Homogeneous Convex Cones Associated to Representations of Euclidean Jordan Algebras
 (joint work with Hideto NAKASHIMA)

Takaaki NOMURA

(Kyushu University)

Algebra Geometry Mathematical Physics
Brno University of Technology
September 12, 2012

Euclidean Jordan Algebras

- V with a bilinear product $x y$ is called a Jordan algebra if for all $x, y \in V$
(1) $x y=y x$,
(2) $x^{2}(x y)=x\left(x^{2} y\right)$.
- A real Jordan algebra with e_{0} is said to be Euclidean if $\exists\langle\cdot \mid \cdot\rangle$ s.t.

$$
\langle x y \mid z\rangle=\langle x \mid y z\rangle \quad(\forall x, y)
$$

- Euclidean Jordan algebras $V \rightleftarrows$ symmetric cones $\Omega=\operatorname{Int}\left\{x^{2} ; x \in V\right\}$

Example:

$V=\operatorname{Sym}(r, \mathbb{R}) \supset \Omega:=\operatorname{Sym}(r, \mathbb{R})^{++}$ Jordan product \circ of $V: x \circ y:=\frac{1}{2}(x y+y x) ;$ note $x \circ x=x^{2}$.
$G L(r, \mathbb{R}) \curvearrowright \Omega$ by $G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$ transitively

- More generally
V : a real vector space with an inner product $\langle\cdot \mid \cdot\rangle(\operatorname{dim} V<\infty)$
$V \supset \Omega$: a regular open convex cone (contains no entire line)
$G(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: linear automorphism group of Ω (a Lie group as a closed subgroup of $G L(V)$)
Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G(\Omega) \curvearrowright \Omega$ is transitive
- dual cone Ω^{*} of Ω (w.r.t $\langle\cdot \mid \cdot\rangle$)

$$
\stackrel{\text { def }}{\Longleftrightarrow} \Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\}
$$

- Ω is selfdual $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ s.t. $\Omega=\Omega^{*}$
- symmetric cone $\stackrel{\text { def }}{\Longleftrightarrow}$ homogeneous selfdual open convex cone

List of irreducible symmetric cones and Eulidean Jordan algebras:

- $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R})$
- $\Omega=\operatorname{Herm}(r, \mathbb{C})^{++} \subset V=\operatorname{Herm}(r, \mathbb{C})$
- $\Omega=\operatorname{Herm}(r, \mathbb{H})^{++} \subset V=\operatorname{Herm}(r, \mathbb{H})$
- $\Omega=\operatorname{Herm}(3, \mathbb{O})^{++} \subset V=\operatorname{Herm}(3, \mathbb{O})$
- $\Omega=\Lambda_{n}$ (n-dimensional Lorentz cone) $\subset V=\mathbb{R}^{n}$

Selfadjoint representations of Euclidean Jordan algebras

V : a Euclidean Jordan algebra with unit element e_{0}
E : a real vector space with $\langle\cdot \mid \cdot\rangle_{E}$

- linear $\operatorname{map} \varphi: V \rightarrow \operatorname{End}(E)$ is a selfadjoint representation of V

$$
\stackrel{\text { def }}{\Longleftrightarrow}\left\{\begin{array}{l}
(1) \varphi(x) \in \operatorname{Sym}(E) \quad \text { for } \forall x \in V, \\
(2) \varphi(x y)=\frac{1}{2}(\varphi(x) \varphi(y)+\varphi(y) \varphi(x)), \quad \varphi\left(e_{0}\right)=I(\text { if } \varphi \neq 0)
\end{array}\right.
$$

- $V=\operatorname{Herm}(3, \mathbb{O}) \Longrightarrow \varphi=0$
- $V=\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H})$

$$
\Longrightarrow E=\operatorname{Mat}(r \times p, \mathbb{K}) \text { and } \varphi(x) \xi=x \xi(x \in V, \xi \in E)
$$

- V : Lorentzian type $\Longrightarrow V=\mathbb{R} e_{0} \oplus W$ with (W, B) : Euclidean VS.

