Homogeneous Convex Cones Associated to Representations of Euclidean Jordan Algebras

(joint work with Hideto NAKASHIMA)

Takaaki NOMURA

(Kyushu University)

Algebra Geometry Mathematical Physics
Brno University of Technology
September 12, 2012

Euclidean Jordan Algebras

- ullet V with a bilinear product xy is called a **Jordan algebra** if for all $x,y\in V$
 - (1) xy = yx,
 - (2) $x^2(xy) = x(x^2y)$.
- A real Jordan algebra with e_0 is said to be **Euclidean** if $\exists \langle \cdot | \cdot \rangle$ s.t.

$$\langle xy | z \rangle = \langle x | yz \rangle \qquad (\forall x, y)$$

• Euclidean Jordan algebras $V \rightleftharpoons \text{symmetric cones } \Omega = \text{Int}\{x^2 \; ; \; x \in V\}$

Example:

$$V=\operatorname{Sym}(r,\mathbb{R})\supset \Omega:=\operatorname{Sym}(r,\mathbb{R})^{++}$$

Jordan product \circ of $V\colon x\circ y:=\frac{1}{2}(xy+yx);\quad \text{note }x\circ x=x^2.$ $GL(r,\mathbb{R})\curvearrowright \Omega \text{ by }GL(r,\mathbb{R})\times \Omega\ni (g,x)\mapsto gx^tg\in \Omega \text{ transitively}$

More generally

V: a real vector space with an inner product $\langle \cdot | \cdot \rangle$ $(\dim V < \infty)$ $V \supset \Omega$: a <u>regular</u> open convex cone (<u>contains no entire line</u>) $G(\Omega) := \{g \in GL(V) \; ; \; g(\Omega) = \Omega\}$: linear automorphism group of Ω (a Lie group as a closed subgroup of GL(V))

 Ω is homogeneous $\stackrel{\mathrm{def}}{\Longleftrightarrow} G(\Omega) \cap \Omega$ is transitive

• dual cone Ω^* of Ω (w.r.t $\langle \cdot | \cdot \rangle$)

$$\stackrel{\text{def}}{\iff} \Omega^* := \left\{ y \in V \; ; \; \langle \, x \, | \, y \, \rangle > 0 \quad (\forall x \in \overline{\Omega} \setminus \{0\}) \right\}$$

- Ω is selfdual $\iff \exists \langle \cdot | \cdot \rangle$ s.t. $\Omega = \Omega^*$
- ullet symmetric cone $\buildrel\hbox{def}\longrightarrow$ homogeneous selfdual open convex cone

List of irreducible symmetric cones and Eulidean Jordan algebras:

- $\Omega = \operatorname{Sym}(r, \mathbb{R})^{++} \subset V = \operatorname{Sym}(r, \mathbb{R})$
- $\Omega = \operatorname{Herm}(r, \mathbb{C})^{++} \subset V = \operatorname{Herm}(r, \mathbb{C})$
- $\Omega = \operatorname{Herm}(r, \mathbb{H})^{++} \subset V = \operatorname{Herm}(r, \mathbb{H})$
- $\Omega = \operatorname{Herm}(3, \mathbb{O})^{++} \subset V = \operatorname{Herm}(3, \mathbb{O})$
- $\Omega = \Lambda_n$ (n-dimensional Lorentz cone) $\subset V = \mathbb{R}^n$

Selfadjoint representations of Euclidean Jordan algebras

V: a Euclidean Jordan algebra with unit element e_0

E: a real vector space with $\langle \cdot | \cdot \rangle_E$

ullet linear map $\varphi:V \to \operatorname{End}(E)$ is a selfadjoint representation of V

$$\stackrel{\text{def}}{\iff} \begin{cases} (1) \ \varphi(x) \in \operatorname{Sym}(E) & \text{for } \forall x \in V, \\ (2) \ \varphi(xy) = \frac{1}{2} \big(\varphi(x) \varphi(y) + \varphi(y) \varphi(x) \big), & \varphi(e_0) = I \ \text{(if } \varphi \neq 0 \text{)} \end{cases}$$

