ : conjugation w.r.t. V )
U : another complex vector space (dim U < 1)
Q : U × U → W , Hermitian sesquilinear ≠-positive

i.e.,

(
Q(u0, u) = Q(u, u0)§
Q(u, u) ∈ ≠ \ {0} (0 6= 8u ∈ U)

Siegel domain (of type II)

D :=
©
(u, w) ∈ U ×W ; w + w§ −Q(u, u) ∈ ≠

™
• U = {0} is allowed. In this case D = ≠ + iV .

(tube domain or type I domain)



Siegel domain (of type II)

D :=
©
(u, w) ∈ U ×W ; w + w§ −Q(u, u) ∈ ≠

™
• U = {0} is allowed. In this case D = ≠ + iV .

(tube domain or type I domain)

Assume that D is homogeneous

i.e., Hol(D) y D transitively.

Then ≠ is also homogeneous: i.e.,
G(≠) := {g ∈ GL(V ) ; g(≠) = ≠}

(linear automorphism group of ≠)
G(≠) y ≠ transitively.
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(1) Riemannian symmetric spaces

(2) Hermitian symmetric
spaces

(3) Homogeneous Siegel domains

Homogeneous tube
domains

(§)

(§) Hermitian symmetric spaces of tube type

• List of irreducibles for (1) and (2).
• Harish-Chandra model for (2):

open unit ball for certain norm (in general not Hibertian; spectral
norm in a certain triple product system)

• Cayley transform given by Korányi–Wolf (1965) inside (2):
symmetric Siegel domain → Harish-Chandra model



Characterization theorems of symmetric domains

• By means of transitive group:
D is symmetric if D is a homogeneous space of a semisimple Lie
group (Borel 1954, Koszul 1955), of a unimodular Lie group (Hano
1957) · · · old results before Piatetski-Shapiro

• By means of defining data of Siegel domains:
Satake (book published in 1980),
Dorfmeister (Habilitationsschrift 1978)

• By means of a curvature condition: D’Atri–Dotti 1983
• By means of the eigenvalues of the curvature operator:

Azukawa 1985
• By means of a discrete subgroup acting properly on D: Vey 1970
• By means of some equi-dimensionality of root subspaces:

D’Atri–Dotti (1983)



Characterization theorems of symmetric domains

• Some results of D’Atri–Dorfmeister–Zhao 1985:
The following (1) ª (4) are equivalent: (G := Hol(D)◦)
(1) D is symmetric,
(2) The almost complex structure is represented by an operator of

the infinitesimal isotropy representation,
(3) The only G-invariant vector field on D is a trivial one.
(4) The algebra D(D)G of G-invariant differential operator on D is

commutative.

(2) is a well-known fact in Hermitian symmetric spaces.
(4) is well known in analysis on Riemannian symmetric spaces.

In fact, if D is Riemannian symmetric, D(D)G is isomorphic to
a polynomial algebra with the number of generators equal to rank(D).



Characterization theorems of symmetric domains

Berezin transform B: G-invariant positive bounded selfadjoint
operator on L2(D) (w.r.t. Hol(D)-invariant measure)

? Homogeneous Kähler metric on D
√ Laplace–Beltrami operator L on D.

Theorem 1 (N. 2001). B commutes with L
() D is symmetric and the metric considered is Bergman

(up to a positive number multiple).

Remark. Spectral decomposition of B for symmetric D can be
obtained explicitly by Helgason’s geometric Fourier analysis on
Riemannian symmetric spaces (Berezin 1978 for classical domains,
Unterberger–Upmeier 1994 for general domains).
However for non-symmetric D, we have no result for the moment.



Theorem 2 (N. 2003). The Poisson–Hua kernel is L–harmonic
(killed by L) () D is symmetric and the metric considered
is Bergman (up to a positive number multiple).

Remark. [ (= ] has been proved by Hua–Look (1959) for classical
domains, by Korányi (1965) for general domains.
[ =) ] with Bergman metric is first proved by Xu (1979).

For every Kähler metric h on a homogeneous Siegel domain D, one
can define a Cayley transform Ch of D.

Theorem 3 (N. 2003). Ch(D) is bounded.



Theorem 1 (N. 2001). B commutes with L
() D is symmetric and the metric considered is Bergman

(up to a positive number multiple).

Theorem 2 (N. 2003). The Poisson–Hua kernel is L–harmonic
(killed by L) () D is symmetric and the metric considered
is Bergman (up to a positive number multiple).

Remark. One can understand Theorems 1 and 2 by the shape of
Ch(D) (Theorem 1) or of the Shilov boundary of Ch(D) (Theorem 2).

Theorem 4 (C. Kai 2007). Ch(D) is a convex set
() D is symmetric and the metric considered is Bergman

(up to a positive number multiple).