Jordan algebra representation of $V \rightleftarrows$ Clifford algebra represnetation of $\mathrm{Cl}(W)$

$$
w^{2}=B(w, w)
$$

In fact $V \hookrightarrow \mathrm{Cl}(W)$

Basic relative invariants

Ω : a reguler homogeneous open convex cone $\subset V$,
$G(\Omega)$: the linear automorphism group of Ω,
$\exists H$: a split solvable subgroup of $G(\Omega)$ s.t. $H \curvearrowright \Omega$ simply transitively.

- a function f on Ω is relatively invariant (w.r.t. H)
$\stackrel{\text { def }}{\Longleftrightarrow} \exists \chi$: 1-dim. rep. of H s.t. $f(h x)=\chi(h) f(x)$ (for all $h \in H, x \in \Omega$).
Theorem [Ishi 2001].
$\exists \Delta_{1}, \ldots, \Delta_{r}(r:=\operatorname{rank}(\Omega))$: relat. inv. irred. polynomial functions on V s.t. any relat. inv. polynomial function P on V is written as

$$
P(x)=c \Delta_{1}(x)^{m_{1}} \cdots \Delta_{r}(x)^{m_{r}} \quad\left(c=\text { const. },\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{\geqq 0}^{r}\right) .
$$

- $\Delta_{1}(x), \ldots, \Delta_{r}(x)$: the basic relative invariants associated to Ω

Algebras for general homogeneous convex domains (Vinberg 1963)

- V with a bilinear product $x \triangle y=L(x) y=R(y) x$ is called a Clan if
(1) $[L(x), L(y)]=L(x \triangle y-y \triangle x) \quad$ (left symmetric algebra),
(2) $\exists s \in V^{*}$ (called admissible) s.t. $s(x \triangle y)$ defines an inner product (compact),
(3) Each $L(x)$ has only real eigenvalues
(normal).
Affine homogeneous open convex domains \rightleftarrows Clans
Homogeneous open convex cones \rightleftarrows Clans with unit element
$\Omega \rightleftarrows V$: algebraic structure in the ambient VS (\equiv tangent space at a ref. pt.)
- Case of homogeneous convex cones Ω :

Fix $E \in \Omega$ and H : simply transitive on $\Omega \rightsquigarrow H \approx H E=\Omega$ (diffeo)
$\rightsquigarrow \mathfrak{h}:=\operatorname{Lie}(H) \cong T_{E}(\Omega) \equiv V$ (linear isomorphism)
$\rightsquigarrow \forall x \in V, \exists 1 X \in \mathfrak{h}$ s.t. $X E=x$.
\rightsquigarrow Write $X=L(x)$ and define $x \triangle y:=L(x) y$
(The clan product is non-commutative, in general.)

Theorem [Ishi-N. 2008].
$R(x)$: the right multiplication operator by x in the clan $V: R(x) y:=y x$ \Longrightarrow the irreducible factors of $\operatorname{det} R(x)$ are just $\Delta_{1}(x), \ldots, \Delta_{r}(x)$.

Flowchart of this work

V : a simple Euclidean Jordan algebra
(φ, E) : a selfadjoint representation of V
\rightsquigarrow Define a clan structure in $V_{E}:=E \oplus V$
(V_{E} does not have a unit element unless $E=\{0\}$.)
\rightsquigarrow Adjoin a unit element to V_{E}, and get a clan V_{E}^{0} with unit element
\rightsquigarrow Get the corresponding homogeneous open convex cone Ω^{0}

- Express the basic relative invariants associated to Ω^{0} in terms of JA principal minors of V and stuffs related to (φ, E).
- Get the dual cone $\left(\Omega^{0}\right)^{*}$ of Ω^{0} (w.r.t. an appropriate inner product)
\rightsquigarrow Express the basic relative invariants associated to $\left(\Omega^{0}\right)^{*}$ in terms of JA principal minors of V and stuffs related to (φ, E).
- Ω^{0} is not a symmetric cone in general.
- The degrees of basic realtive invariants associated to $\left(\Omega^{0}\right)^{*}$ are always $1,2, \ldots, r\left(r=\operatorname{rank}\left(\Omega^{0}\right)\right)$ whatever the representation φ.