- $V = \operatorname{Herm}(3, \mathbb{O}) \implies \varphi = 0$
- $V = \operatorname{Herm}(r, \mathbb{K}) \ (\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H})$ $\implies E = \operatorname{Mat}(r \times p, \mathbb{K}) \text{ and } \varphi(x)\xi = x\xi \ (x \in V, \xi \in E)$
- V: Lorentzian type $\implies V = \mathbb{R} e_0 \oplus W$ with (W,B): Euclidean VS. Jordan algebra representation of $V \rightleftarrows \mathsf{Clifford}$ algebra representation of $\mathsf{Cl}(W)$ $w^2 = B(w,w)$

In fact
$$V \hookrightarrow \operatorname{Cl}(W)$$

Basic relative invariants

 Ω : a reguler homogeneous open convex cone $\subset V$,

 $G(\Omega)$: the linear automorphism group of Ω ,

 $\exists H$: a split solvable subgroup of $G(\Omega)$ s.t. $H \curvearrowright \Omega$ simply transitively.

ullet a function f on Ω is **relatively invariant** (w.r.t. H)

 $\stackrel{\text{def}}{\Longleftrightarrow} \exists \chi$: 1-dim. rep. of H s.t. $f(hx) = \chi(h)f(x)$ (for all $h \in H, x \in \Omega$).

Theorem [Ishi 2001].

 $\exists \Delta_1, \ldots, \Delta_r \ (r := \operatorname{rank}(\Omega))$: relat. inv. <u>irred</u>. polynomial functions on V s.t. any relat. inv. polynomial function P on V is written as

$$P(x) = c \Delta_1(x)^{m_1} \cdots \Delta_r(x)^{m_r} \quad (c = \text{const.}, (m_1, \dots, m_r) \in \mathbb{Z}_{\geq 0}^r).$$

• $\Delta_1(x), \ldots, \Delta_r(x)$: the basic relative invariants associated to Ω

Algebras for general homogeneous convex domains (Vinberg 1963)

```
ullet V with a bilinear product x \triangle y = L(x)y = R(y)x is called a Clan if
```

```
(1) [L(x), L(y)] = L(x \triangle y - y \triangle x) (left symmetric algebra),
```

- (2) $\exists s \in V^*$ (called admissible) s.t. $s(x \triangle y)$ defines an inner product (compact),
- (3) Each L(x) has only real eigenvalues (normal).

Affine homogeneous open convex domains \rightleftarrows Clans Homogeneous open convex cones \rightleftarrows Clans with unit element

 $\Omega \rightleftharpoons V$: algebraic structure in the ambient VS (\equiv tangent space at a ref. pt.)

• Case of homogeneous convex cones Ω :

```
Fix E \in \Omega and H: simply transitive on \Omega \leadsto H \approx HE = \Omega (diffeo) \leadsto \mathfrak{h} := \operatorname{Lie}(H) \cong T_E(\Omega) \equiv V (linear isomorphism) \leadsto \forall x \in V, \exists 1X \in \mathfrak{h} s.t. XE = x. \leadsto \text{Write } X = L(x) and define x \triangle y := L(x)y (The clan product is non-commutative, in general.)
```

Theorem [Ishi–N. 2008].

R(x): the right multiplication operator by x in the clan V: R(x)y := yx \implies the irreducible factors of $\det R(x)$ are just $\Delta_1(x), \ldots, \Delta_r(x)$.

