Homogeneous Siegel Domains

— Analysis and Geometry —

Takaaki NOMURA

Kyushu University

於:釜慶大学

November, 2007

• Homogeneous bounded domains

<u>The case of \mathbb{C} :</u>

Riemann mapping theorem implies:

biholomorphically equivalent to \mathbb{D} (open unit disk).

The Lie group

$$SU(1,1) := \left\{ g = \begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{pmatrix} \; ; \; \begin{array}{c} \alpha, \beta \in \mathbb{C}, \\ |\alpha|^2 - |\beta|^2 = 1 \end{array} \right\}$$

acts on ${\mathbb D}$ by linear fractional transformations:

$$g \cdot z = \frac{\alpha z + \beta}{\overline{\beta} z + \overline{\alpha}}$$
 $(z \in \mathbb{D}).$

 \star The action is *transitive* — thus \mathbb{D} is homogeneous.

★ D is symmetric: σ : D ∋ z ↦ -z ∈ D (α = i, β = 0) satisfies
(1) σ² = Identity,
(2) 0 is an isolated (in fact unique) fixed point of σ.

By homogeneity you can show: for $\forall z \in \mathbb{D}$, $\exists \sigma_z$ such that (1) $\sigma_z^2 = \text{Identity}$, (2) z is an isolated fixed point of σ_z .

<u>The cases \mathbb{C}^2 , \mathbb{C}^3 :</u> E. Cartan's work (1935): \star Any homogeneous bounded domain in \mathbb{C}^2 or \mathbb{C}^3 is symmetric.

Cartan's problem: What happens in \mathbb{C}^n $(n \ge 4)$.

Cartan's conjecture:

To find non-symmetric domains, some new idea is necessary.

D: a (bounded) domain.

Hol(D) := {holomorphic automorphisms of D}. (finite dim. Lie group by cpt open topology if D ≈ bdd domain)
D is homogenous def Hol(D) acts on D transitively.
D is symmetric def for ∀z ∈ D, ∃σ_z ∈ Hol(D) such that (1) σ_z² = Identity,
(2) z is an isolated fixed point of σ_z.

Cartan's problem: What happens in \mathbb{C}^n $(n \ge 4)$? Cartan's conjecture:

To find non-symmetric homogeneous bounded domains, some new idea is necessary.

Piatetski-Shapiro (1959)

found non-symmetric homogeneous Siegel domains in \mathbb{C}^4 and \mathbb{C}^5 .

- \star Siegel domain \approx bounded domain (biholomorphically)
- * Later P.-S. showed that in $\dim \ge 7$, there are continuum cardinality of inequivalent homogeneous Siegel domains.

Siegel domain (of type II) $D := \{(u, w) \in U \times W ; w + w^* - Q(u, u) \in \Omega\}$

• $U = \{0\}$ is allowed. In this case $D = \Omega + iV$. (tube domain or type I domain) Siegel domain (of type II) $D := \{(u, w) \in U \times W ; w + w^* - Q(u, u) \in \Omega\}$

• $U = \{0\}$ is allowed. In this case $D = \Omega + iV$. (tube domain or type I domain)

<u>Assume</u> that D is homogeneous *i.e.*, $Hol(D) \curvearrowright D$ transitively.

Then Ω is also homogeneous: *i.e.*, $G(\Omega) := \{g \in GL(V) ; g(\Omega) = \Omega\}$ (linear automorphism group of Ω) $G(\Omega) \curvearrowright \Omega$ transitively. (1) Riemannian symmetric spaces

(1) Riemannian symmetric spaces

(2) Hermitian symmetric spaces

- List of irreducibles for (1) and (2).
- Harish-Chandra model for (2): *open unit ball* for certain norm (in general not Hibertian; *spectral norm* in a certain triple product system)
- Cayley transform given by Korányi–Wolf (1965) inside (2): symmetric Siegel domain \rightarrow Harish-Chandra model

Characterization theorems of symmetric domains

- By means of transitive group:
 - D is symmetric if D is a homogeneous space of a semisimple Lie group (Borel 1954, Koszul 1955), of a unimodular Lie group (Hano 1957) \cdots old results before Piatetski-Shapiro
- By means of defining data of Siegel domains: Satake (book published in 1980), Dorfmeister (Habilitationsschrift 1978)
- By means of a curvature condition: D'Atri–Dotti 1983
- By means of the eigenvalues of the curvature operator: Azukawa 1985
- By means of a discrete subgroup acting properly on D: Vey 1970
- By means of some equi-dimensionality of root subspaces: D'Atri–Dotti (1983)

Characterization theorems of symmetric domains

- Some results of D'Atri–Dorfmeister–Zhao 1985:
 The following (1) ~ (4) are equivalent: (G := Hol(D)°)
- (1) D is symmetric,
- (2) The almost complex structure is represented by an operator of the infinitesimal isotropy representation,
- (3) The only G-invariant vector field on D is a trivial one.
- (4) The algebra $\mathbf{D}(D)^{\mathbf{G}}$ of \mathbf{G} -invariant differential operator on D is commutative.
- (2) is a well-known fact in Hermitian symmetric spaces.
- (4) is well known in analysis on Riemannian symmetric spaces. In fact, if D is Riemannian symmetric, $\mathbf{D}(D)^{\mathbf{G}}$ is isomorphic to a polynomial algebra with the number of generators equal to $\operatorname{rank}(D)$.

Characterization theorems of symmetric domains

Berezin transform B: G-invariant positive bounded selfadjoint operator on $L^2(D)$ (w.r.t. Hol(D)-invariant measure) * Homogeneous Kähler metric on D

 \rightsquigarrow Laplace–Beltrami operator \mathcal{L} on D.

Theorem 1 (N. 2001). B commutes with \mathcal{L} \iff D is symmetric and the metric considered is Bergman (up to a positive number multiple).

Remark. Spectral decomposition of B for symmetric D can be obtained explicitly by Helgason's geometric Fourier analysis on Riemannian symmetric spaces (Berezin 1978 for classical domains, Unterberger–Upmeier 1994 for general domains). However for non-symmetric D, we have no result for the moment.

Theorem 2 (N. 2003). The Poisson–Hua kernel is \mathcal{L} -harmonic (killed by \mathcal{L}) \iff D is symmetric and the metric considered is Bergman (up to a positive number multiple).

Remark. [\Leftarrow] has been proved by Hua–Look (1959) for classical domains, by Korányi (1965) for general domains. [\Rightarrow] with Bergman metric is first proved by Xu (1979).

For every Kähler metric h on a homogeneous Siegel domain D, one can define a Cayley transform C_h of D.

Theorem 3 (N. 2003). $C_h(D)$ is bounded.

Theorem 1 (N. 2001). B commutes with \mathcal{L}

 \iff D is symmetric and the metric considered is Bergman (up to a positive number multiple).

Theorem 2 (N. 2003). The Poisson–Hua kernel is \mathcal{L} -harmonic (killed by \mathcal{L}) \iff D is symmetric and the metric considered is Bergman (up to a positive number multiple).

Remark. One can understand Theorems 1 and 2 by the shape of $C_h(D)$ (Theorem 1) or of the Shilov boundary of $C_h(D)$ (Theorem 2).

Theorem 4 (C. Kai 2007). $C_h(D)$ is a convex set $\iff D$ is symmetric and the metric considered is Bergman (up to a positive number multiple).