The case of zero representation

V : a simple Euclidean Jordan algebra of rank r, e_{0} : the unit element
$\Omega=\operatorname{Int}\left\{x^{2} ; x \in V\right\}$: the corresponding symmetric cone
Fix a Jordan frame
$\rightsquigarrow H$: the corresponding Iwasawa solvable subgroup of $G(\Omega)$ (reductive Lie group)
\rightsquigarrow Introduce a canionical clan product \triangle in V
Example: $V=\operatorname{Sym}(r, \mathbb{R}), \Omega=\operatorname{Sym}(r, \mathbb{R})^{++}$.
$G L(r, \mathbb{R})$-action on Ω : $G L(r, \mathbb{R}) \times \Omega \ni(g, x) \mapsto g x^{t} g \in \Omega$
Product in V as a clan: $x \triangle y=\underline{x} y+y^{t}(\underline{x})$, where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$,
we put $\underline{x}:=\left(\begin{array}{cccc}\frac{1}{2} x_{11} & & 0 & \\ x_{21} & \frac{1}{2} x_{22} & & \\ \vdots & \ddots & \ddots & \\ x_{r 1} & \cdots & x_{r, r-1} & \frac{1}{2} x_{r r}\end{array}\right)$. Thus $x=\underline{x}+{ }^{t}(\underline{x})$.
$L(x) y=R(y) x=\underline{x} y+y^{t}(\underline{x})$

General symmetric cone:
Fix $\langle x \mid y\rangle:=\operatorname{tr}(x y)$: the trace inner product of V,
$\mathfrak{g}:=\operatorname{Lie}(G(\Omega)), \quad \mathfrak{k}:=\operatorname{Der}(V)$,
$\mathfrak{p}:=\{M(x) ; x \in V\}:$ Jordan multiplication operators
$\rightsquigarrow \mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} with $\theta X=-{ }^{t} X$,
$V=\bigoplus_{1 \leq j \leq k \leq r} V_{k j}$: the Peirce decomposition for c_{1}, \ldots, c_{r}, where
$V_{j j}:=\mathbb{R} c_{j} \quad(j=1, \ldots, r)$,
$V_{k j}:=\left\{x \in V ; M\left(c_{i}\right) x=\frac{1}{2}\left(\delta_{i j}+\delta_{i k}\right) x \quad(i=1,2, \ldots, r)\right\} \quad(1 \leq j<k \leq r)$.

- $\mathfrak{a}:=\mathbb{R} M\left(c_{1}\right) \oplus \cdots \oplus \mathbb{R} M\left(c_{r}\right)$: maximal abelian in \mathfrak{p},
- $\alpha_{1}, \ldots, \alpha_{r}$: basis of \mathfrak{a}^{*} dual to $M\left(c_{1}\right), \ldots, M\left(c_{r}\right)$.

Then the positve \mathfrak{a}-roots are $\frac{1}{2}\left(\alpha_{k}-\alpha_{j}\right)(j<k)$, and the corresponding root spaces are described as

$$
\mathfrak{n}_{k j}:=\mathfrak{g}_{\left(\alpha_{k}-\alpha_{j}\right) / 2}=\left\{z \square c_{j} ; z \in V_{k j}\right\} \quad(a \square b:=M(a b)+[M(a), M(b)]) .
$$

With $\mathfrak{n}:=\sum_{j<k} \mathfrak{n}_{k j}$, we get Iwasawa decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$.

Let $A:=\exp \mathfrak{a}, N:=\exp \mathfrak{n}$. Then $H:=N \rtimes A$ acts on Ω simply transitively. H gives a clan structure to V, so that $\mathfrak{h}:=\operatorname{Lie}(H)=\{L(v) ; v \in V\}$.

Lemma. (1) $v \in \mathbb{R} c_{1} \oplus \cdots \oplus \mathbb{R} c_{r} \Longrightarrow L(v)=M(v)(\in \mathfrak{a})$.
(2) $v \in V_{k j} \Longrightarrow L(v)=2\left(v \square c_{j}\right)\left(\in \mathfrak{n}_{k j}\right)$.