Flowchart of this work

```
\begin{array}{l} V\colon \text{a simple Euclidean Jordan algebra}\\ (\varphi,E)\colon \text{a selfadjoint representation of }V\\ \leadsto \text{Define a clan structure in }V_E:=E\oplus V\\ \qquad \qquad (V_E\text{ does not have a unit element unless }E=\{0\}.)\\ \leadsto \text{Adjoin a unit element to }V_E\text{, and get a clan }V_E^0\text{ with unit element}\\ \leadsto \text{Get the corresponding homogeneous open convex cone }\Omega^0\\ & \qquad \left\{\begin{array}{l} \bullet\text{ Express the basic relative invariants associated to }\Omega^0\text{ in terms of}\\ \text{JA principal minors of }V\text{ and stuffs related to }(\varphi,E).\\ \end{array}\right.\\ \leadsto & \qquad \left\{\begin{array}{l} \bullet\text{ Get the dual cone }(\Omega^0)^*\text{ of }\Omega^0\text{ (w.r.t. an appropriate inner product)}\\ \leadsto \text{ Express the basic relative invariants associated to }(\Omega^0)^*\text{ in terms of}\\ \text{JA principal minors of }V\text{ and stuffs related to }(\varphi,E).\\ \end{array}\right.
```

- Ω^0 is <u>not</u> a symmetric cone in general.
- The degrees of basic realtive invariants associated to $(\Omega^0)^*$ are always $1, 2, \ldots, r$ $(r = \operatorname{rank}(\Omega^0))$ whatever the representation φ .

The case of zero representation

V: a simple Euclidean Jordan algebra of rank r, e_0 : the unit element $\Omega = \operatorname{Int}\{x^2 \; ; \; x \in V\}$: the corresponding symmetric cone

Fix a Jordan frame c_1, \ldots, c_r

- \rightsquigarrow H: the corresponding Iwasawa solvable subgroup of $G(\Omega)$ (reductive Lie group)
- \rightsquigarrow Introduce a canionical clan product \triangle in V

Example: $V = \operatorname{Sym}(r, \mathbb{R})$, $\Omega = \operatorname{Sym}(r, \mathbb{R})^{++}$.

 $GL(r,\mathbb{R})$ -action on Ω : $GL(r,\mathbb{R})\times\Omega\ni(g,x)\mapsto gx^tg\in\Omega$

Product in V as a clan: $x \triangle y = \underline{x} y + y^t(\underline{x})$, where for $x = (x_{ij}) \in \operatorname{Sym}(r, \mathbb{R})$,

we put
$$\underline{x}:=\begin{pmatrix} \frac{1}{2}x_{11} & 0 \\ x_{21} & \frac{1}{2}x_{22} \\ \vdots & \ddots & \ddots \\ x_{r1} & \cdots & x_{r,r-1} & \frac{1}{2}x_{rr} \end{pmatrix}$$
 . Thus $x=\underline{x}+{}^t(\underline{x})$.

$$L(x)y = R(y)x = \underline{x}y + y^{t}(\underline{x})$$

General symmetric cone

spaces are described as

```
Fix \langle x \, | \, y \rangle := \operatorname{tr}(xy): the trace inner product of V, \mathfrak{g} := \operatorname{Lie}(G(\Omega)), \mathfrak{k} := \operatorname{Der}(V), \mathfrak{p} := \{M(x) \; ; \; x \in V\}: Jordan multiplication operators \leadsto \mathfrak{g} = \mathfrak{k} + \mathfrak{p} is a Cartan decomposition of \mathfrak{g} with \theta X = -{}^t X, V = \bigoplus_{1 \leq j \leq k \leq r} V_{kj}: the Peirce decomposition for c_1, \ldots, c_r, where V_{jj} := \mathbb{R} c_j \quad (j = 1, \ldots, r), V_{kj} := \left\{ x \in V \; ; \; M(c_i)x = \frac{1}{2}(\delta_{ij} + \delta_{ik})x \quad (i = 1, 2, \ldots, r) \right\} \quad (1 \leq j < k \leq r). • \mathfrak{a} := \mathbb{R} M(c_1) \oplus \cdots \oplus \mathbb{R} M(c_r): maximal abelian in \mathfrak{p}, • \alpha_1, \ldots, \alpha_r: basis of \mathfrak{a}^* dual to M(c_1), \ldots, M(c_r). Then the positve \mathfrak{a}-roots are \frac{1}{2}(\alpha_k - \alpha_j) \; (j < k), and the corresponding root
```

$$\mathfrak{n}_{kj} := \mathfrak{g}_{(\alpha_k - \alpha_j)/2} = \{ z \square c_j \; ; \; z \in V_{kj} \} \quad (a \square b := M(ab) + [M(a), M(b)]).$$

With $\mathfrak{n} := \sum_{j < k} \mathfrak{n}_{kj}$, we get Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$.

