Homogeneous Convex Cones and Basic Relative Invariants

Takaaki Nomura
Kyushu University (Fukuoka)

Lorentz Center

25 November 2013

- Homogeneous convex cones provide many examples of non-reductive prehomogeneous vector spaces
\rightsquigarrow important to know the basic relative invariants
- Applications to statistics
(from positive-definite matrices to general convex cones)
- Matrix realizations of interesting homogeneous convex cones

By Vinberg (1963), homogeneous cones are sets of matrices of the form $T T^{*}$, where T 's are regular upper triangular matrices
from some non-associative algebras.

- beautiful in theory but hard to handle in practice

Homogeneous convex cones
V : a real vector space $(\operatorname{dim} V<\infty)$
$V \supset \Omega$: a regular open convex cone (containing no entire line)
$G L(\Omega):=\{g \in G L(V) ; g(\Omega)=\Omega\}$: the linear automorphism group of Ω
(a Lie group as a closed subgroup of $G L(V)$)
Ω is homogeneous $\stackrel{\text { def }}{\Longleftrightarrow} G L(\Omega) \curvearrowright \Omega$ is transitive.

Vinberg (1963)

homogeneous (regular affine) convex domain
\rightleftarrows algebraic structure of the ambient vector space
(\equiv tangent space of a reference point)

Algebras associated to homogeneous convex domains (Vinberg 1963) -Definition
V is a real VS with a bilinear product $x \Delta y=L(x) y$.
V is a clan $\stackrel{\text { def }}{\Longleftrightarrow}$
(1) $[L(x), L(y)]=L(x \triangle y-y \triangle x) \quad$ (left symmetric algebra),
(2) $\exists s \in V^{*}$ s.t. $s(x \triangle y)$ is an onner pruduct of V
(3) Each $L(x)$ has only real eigenvalues (normal).

- clans with unit element \longleftrightarrow homogeneous convex cones.
- homogeneous convex cones \Longrightarrow clans
$\exists H$: a split solvable subgroup of $G L(\Omega)$ s.t. $H \curvearrowright \Omega$ simply transitively.
\rightsquigarrow Fixing $E \in \Omega$, we have $H \approx H E=\Omega$ (diffeo)
$\rightsquigarrow \mathfrak{h}:=\operatorname{Lie}(H) \cong T_{E}(\Omega) \equiv V \quad$ (linear isomorphism obtained by differentiation)
$\rightsquigarrow \forall x \in V, \exists 1 T \in \mathfrak{h}$ s.t. $T E=x$.
\rightsquigarrow Writing $T=L(x)$, we define a product \triangle by $x \triangle y:=L(x) y$. E is a unit element.
- the dual cone Ω^{*} of $\Omega($ w.r.t $\langle\cdot \mid \cdot\rangle)$

$$
\stackrel{\text { def }}{\Longleftrightarrow} \Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\}
$$

$\bullet \Omega$ is selfduall $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ s.t. $\Omega^{*}=\Omega$

- symmetric cone $\stackrel{\text { def }}{\Longleftrightarrow}$ homogeneous selfdual open convex cone
- symmetric cone $\Omega \rightleftarrows$ Euclidean Jordan algebra $V: \Omega=\operatorname{Int}\left\{x^{2} ; x \in V\right\}$.
- V : a vector space with bilinear product $x y$.
V is a Jordan algbera $\xlongequal{\text { def }}(1) x y=y x$,
(2) $x^{2}(x y)=x\left(x^{2} y\right)$.
- real Jordan algebra with unit element e_{0} is Euclidean $\stackrel{\text { def }}{\Longleftrightarrow} \exists\langle\cdot \mid \cdot\rangle$ (associative inner product) s.t. $\langle x y \mid z\rangle=\langle x \mid y z\rangle \quad(\forall x, y)$.
- symmetric cone is irreducible \Longleftrightarrow corresponding EJA is simple

Example. $V=\operatorname{Sym}(r, \mathbb{R})$

- Jordan product \circ is given by $x \circ y:=\frac{1}{2}(x y+y x)$.
- clan product \triangle is given by $x \triangle y=\underline{x} y+y^{t}(\underline{x})$,
where for $x=\left(x_{i j}\right) \in \operatorname{Sym}(r, \mathbb{R})$, we set $\underline{x}:=\left(\begin{array}{cccc}\frac{1}{2} x_{11} & & 0 \\ x_{21} & \frac{1}{2} x_{22} & & \\ \vdots & \ddots & \ddots & \\ x_{r 1} & \cdots & x_{r, r-1} & \frac{1}{2} x_{r r}\end{array}\right)$.
Note $x=\underline{x}+{ }^{t}(\underline{x})$.