We now consider $R(x) y:=L(y) x$.
$\Delta_{1}(x), \ldots, \Delta_{r}(x)$: JA principal minors of x associated to c_{1}, \ldots, c_{r} (basic relative invariants of V)

Theorem. $\operatorname{det} R(x)=\Delta_{1}(x)^{d} \cdots \Delta_{r-1}(x)^{d} \Delta_{r}(x)$, where
$d:=$ the common dimension of $V_{k j}(j<k)$.
$d=1$ for $\operatorname{Sym}(r, \mathbb{R})$,
$d=\operatorname{dim}_{\mathbb{R}} \mathbb{K}$ for $\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{C}, \mathbb{H}, \mathbb{O})$,
$r=2, d=n-2$ for $\Omega=\Lambda_{n}(n \geq 3)$.

The case of non-trivial representations

(φ, E) : a selfadjoint representation of $\varphi, \quad \operatorname{dim} E>0$
$\rightsquigarrow \varphi\left(c_{1}\right), \ldots, \varphi\left(c_{r}\right)$: mutually orthogonal projection operators with equal rank

- Define the lower triangular part $\underline{\varphi}(x)$ of $\varphi(x)(x \in V)$ by

$$
\underline{\varphi}(x):=\frac{1}{2} \sum_{i} \lambda_{i} \varphi\left(c_{i}\right)+\sum_{j<k} \varphi\left(c_{k}\right) \varphi\left(x_{k j}\right) \varphi\left(c_{j}\right) \quad\left(x=\sum_{i} \lambda_{i} c_{j}+\sum_{j<k} x_{k j}\right) .
$$

We have $\underline{\varphi}(x)+\underline{\varphi}(x)^{*}=\varphi(x)$.
Proposition. φ is a representation of the clan (V, \triangle) :

$$
\varphi(x \triangle y)=\underline{\varphi}(x) \varphi(y)+\varphi(y) \underline{\varphi}(x)^{*} \quad(x, y \in V)
$$

- Define a bilinear map $Q: E \times E \rightarrow V$ by

$$
\langle\varphi(x) \xi \mid \eta\rangle_{E}=\langle Q(\xi, \eta) \mid x\rangle(x \in V, \xi, \eta \in E)
$$

- Introduce a product \triangle in $V_{E}:=E \oplus V$ by

$$
(\xi+x) \triangle(\eta+y):=\underline{\varphi}(x) \eta+(Q(\xi, \eta)+x \triangle y) \quad(x, y \in V, \xi, \eta \in E)
$$

Theorem. $\left(V_{E}, \triangle\right)$ is a clan with $s^{\prime}(\xi+x):=\operatorname{Tr} L(x)(\xi \in E, x \in V)$.
V_{E} does not have a unit element (because $\operatorname{dim} E>0$). Adjoin e to V_{E}, so that $V_{E}^{0}:=\mathbb{R} e \oplus V_{E}$ is a clan with unit element e. Put $u:=e-e_{0}$, and we use $V_{E}^{0}=\mathbb{R} u \oplus E \oplus V$. Then

$$
\begin{array}{r}
(\lambda u+\xi+x) \triangle(\mu u+\eta+y)=(\lambda \mu) u+\left(\mu \xi+\frac{1}{2} \lambda \eta+\underline{\varphi}(x) \eta\right)+(Q(\xi, \eta)+x \triangle y) \\
(\lambda, \mu \in \mathbb{R}, \xi, \eta \in E \text { and } x, y \in V)
\end{array}
$$

Ω^{0} : the homogeneous convex cone associated to V_{E}^{0}

- To describe Ω^{0}, we introduce (note Q is Ω-positive)
$D(\Omega, Q):=\left\{\xi+x \in V_{E} ; x-\frac{1}{2} Q(\xi, \xi) \in \Omega\right\}$: real homogeneous Siegel domain
Then

$$
\begin{aligned}
\Omega^{0} & =\left\{\lambda u+\lambda \xi+\lambda x \in V_{E}^{0} ; \lambda>0, \xi+x \in D(\Omega, Q)\right\} \\
& =\left\{\lambda u+\xi+x \in V_{E}^{0} ; \lambda>0, \lambda x-\frac{1}{2} Q(\xi, \xi) \in \Omega\right\}
\end{aligned}
$$

Example:

$V=\mathbb{R}, \quad \Omega=\mathbb{R}_{>0}, E=\mathbb{R}$ and $\varphi(x) \xi=x \xi(x \in \mathbb{R}, \xi \in \mathbb{R})$.
Clearly $Q(\xi, \eta)=\xi \eta$.

$$
D(\Omega, Q)=\left\{(\xi, x) \in \mathbb{R}^{2} ; x-\frac{1}{2} \xi^{2}>0\right\}
$$

- $\forall t \in \mathbb{R},(\xi, x) \mapsto\left(e^{t / 2} \xi, e^{t} x\right)$: translation of the basic parabola

$$
x=\frac{1}{2} \xi^{2}+1 \mapsto x=\frac{1}{2} \xi^{2}+e^{t}
$$

- $\forall \xi_{0} \in \mathbb{R},(\xi, x) \mapsto\left(\xi+\xi_{0}, x+\xi \xi_{0}+\frac{1}{2} \xi_{0}^{2}\right):$

movement on each of the parabolas $x=\frac{1}{2} \xi^{2}+a(a>0)$
$\Omega^{0}=\left\{(\lambda, \xi, x) ; \lambda>0, \lambda x-\frac{1}{2} \xi^{2}>0\right\} \rightsquigarrow$ See movie.

Basic relative invariants associated to Ω^{0}

V : Euclidean JA, $\varphi: V \rightarrow \operatorname{Sym}(E)$: selfadjoint JA representation

- φ is regular $\stackrel{\text { def }}{\Longleftrightarrow} \exists \xi_{0} \in E$ s.t. $Q\left(\xi_{0}, \xi_{0}\right)=e_{0}$
(1) The Hermitian cases: $V=\operatorname{Herm}(r, \mathbb{K})(r \geq 3 ; \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H})$
$E=\operatorname{Mat}(r \times p, \mathbb{K}), \quad \varphi(x) \xi=x \xi(x \in V, \xi \in E), \quad Q(\xi, \eta)=\frac{1}{2}\left(\xi \eta^{*}+\eta \xi^{*}\right)$
Fact: φ is regular $\Longleftrightarrow p \geq r$ (that is, $E=\square$ or $E=\square$)
$V_{E}^{0}=\mathbb{R} u \oplus E \oplus V \ni \lambda u+\xi+x=: v$
$\Delta_{k}(x): k$-th principal minor of $x \in V$ (left upper corner)
Theorem. If φ is regular, the basic relative invarinats associated to Ω^{0} are

$$
\Delta_{0}^{0}(v)=\lambda, \quad \Delta_{j}^{0}(v)=\Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right)(j=1, \ldots, r)
$$

- If φ is not regular (i.e., if $p<r$), then $\Delta_{j}\left(\xi \xi^{*}\right)=0$ for $p+1 \leq j \leq r$ $\Longrightarrow \Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right)$ is not irreducible for such j
\Longrightarrow should be $\lambda^{-(j-p)} \Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right) \longleftarrow$ I do not like this expression.

Proposition. The following map is an injective clan isomorphism:
$V_{E}^{0} \ni \lambda u+\xi+x \mapsto\left(\begin{array}{cc}\lambda I_{p} & \frac{1}{\sqrt{2}} \xi^{*} \\ \frac{1}{\sqrt{2}} \xi & x\end{array}\right)=: X\left(\lambda, \frac{\xi}{\sqrt{2}}, x\right) \in \operatorname{Herm}(r+p, \mathbb{K})$
Theorem. If $p<r$, then the basic relative invariants associated to Ω^{0} are

$$
\begin{cases}\Delta_{0}^{0}(v)=\lambda, & (j=1, \ldots, p), \\
\Delta_{j}^{0}(v)=\Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right) & (j=p+1, \ldots, r) . \\
\Delta_{j}^{0}(v)=\operatorname{det}^{(p+j)}\left(\begin{array}{cc}
\lambda I_{p} & \frac{1}{\sqrt{2}} \xi^{*} \\
\frac{1}{\sqrt{2}} \xi & x
\end{array}\right) & \left(\begin{array}{l}
\text { a }
\end{array}\right)\end{cases}
$$

Here $\operatorname{det}^{(p+j)} X$ stands for the detgermionant of the left upper matrix of size $p+j$ from X, and if $\mathbb{K}=\mathbb{H}$, then determinant should be taken in the JA sense.