Let $A := \exp \mathfrak{a}$, $N := \exp \mathfrak{n}$. Then $H := N \rtimes A$ acts on Ω simply transitively. H gives a clan structure to V, so that $\mathfrak{h} := \operatorname{Lie}(H) = \{L(v) \; ; \; v \in V\}$.

Lemma. (1)
$$v \in \mathbb{R}c_1 \oplus \cdots \oplus \mathbb{R}c_r \implies L(v) = M(v) \ (\in \mathfrak{a}).$$
 (2) $v \in V_{kj} \implies L(v) = 2(v \square c_j) \ (\in \mathfrak{n}_{kj}).$

We now consider R(x)y := L(y)x. $\Delta_1(x), \ldots, \Delta_r(x)$: JA principal minors of x associated to c_1, \ldots, c_r (basic relative invariants of V)

Theorem. det $R(x) = \Delta_1(x)^d \cdots \Delta_{r-1}(x)^d \Delta_r(x)$, where d := the common dimension of V_{kj} (j < k).

d=1 for $\mathrm{Sym}(r,\mathbb{R})$, $d=\dim_{\mathbb{R}}\mathbb{K}$ for $\mathrm{Herm}(r,\mathbb{K})$ $(\mathbb{K}=\mathbb{C},\mathbb{H},\mathbb{O})$, $r=2,\ d=n-2$ for $\Omega=\Lambda_n\ (n\geq 3)$.

The case of non-trivial representations

 (φ, E) : a selfadjoint representation of φ , $\dim E > 0$ $\rightsquigarrow \varphi(c_1), \ldots, \varphi(c_r)$: mutually orthogonal projection operators with equal rank

 \bullet Define the lower triangular part $\varphi(x)$ of $\varphi(x)$ $(x \in V)$ by

$$\underline{\varphi}(x) := \frac{1}{2} \sum_{i} \lambda_{i} \varphi(c_{i}) + \sum_{j < k} \varphi(c_{k}) \varphi(x_{kj}) \varphi(c_{j}) \quad (x = \sum_{i} \lambda_{i} c_{j} + \sum_{j < k} x_{kj}).$$

We have $\varphi(x) + \varphi(x)^* = \varphi(x)$.

Proposition. φ is a representation of the clan (V, \triangle) :

$$\varphi(x \triangle y) = \underline{\varphi}(x)\varphi(y) + \varphi(y)\underline{\varphi}(x)^* \qquad (x, y \in V).$$

• Define a bilinear map $Q: E \times E \to V$ by

$$\langle \varphi(x)\xi | \eta \rangle_E = \langle Q(\xi,\eta) | x \rangle \ (x \in V, \xi, \eta \in E).$$

ullet Introduce a product riangle in $V_E:=E\oplus V$ by

$$(\xi+x)\bigtriangleup(\eta+y):=\underline{\varphi}(x)\eta+(Q(\xi,\eta)+x\bigtriangleup y) \qquad (x,y\in V,\ \xi,\eta\in E).$$

Theorem. (V_E, \triangle) is a clan with $s'(\xi + x) := \operatorname{Tr} L(x) \ (\xi \in E, \ x \in V)$.

 V_E does not have a unit element (because dim E > 0).

Adjoin e to V_E , so that $V_E^0 := \mathbb{R} e \oplus V_E$ is a clan with unit element e.