classification

of irreducible symmetric cones \Longleftrightarrow of simple EJA

- $\Omega=\operatorname{Sym}(r, \mathbb{R})^{++} \subset V=\operatorname{Sym}(r, \mathbb{R})$
- $\Omega=\operatorname{Herm}(r, \mathbb{C})^{++} \subset V=\operatorname{Herm}(r, \mathbb{C})$
- $\Omega=\operatorname{Herm}(r, \mathbb{H})^{++} \subset V=\operatorname{Herm}(r, \mathbb{H})$
- $\Omega=\operatorname{Herm}(3, \mathbb{O})^{++} \subset V=\operatorname{Herm}(3, \mathbb{O})$
- $\Omega=\Lambda_{n}$ (n-dim. Lorentz cone) $\subset V=\mathbb{R}^{n}$: linear part of Clifford algebra
- Non-symm. homogeneous open convex cones (HOCC) appear from dimension 5.
- In dim. ≥ 11, \exists mutually linearly inequivalent HOCC with a continuous parameter.
- In dim. ≤ 10, only finitely many irreducible HOCC exist up to linearly equiv.
- Classification by Kaneyuki-Tsuji ('74)
- concrete realizations up to 7-dim.
- Methods to realize general HOCC by real symmetric matrices
(1) By Ishi
(2) By Yamasaki-N. (more direct than (1); preprint just finished a few days ago)
(2) obtains realizations of $8,9,10$-dim. HOCC left unrealized by K.-T.

Basic relative invariants

$\Omega: \mathrm{HOCC} \subset V, G L(\Omega)$: the linear automorphism group of Ω.
$\exists H$: a split solvable $\subset G L(\Omega)$ s.t. $H \curvearrowright \Omega$ simply transitively

- a function f on Ω is relatively invariant (w.r.t. H)
$\stackrel{\text { def }}{\Longleftrightarrow} \exists \chi$: 1-dim. rep of H s.t. $f(h x)=\chi(h) f(x)(h \in H, x \in \Omega)$.
-Theorem [Ishi 2001]
$\exists \Delta_{1}, \ldots, \Delta_{r}(r:=\operatorname{rank}(\Omega)):$ irreducible relat. inv. polynomial functions on V s.t. any relat. inv. polynomial function P on V is uniquely written as

$$
P(x)=c \Delta_{1}(x)^{m_{1}} \cdots \Delta_{r}(x)^{m_{r}} \quad\left(c=\text { const. },\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{\geqq 0}^{r}\right)
$$

- $\Delta_{1}(x), \ldots, \Delta_{r}(x)$: the basic relative invariants associated to Ω

Example. When $V=\operatorname{Sym}(r, \mathbb{R})$,
$\Delta_{k}(x)$ is the k-th principal minor of $x \in V$ taken from the upper-left corner (also can be taken from the lower-right corner)

- general EJA: Fix a Jordan frame c_{1}, \ldots, c_{r}
(complete system of orthogonal primitive idempotents)
$\rightsquigarrow J A$ principal minors $\Delta_{1}(x), \ldots, \Delta_{r}(x)$ are the basic relative invariants. In $V=\operatorname{Sym}(r, \mathbb{R})$, $c_{k}:=E_{k k}(k=1, \ldots, r) \Longrightarrow \Delta_{k}(x)$ is from the upper-left corner $c_{k}:=E_{r-k+1, r-k+1}(k=1, \ldots, r) \Longrightarrow \Delta_{k}(x)$ is from the lower-right corner.

In general, suppose $\mathrm{HOCC} \Omega \subset V$ with clan structure of V.
Theorem [Ishi-N. 2008]
$R(x) y:=y \triangle x$: the right multiplication operator by x in V
\Longrightarrow the irreducible factors of $\operatorname{Det} R(x)$ coincide with $\Delta_{1}(x), \ldots, \Delta_{r}(x)$.

Problem

Let us put Det $R(x)=\Delta_{1}(x)^{n_{1}} \Delta_{2}(x)^{n_{2}} \cdots \Delta_{r}(x)^{n_{r}}$. Then express the positive integers n_{1}, \ldots, n_{r} in terms of the constants related to the clan V.
$\boldsymbol{n}:=\left(n_{1}, \ldots, n_{r}\right)$ is called the basic index of V.
Example. If V is a simple JA, we have $\boldsymbol{n}=(d, \ldots, d, 1)$,
where $d:=$ common dim. of the "off-diagonals" $V_{k j}(j<k)$.
$\operatorname{Sym}(r, \mathbb{R}): d=1$,
$\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{C}, \mathbb{H}, \mathbb{O}): d=\operatorname{dim}_{\mathbb{R}} \mathbb{K}($ only $r=3$ occurs when $\mathbb{K}=\mathbb{O})$ if $\Omega=\Lambda_{n}$, the Lorentz cone in $\mathbb{R}^{n}(n \geq 3)$, then $r=2, d=n-2$.