Proposition. Ω^{0} is isomorphic to $\{X(\lambda, \xi, x) \gg 0\}$.
(2) The Lorentzian case
(W, B) : a Euclidean VS , and $V=\mathbb{R} e_{0} \oplus W$ with
$\left(\lambda e_{0}+v\right) \circ\left(\mu e_{0}+w\right)=(\lambda u+B(v, w)) e_{0}+(\lambda w+\mu v) \quad(\lambda, \mu \in \mathbb{R}, v, w \in W)$. $\varphi: V \rightarrow \operatorname{Sym}(E): J A$ representation, e_{1}, \ldots, e_{n} : ONB of W w.r.t. B.
Then $c_{1}:=\frac{1}{2}\left(e_{0}+e_{n}\right), c_{1}:=\frac{1}{2}\left(e_{0}-e_{n}\right)$: Jordan frame of $V \rightsquigarrow \Delta_{1}, \Delta_{2}$.
$Q(\xi, \xi)=\frac{1}{2}\|\xi\|^{2} e_{0}+\frac{1}{2} \sum_{j=1}^{n}\left\langle\varphi\left(e_{j}\right) \xi \mid \xi\right\rangle e_{j}$ is the expansion of $Q(\xi, \xi)$ w.r.t. $\left\{e_{j}\right\}_{j=0}^{n}$.
Fact [Clerc, 1992]: φ is not regular
$\Longleftrightarrow \varphi$ is irreducible and $\operatorname{dim} E=2,4,8,16$.
Theorem. The basic relative invariants associated to $\Omega^{0} \subset V_{E}^{0}$ are given by

$$
\begin{aligned}
\Delta_{0}^{0}(\lambda u+\xi+x) & =\lambda, \quad \Delta_{1}^{0}(\lambda u+\xi+x)=\Delta_{1}\left(\lambda x-\frac{1}{2} Q(\xi, \xi)\right) \\
\Delta_{2}^{0}(\lambda u+\xi+x) & = \begin{cases}\Delta_{1}\left(\lambda x-\frac{1}{2} Q(\xi, \xi)\right. & (\varphi \text { is regular }) \\
\lambda \Delta_{2}(x)-\langle x, Q(\xi, \xi)\rangle_{1, n} & (\varphi \text { is not regular })\end{cases}
\end{aligned}
$$

$$
\left\langle x_{0} e_{0}+w, x_{0}^{\prime} e_{0}+w^{\prime}\right\rangle_{1, n}:=x_{0} x_{0}^{\prime}-B\left(w, w^{\prime}\right)
$$

Remarks about the non-regular Lorentzian cases
φ is irreducible and $\operatorname{dim} E=2,4,8,16$
$\Longrightarrow \operatorname{dim} W=\operatorname{dim} V_{21}+1=\frac{1}{2} \operatorname{dim} E+1=2,3,5,9$.
Then $V=\mathbb{R} e_{0} \oplus W \cong \operatorname{Herm}(2, \mathbb{K})(\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O})$.
Put $v(\alpha, \beta, z):=\left(\begin{array}{ll}\alpha & z \\ \bar{z} & \beta\end{array}\right) \in \operatorname{Herm}(2, \mathbb{K})$ with $\alpha, \beta \in \mathbb{R}, z \in \mathbb{K}$.
With $E=\mathbb{K}^{2}, J A$ represenation φ is realized as φ_{1} or φ_{2} :

$$
\varphi_{1}(v(\alpha, \beta, z)):=\left(\begin{array}{cc}
\alpha I & L_{z} \\
L_{\bar{z}} & \beta I
\end{array}\right) \in \operatorname{End}_{\mathbb{R}}\left(\mathbb{K}^{2}\right), \quad \varphi_{2}(v)=\varphi_{1}\left({ }^{t} v\right)
$$

- If $\mathbb{K}=\mathbb{R}$, then φ_{1} and φ_{2} are identical.

This is the unique irreducible representation of $\operatorname{Sym}(2, \mathbb{R})$.