Put $\underline{u} := \underline{e} - \underline{e}_0$, and we use $V_E^0 = \mathbb{R} \underline{u} \oplus E \oplus V$. Then

$$(\lambda u + \xi + x) \bigtriangleup (\mu u + \eta + y) = (\lambda \mu) u + (\mu \xi + \frac{1}{2} \lambda \eta + \underline{\varphi}(x) \eta) + (Q(\xi, \eta) + x \bigtriangleup y)$$
$$(\lambda, \mu \in \mathbb{R}, \xi, \eta \in E \text{ and } x, y \in V)$$

 Ω^0 : the homogeneous convex cone associated to V_E^0

• To describe Ω^0 , we introduce (note Q is Ω -positive)

 $D(\Omega,Q):=\{\xi+x\in V_E\;;\;x-\frac{1}{2}Q(\xi,\xi)\in\Omega\}$: real homogeneous Siegel domain Then

$$\Omega^{0} = \{ \lambda u + \lambda \xi + \lambda x \in V_{E}^{0} ; \ \lambda > 0, \ \xi + x \in D(\Omega, Q) \}$$
$$= \{ \lambda u + \xi + x \in V_{E}^{0} ; \ \lambda > 0, \ \lambda x - \frac{1}{2} Q(\xi, \xi) \in \Omega \}$$

Example:

 $V=\mathbb{R}$, $\Omega=\mathbb{R}_{>0}$, $E=\mathbb{R}$ and $\varphi(x)\xi=x\xi$ $(x\in\mathbb{R},\,\xi\in\mathbb{R})$.

Clearly $Q(\xi, \eta) = \xi \eta$.

$$D(\Omega, Q) = \{(\xi, x) \in \mathbb{R}^2 \; ; \; x - \frac{1}{2}\xi^2 > 0\}$$

• $\forall t \in \mathbb{R}, \ (\xi, x) \mapsto (e^{t/2}\xi, e^tx)$: translation of the basic parabola

$$x = \frac{1}{2}\xi^2 + 1 \mapsto x = \frac{1}{2}\xi^2 + e^t$$

• $\forall \xi_0 \in \mathbb{R}, \ (\xi, x) \mapsto (\xi + \xi_0, \ x + \xi \xi_0 + \frac{1}{2} \xi_0^2)$:

movement on each of the parabolas $x = \frac{1}{2}\xi^2 + a \ (a > 0)$

$$\Omega^0 = \{(\lambda, \xi, x) \; ; \; \lambda > 0, \; \lambda x - \frac{1}{2} \xi^2 > 0\} \leadsto \text{See movie.}$$

Basic relative invariants associated to Ω^0

V: Euclidean JA, $\varphi:V\to \mathrm{Sym}(E)$: selfadjoint JA representation

- φ is regular $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $\exists \xi_0 \in E$ s.t. $Q(\xi_0, \xi_0) = e_0$
- (1) The Hermitian cases: $V = \text{Herm}(r, \mathbb{K}) \ (r \geq 3; \mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H})$ $E = \text{Mat}(r \times p, \mathbb{K}), \ \varphi(x)\xi = x\xi \ (x \in V, \xi \in E), \ Q(\xi, \eta) = \frac{1}{2}(\xi\eta^* + \eta\xi^*)$

Fact: φ is regular $\iff p \ge r$ (that is, $E = \square$ or $E = \square$)

 $V_E^0 = \mathbb{R}u \oplus E \oplus V \ni \lambda u + \xi + x =: v$ $\Delta_k(x)$: k-th principal minor of $x \in V$ (left upper corner)

Theorem. If φ is <u>regular</u>, the basic relative invarinats associated to Ω^0 are $\Delta_0^0(v) = \lambda$, $\Delta_j^0(v) = \Delta_j(\lambda x - \frac{1}{2}\xi\xi^*)$ $(j = 1, \dots, r)$.

• If φ is not regular (i.e., if p < r), then $\Delta_j(\xi \xi^*) = 0$ for $p+1 \le j \le r$ $\Longrightarrow \Delta_j(\lambda x - \frac{1}{2}\xi \xi^*)$ is not irreducible for such j \Longrightarrow should be $\lambda^{-(j-p)}\Delta_j(\lambda x - \frac{1}{2}\xi \xi^*) \longleftarrow$ I do not like this expression.