- For general clan V, the result is due to H. Nakashima (preprint, 2013).

$$
\boldsymbol{n}=\boldsymbol{m} \sigma^{-1}
$$

$V=\left(\begin{array}{ccccc}\mathbb{R} & V_{21} & \cdots & V_{r-1,1} & V_{r 1} \\ V_{21} & \mathbb{R} & & & \vdots \\ \vdots & & \ddots & & \vdots \\ V_{r-1,1} & & & \mathbb{R} & V_{r, r-1} \\ V_{r 1} & \cdots & \cdots & V_{r, r-1} & \mathbb{R}\end{array}\right)$: the normal decomposition of V.
Let $m_{k}:=1+\sum_{l>k} \operatorname{dim} V_{l k}$, and put $m:=\left(m_{1}, \ldots, m_{r}\right)$.
σ is the multiplier matrix of V
$\stackrel{\text { def }}{\Longleftrightarrow} r \times r$-matrix obtained by arranging the parameters of the 1 -dim. rep. corresponding to $\Delta_{1}(x), \ldots, \Delta_{r}(x)$.

- If V is a simple EJA, then $\sigma=\left(\begin{array}{ccc}1 & & 0 \\ \vdots & \ddots & \\ 1 & \cdots & 1\end{array}\right)$.
- In general, σ is a unipotent matrix with non-negative interger entries.

Defining a clan from representations of a EJA

V is a EJA with unit element e_{0}, and E is a real vector space with $\langle\cdot \mid \cdot\rangle_{E}$.

-Definition

A linear map $\varphi: V \rightarrow \operatorname{End}(E)$ is a selfadjoint representation of V

$$
\stackrel{\text { def }}{\Longleftrightarrow}\left\{\begin{array}{l}
(1) \varphi(x) \in \operatorname{Sym}(E) \quad \text { for } \forall x \in V, \\
(2) \varphi(x y)=\frac{1}{2}(\varphi(x) \varphi(y)+\varphi(y) \varphi(x)), \quad \varphi\left(e_{0}\right)=I \text { if } \varphi \neq 0 .
\end{array}\right.
$$

- $V=\operatorname{Herm}(3, \mathbb{O}) \Longrightarrow \varphi=0$
- $V=\operatorname{Herm}(r, \mathbb{K})(\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H})$

$$
\Longrightarrow E=\operatorname{Mat}(r \times p, \mathbb{K}), \quad \varphi(x) \xi=x \xi(x \in V, \xi \in E)
$$

- V : Lorentzian $\Longrightarrow V=\mathbb{R} e_{0} \oplus W$, where (W, B) is a Euclidean VS.

JA representation of $V \rightleftarrows$ Clifford algebra representation of $\mathrm{Cl}(W)$ $\left(\mathrm{Cl}(W)\right.$: Clifford algebra with $\left.w^{2}=B(w, w)\right)$ In fact, $V \hookrightarrow \mathrm{Cl}(W)$
c_{1}, \ldots, c_{r} : Jordan frame of V. Then $V=\left(\begin{array}{ccccc}\mathbb{R}_{1} & V_{21} & \cdots & V_{r-1,1} & V_{r 1} \\ V_{21} & \mathbb{R} c_{2} & & & \vdots \\ \vdots & & \ddots & & \vdots \\ V_{r-1,1} & & & \mathbb{R}_{c_{r-1}} & V_{V_{r, r-1}} \\ V_{r 1} & \cdots & \cdots & V_{r, r-1} & \mathbb{R} c_{r}\end{array}\right)$
(φ, E) is a selfadjoint representation of V with $\operatorname{dim} E>0$.
$\rightsquigarrow \varphi\left(c_{1}\right), \ldots, \varphi\left(c_{r}\right)$ are complete system of orthogonal projections of equal rank.

- the lower triangular part $\underline{\varphi}(x)$ of $\varphi(x)$ is defined as

$$
\underline{\varphi}(x):=\frac{1}{2} \sum_{i} \lambda_{i} \varphi\left(c_{i}\right)+\sum_{j<k} \varphi\left(c_{k}\right) \varphi\left(x_{k j}\right) \varphi\left(c_{j}\right) \quad\left(x=\sum_{i} \lambda_{i} c_{i}+\sum_{j<k} x_{k j}\right) .
$$

Then, $\underline{\varphi}(x)+\underline{\varphi}(x)^{*}=\varphi(x)$.