- If $\mathbb{K}=\mathbb{H}$ or \mathbb{O}, then φ_{1} and φ_{2} are not equivalent.

These two are the irreducible represenations of $\operatorname{Herm}(2, \mathbb{K})(\mathbb{K}=\mathbb{H}, \mathbb{O})$.

- If $\mathbb{K}=\mathbb{C}$, then φ_{2} is conjugate to φ_{1}.

These two are the inequivalent complex represenations of $\operatorname{Herm}(2, \mathbb{C})$.
$E=\mathbb{K}^{2}$ and $\left(\varphi_{j}, E\right) \rightsquigarrow \operatorname{clan}\left(V_{E}^{0}, \triangle_{j}\right)(j=1,2)$.
Proposition. $\left(V_{E}^{0}, \triangle_{1}\right) \cong\left(V_{E}^{0}, \triangle_{2}\right) \cong \operatorname{Herm}(3, \mathbb{K})$ (even if $\left.\varphi_{1} \nsubseteq \varphi_{2}\right)$.

- $\left(V_{E}^{0}, \triangle_{1}\right) \cong\left(V_{E}^{0}, \triangle_{2}\right)$ is given by $\lambda u+\xi+x \mapsto \lambda u+\xi+{ }^{t} x$,
- The map $x \mapsto^{t} x$ is a Jordan and clan isomorphism of $\operatorname{Herm}(2, \mathbb{K})$.
- $V_{E}^{0} \cong \operatorname{Herm}(3, \mathbb{K})$ is given by $\lambda u+\xi+x \mapsto\left(\begin{array}{cc}\lambda & \frac{1}{\sqrt{2}} \xi^{*} \\ \frac{1}{\sqrt{2}} \xi & x\end{array}\right)$,

$$
\text { where } \xi=\binom{\xi_{1}}{\xi_{2}} \in E=\mathbb{K}^{2}
$$

- In $\operatorname{Herm}(2, \mathbb{K})$ we have for $v=(\underset{\sim}{\alpha} \underset{\sim}{z})$

$$
\Delta_{1}(v)=\alpha, \quad \Delta_{2}(v)=\alpha \beta-|z|^{2}
$$

Then,

$$
\lambda, \quad \Delta_{1}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right), \quad \frac{1}{\lambda} \Delta_{2}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right)
$$

are the principal monors of $\left(\begin{array}{cc}\lambda & \frac{1}{\sqrt{2}} \xi^{*} \\ \frac{1}{\sqrt{2}} & x\end{array}\right) \in \operatorname{Herm}(3, \mathbb{K})$.

Dual clan of V_{E}^{0}

Define an inner product in $V_{E}^{0}=\mathbb{R} u \oplus E \oplus V$ by

$$
\left\langle\lambda u+\xi+x \mid \lambda^{\prime} u+\xi^{\prime}+x^{\prime}\right\rangle^{0}=\lambda \lambda^{\prime}+\left\langle\xi \mid \xi^{\prime}\right\rangle+\left\langle x \mid x^{\prime}\right\rangle
$$

$\left(\Omega^{0}\right)^{*}:=\left\{v \in V ;\left\langle v \mid v^{\prime}\right\rangle>0\right.$ for all $\left.v^{\prime} \in \overline{\left(\Omega^{0}\right)} \backslash\{0\}\right\}$.
Then, the clan product ∇ in V_{E}^{0} associated to $\left(\Omega^{0}\right)^{*}$ is given by $v \nabla v^{\prime}={ }^{t} L_{v}^{0} v^{\prime}$.
Proposition. Let $v=\lambda u+\xi+x \in V_{E}^{0}$. Then

$$
v \in\left(\Omega^{0}\right)^{*} \Longleftrightarrow x \in \Omega \text { and } \lambda>\frac{1}{2}\left\langle\varphi(x)^{-1} \xi \mid \xi\right\rangle .
$$