Proposition. The following map is an injective clan isomorphism:

$$V_E^0 \ni \lambda u + \xi + x \mapsto \begin{pmatrix} \lambda I_p & \frac{1}{\sqrt{2}} \xi^* \\ \frac{1}{\sqrt{2}} \xi & x \end{pmatrix} =: X(\lambda, \frac{\xi}{\sqrt{2}}, x) \in \operatorname{Herm}(r + p, \mathbb{K})$$

Theorem. If p < r, then the basic relative invariants associated to Ω^0 are

$$\begin{cases}
\Delta_0^0(v) = \lambda, \\
\Delta_j^0(v) = \Delta_j(\lambda x - \frac{1}{2}\xi\xi^*) & (j = 1, \dots, p), \\
\Delta_j^0(v) = \det^{(p+j)} \begin{pmatrix} \lambda I_p & \frac{1}{\sqrt{2}}\xi^* \\ \frac{1}{\sqrt{2}}\xi & x \end{pmatrix} & (j = p+1, \dots, r).
\end{cases}$$

Here $\det^{(p+j)} X$ stands for the determinant of the left upper matrix of size p+j from X, and if $\mathbb{K}=\mathbb{H}$, then determinant should be taken in the JA sense.

Proposition. Ω^0 is isomorphic to $\{X(\lambda, \xi, x) \gg 0\}$.

(2) The Lorentzian case

 $\begin{array}{l} (W,B) \colon \text{a Euclidean VS, and } V = \mathbb{R} e_0 \oplus W \text{ with } \\ (\lambda e_0 + v) \circ (\mu e_0 + w) = (\lambda u + B(v,w))e_0 + (\lambda w + \mu v) \quad (\lambda,\mu \in \mathbb{R},\ v,w \in W). \\ \varphi \colon V \to \operatorname{Sym}(E) \colon \text{JA representation,} \quad e_1,\ldots,e_n \colon \text{ONB of } W \text{ w.r.t. } B. \\ \text{Then } c_1 := \frac{1}{2}(e_0 + e_n),\ c_1 := \frac{1}{2}(e_0 - e_n) \colon \text{Jordan frame of } V \quad \leadsto \Delta_1,\Delta_2. \\ Q(\xi,\xi) = \frac{1}{2}\|\xi\|^2 e_0 + \frac{1}{2}\sum_{j=1}^n \langle\ \varphi(e_j)\xi\ |\ \xi\ \rangle e_j \text{ is the expansion of } Q(\xi,\xi) \text{ w.r.t. } \{e_j\}_{j=0}^n. \end{array}$

Fact [Clerc, 1992]: φ is *not* regular

 $\iff \varphi$ is irreducible and dim E=2,4,8,16.

Theorem. The basic relative invariants associated to $\Omega^0 \subset V_E^0$ are given by

$$\Delta_0^0(\lambda u + \xi + x) = \lambda, \qquad \Delta_1^0(\lambda u + \xi + x) = \Delta_1(\lambda x - \frac{1}{2}Q(\xi, \xi))$$

$$\Delta_2^0(\lambda u + \xi + x) = \begin{cases} \Delta_1(\lambda x - \frac{1}{2}Q(\xi, \xi)) & (\varphi \text{ is regular}) \\ \lambda \Delta_2(x) - \langle x, Q(\xi, \xi) \rangle_{1,n} & (\varphi \text{ is not regular}) \end{cases}$$

$$\langle x_0 e_0 + w, x_0' e_0 + w' \rangle_{1,n} := x_0 x_0' - B(w, w').$$

Remarks about the non-regular Lorentzian cases

 φ is irreducible and dim E=2,4,8,16

$$\implies$$
 dim $W = \dim V_{21} + 1 = \frac{1}{2} \dim E + 1 = 2, 3, 5, 9.$

Then $V = \mathbb{R}e_0 \oplus W \cong \text{Herm}(2, \mathbb{K}) \ (\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}).$

Put
$$v(\alpha, \beta, z) := \begin{pmatrix} \alpha & z \\ \overline{z} & \beta \end{pmatrix} \in \operatorname{Herm}(2, \mathbb{K}) \text{ with } \alpha, \beta \in \mathbb{R}, \ z \in \mathbb{K}.$$

With $E=\mathbb{K}^2$, JA representation φ is realized as φ_1 or φ_2 :

$$\varphi_1(v(\alpha, \beta, z)) := \begin{pmatrix} \alpha I & L_z \\ L_{\overline{z}} & \beta I \end{pmatrix} \in \operatorname{End}_{\mathbb{R}}(\mathbb{K}^2), \quad \varphi_2(v) = \varphi_1({}^tv)$$

- If $\mathbb{K} = \mathbb{R}$, then φ_1 and φ_2 are identical. This is *the* unique irreducible representation of $\mathrm{Sym}(2,\mathbb{R})$.
- If $\mathbb{K} = \mathbb{H}$ or \mathbb{O} , then φ_1 and φ_2 are *not* equivalent. These two are the irreducible representations of $\mathrm{Herm}(2,\mathbb{K})$ ($\mathbb{K} = \mathbb{H},\mathbb{O}$).
- If $\mathbb{K} = \mathbb{C}$, then φ_2 is conjugate to φ_1 . These two are the inequivalent complex representations of $\mathrm{Herm}(2,\mathbb{C})$.

 $E = \mathbb{K}^2$ and $(\varphi_j, E) \leadsto \operatorname{clan}(V_E^0, \triangle_j)$ (j = 1, 2).

Proposition. $(V_E^0, \triangle_1) \cong (V_E^0, \triangle_2) \cong \text{Herm}(3, \mathbb{K})$ (even if $\varphi_1 \ncong \varphi_2$).

- \bullet $(V_E^0, \triangle_1) \cong (V_E^0, \triangle_2)$ is given by $\lambda u + \xi + x \mapsto \lambda u + \xi + {}^t x$,
- The map $x \mapsto {}^t x$ is a Jordan and clan isomorphism of $\operatorname{Herm}(2, \mathbb{K})$.
- $\bullet \ V_E^0 \cong \mathrm{Herm}(3,\mathbb{K}) \ \text{is given by} \ \lambda u + \xi + x \mapsto \begin{pmatrix} \lambda & \frac{1}{\sqrt{2}} \xi^* \\ \frac{1}{\sqrt{2}} \xi & x \end{pmatrix},$ where $\xi = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \in E = \mathbb{K}^2.$
- In $\operatorname{Herm}(2, \mathbb{K})$ we have for $v = (\frac{\alpha}{z} \frac{z}{\beta})$ $\Delta_1(v) = \alpha, \quad \Delta_2(v) = \alpha\beta - |z|^2$

Then,

$$\lambda$$
, $\Delta_1(\lambda x - \frac{1}{2}\xi\xi^*)$, $\frac{1}{\lambda}\Delta_2(\lambda x - \frac{1}{2}\xi\xi^*)$

are the principal monors of $\begin{pmatrix} \lambda & \frac{1}{\sqrt{2}}\xi^* \\ \frac{1}{\sqrt{2}}\xi & x \end{pmatrix} \in \mathrm{Herm}(3,\mathbb{K}).$

Dual clan of V_E^0

Define an inner product in $V_E^0 = \mathbb{R}u \oplus E \oplus V$ by

$$\langle \lambda u + \xi + x | \lambda' \overline{u} + \xi' + x' \rangle^0 = \underline{\lambda \lambda'} + \langle \xi | \xi' \rangle + \langle x | x' \rangle$$

$$\left(\Omega^{0}\right)^{*} := \left\{ v \in V \; ; \; \left\langle \left. v \, \right| v' \right. \right\rangle > 0 \; \text{ for all } v' \in \overline{(\Omega^{0})} \setminus \{0\} \right\}.$$

Then, the clan product ∇ in V_E^0 associated to $(\Omega^0)^*$ is given by $v \nabla v' = {}^tL_v^0v'$.