Remark. The condition corresponds to what Rothaus called the extension of Ω by the representation φ.
Here, (representation $R) \equiv($ representation $R: V \rightarrow \operatorname{Sym}(E)$ of a cone $\Omega)$

$$
\stackrel{\text { def }}{\Longleftrightarrow}\left\{\begin{array}{l}
(1) R(x) \gg 0 \quad(\forall x \in \Omega), \\
(2) \exists H(\curvearrowright \Omega \text { transitively }) \text { s.t. } \forall h \in H, \exists h^{\prime} \in G L(E) \\
\text { with } R(h v)=h^{\prime} R(v)^{t} h^{\prime} \quad(\forall v \in V) .
\end{array}\right.
$$

- JA representation \Longrightarrow representation of the corresponding symmetric cone
$\Delta_{1}^{*}(x), \ldots, \Delta_{r}^{*}(x):$ JA principal minors of $x \in V$ associated to c_{r}, \ldots, c_{1}.

Theorem. The basic relative invariants associated to $\left(\Omega^{0}\right)^{*}$ are given by

$$
\begin{aligned}
& P_{j}(\lambda u+\xi+x)=\Delta_{j}^{*}(x) \quad(j=1, \ldots, r), \\
& P_{r}(\lambda u+\xi+x)=\lambda \operatorname{det} x-\frac{1}{2}\left\langle\varphi\left({ }^{\mathrm{co}} x\right) \xi \mid \xi\right\rangle \\
& \hline
\end{aligned}
$$

If $x \in V$ is invertible, ${ }^{c o} x:=(\operatorname{det} x) x^{-1}$.
We know that $x \mapsto{ }^{\text {co }} x$ is a polynomial map of degree $r-1$. In particular, $\operatorname{deg} P_{j}=j(j=1, \ldots, r, r+1)$.
(1) The Hermitian cases. $V=\operatorname{Herm}(r, \mathbb{K})(r \geq 3, \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H})$.

Theorem. $\left(\Omega^{0}\right)^{*}$ is linearly isomorphic to

$$
\Omega^{\prime}:=\left\{Y=\left(\begin{array}{cc}
\mu & \eta^{*} \\
\eta & y \otimes I_{p}
\end{array}\right) \gg 0 ; \begin{array}{c}
\mu \in \mathbb{R}, \eta \in \mathbb{K}^{r p} \\
y \in V
\end{array}\right\} \subset \operatorname{Herm}(r p+1, \mathbb{K})
$$

$\Delta_{k}^{*}(y)$: the k-th principal minor (right lower corner) of $y \in V(k=1, \ldots, r)$.
Theorem The basic relative invariants associated to Ω^{\prime} are given by

$$
P_{j}(Y)=\Delta_{j}^{*}(y)(j=1, \ldots, r), \quad P_{r+1}(Y)=\mu \operatorname{det} y-\eta^{*}\left({ }^{\mathrm{Co}} y \otimes I_{p}\right) \eta
$$

${ }^{\text {co }} y$: the cofactor matrix of y. Thus ${ }^{\text {co }} y=(\operatorname{Det} y) y^{-1}$ if y is invertible.
Remark. $\operatorname{deg} P_{j}=j$ for $\forall j$. But if $p>1$, then Ω^{\prime} is not a symmetric cone.
(2) The Lorentzian case.

We have fixed the Jordan frame $c_{1}:=\frac{1}{2}\left(e_{0}+e_{n}\right), c_{2}=\frac{1}{2}\left(e_{0}-e_{n}\right)$. $\Delta_{1}^{*}(x), \Delta_{2}^{*}(x)$: JA principal minors of $x \in V$ associated to c_{2}, c_{1}.

Theorem. The basic relative invariants associated to $\left(\Omega^{0}\right)^{*}$ are given by

$$
P_{j}(\lambda u+\xi+x)=\Delta_{j}^{*}(x)(j=1,2), \quad P_{3}(\lambda u+\xi+x)=\lambda \operatorname{det} x-\frac{1}{2}\langle\varphi(\widetilde{x}) \xi \mid \xi\rangle
$$

$x \mapsto \widetilde{x}$: restriction to $V=\mathbb{R} e_{0} \oplus W$ of the $\mathrm{Cl}(W)$-automorphism that extends the isometry $w \mapsto-w$ of W.
Remark. $\operatorname{deg} P_{j}=j$ for $\forall j$. But if φ is regular, then Ω^{0} is not a symmetric cone.