Proposition. Let
$$v = \lambda u + \xi + x \in V_E^0$$
. Then $v \in (\Omega^0)^* \iff x \in \Omega \text{ and } \lambda > \frac{1}{2} \langle \varphi(x)^{-1} \xi \mid \xi \rangle.$

Remark. The condition corresponds to what Rothaus called *the extension of* Ω by the representation φ .

Here, (representation R) \equiv (representation $R:V \to \mathrm{Sym}(E)$ of a cone Ω)

$$\stackrel{\text{def}}{\Longleftrightarrow} \begin{cases} (1) \ R(x) \gg 0 & (\forall x \in \Omega), \\ (2) \ \exists H \ (\curvearrowright \Omega \text{ transitively}) \text{ s.t.} \forall h \in H, \ \exists h' \in GL(E) \\ & \text{with } R(hv) = h'R(v)^t h' \ \ (\forall v \in V). \end{cases}$$

• JA representation \implies representation of the corresponding symmetric cone

 $\Delta_1^*(x), \ldots, \Delta_r^*(x)$: JA principal minors of $x \in V$ associated to c_r, \ldots, c_1 .

Theorem. The basic relative invariants associated to $(\Omega^0)^*$ are given by

$$P_{j}(\lambda u + \xi + x) = \Delta_{j}^{*}(x) \qquad (j = 1, \dots, r),$$

$$P_{r}(\lambda u + \xi + x) = \lambda \det x - \frac{1}{2} \langle \varphi(^{co}x)\xi | \xi \rangle$$

If $x \in V$ is invertible, ${}^{\text{co}}x := (\det x)x^{-1}$. We know that $x \mapsto {}^{\text{co}}x$ is a polynomial map of degree r-1.

In particular, $\deg P_j = j \ (j = 1, \dots, r, r+1)$.

(1) The Hermitian cases. $V = \text{Herm}(r, \mathbb{K}) \ (r \geq 3, \mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}).$

Theorem. $(\Omega^0)^*$ is linearly isomorphic to

$$\Omega' := \left\{ Y = \begin{pmatrix} \mu & \eta^* \\ \eta & y \otimes I_p \end{pmatrix} \gg 0 \; ; \; \begin{array}{c} \mu \in \mathbb{R}, \; \eta \in \mathbb{K}^{rp} \\ y \in V \end{array} \right\} \subset \operatorname{Herm}(rp + 1, \; \mathbb{K})$$

 $\Delta_k^*(y)$: the k-th principal minor (right lower corner) of $y \in V$ (k = 1, ..., r).

Theorem The basic relative invariants associated to Ω' are given by

$$P_j(Y) = \Delta_j^*(y) \ (j = 1, \dots, r), \quad P_{r+1}(Y) = \mu \det y - \eta^*({}^{co}y \otimes I_p)\eta$$

 ^{co}y : the cofactor matrix of y. Thus $^{co}y = (\operatorname{Det} y)y^{-1}$ if y is invertible.

Remark. deg $P_j = j$ for $\forall j$. But if p > 1, then Ω' is not a symmetric cone.

(2) The Lorentzian case.

We have fixed the Jordan frame $c_1 := \frac{1}{2}(e_0 + e_n)$, $c_2 = \frac{1}{2}(e_0 - e_n)$. $\Delta_1^*(x), \Delta_2^*(x)$: JA principal minors of $x \in V$ associated to c_2, c_1 .

Theorem. The basic relative invariants associated to $(\Omega^0)^*$ are given by $P_j(\lambda u + \xi + x) = \Delta_j^*(x) \ (j = 1, 2), \quad P_3(\lambda u + \xi + x) = \lambda \det x - \frac{1}{2} \langle \varphi(\widetilde{x}) \xi \mid \xi \rangle$

 $x\mapsto\widetilde{x}$: restriction to $V=\mathbb{R}e_0\oplus W$ of the $\mathrm{Cl}(W)$ -automorphism that extends the isometry $w\mapsto -w$ of W.

Remark. deg $P_j = j$ for $\forall j$. But if φ is regular, then Ω^0 is not a symmetric cone.