Proposition

φ is also a clan representation of V :

$$
\varphi(x \triangle y)=\underline{\varphi}(x) \varphi(y)+\varphi(y) \underline{\varphi}(x)^{*} \quad(x, y \in V)
$$

- the symmetric bilinear map $Q: E \times E \rightarrow V$ associated to $\boldsymbol{\varphi}$:

$$
\langle\varphi(x) \xi \mid \eta\rangle_{E}=\langle Q(\xi, \eta) \mid x\rangle \quad(x \in V, \xi, \eta \in E)
$$

- Define a product \triangle in $V_{E}:=E \oplus V$ by

$$
(\xi+x) \triangle(\eta+y):=\underline{\varphi}(x) \eta+(Q(\xi, \eta)+x \Delta y) \quad(x, y \in V, \xi, \eta \in E)
$$

-Theorem

$\left(V_{E}, \triangle\right)$ is a clan, and as an admissible linear form we take

$$
s^{\prime}(\xi+x):=\operatorname{Tr} L(x) \quad(\xi \in E, x \in V)
$$

- V_{E} does not have unit element.
\because) If $\eta_{0}+y_{0}$ is a unit element, then taking $0 \neq \xi \in E$, we have a contradiction

$$
\xi+0=(\xi+0) \triangle\left(\eta_{0}+y_{0}\right)=0+Q\left(\xi, \eta_{0}\right) .
$$

- The homogeneous convex domain corresponding to V_{E} is the following real Siegel domain defined by

$$
D(\Omega, Q)=\left\{\xi+x ; x-\frac{1}{2} Q(\xi, \xi) \in \Omega\right\} .
$$

Adjoining the unit element e to V_{E}, we have $V_{E}^{0}:=\mathbb{R} e \oplus V_{E}$.
Put $u:=e-e_{0}$ (recall e_{0} is the unit element of V), we have $V_{E}^{0}=\mathbb{R} u \oplus E \oplus V$. The product is written as
$(\lambda u+\xi+x) \triangle(\mu u+\eta+y)=(\lambda \mu) u+\left(\mu \xi+\frac{1}{2} \lambda \eta+\underline{\varphi}(x) \eta\right)+(Q(\xi, \eta)+x \triangle y)$

$$
(\lambda, \mu \in \mathbb{R}, \xi, \eta \in E \text { and } x, y \in V)
$$

- V_{E}^{0} may be imaged as

$$
V_{E}^{0}=\left(\begin{array}{ccc|c}
\lambda & & & { }^{t} E \\
& \ddots & & \\
& & \lambda & \\
& E & & V
\end{array}\right) .
$$

- Let Ω^{0} be the HOCC corresponding to V_{E}^{0}.
- Description of Ω^{0}

$$
\Omega^{0}=\left\{\lambda u+\xi+x \in V_{E}^{0} ; \lambda>0, \lambda x-\frac{1}{2} Q(\xi, \xi) \in \Omega\right\} .
$$

If you cut Ω^{0} by the hyperplane $\lambda=1$, then the Siegel domain $D(\Omega, Q)$ appears as the cross-section.

Basic relative invariants associated to Ω^{0}
Let V be a EJA, and $\varphi: V \rightarrow \operatorname{Sym}(E)$ a selfadjoint representation of V.

Definition

φ is regular $\stackrel{\text { def }}{\Longleftrightarrow} \exists \xi_{0} \in E$ s.t. $Q\left(\xi_{0}, \xi_{0}\right)=e_{0}$ (the unit element of V).
In what follows let $V=\operatorname{Herm}(r, \mathbb{K})(r \geq 3 ; \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H})$. Then

$$
E=\operatorname{Mat}(r \times p, \mathbb{K}), \quad \varphi(x) \xi=x \xi(x \in V, \xi \in E), \quad Q(\xi, \eta)=\frac{1}{2}\left(\xi \eta^{*}+\eta \xi^{*}\right)
$$

Fact: φ is regular $\Longleftrightarrow p \geq r$ (i.e., $E=\square$ or $E=\square$).
$V_{E}^{0}=\mathbb{R} u \oplus E \oplus V \ni \lambda u+\xi+x=: v, \Delta_{k}(x): k$-th principal minor (upper-left)
-Theorem
If φ is regular, then the basic relative invariants associated to Ω^{0} are

$$
\Delta_{0}^{0}(v)=\lambda, \quad \Delta_{j}^{0}(v)=\Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right)(j=1, \ldots, r) .
$$

- If φ is not regular $(p<r)$, then $\Delta_{j}\left(\xi \xi^{*}\right)=0(j=p+1, \ldots r)$
\Longrightarrow For such j, the polynomial $\Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right)$ is not irreducible
\Longrightarrow at least should be $\lambda^{-(j-p)} \Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right) \longleftarrow$ I do not like this.

Theorem-

If $p<r$, then the basic relative invariants associated to Ω^{0} are

$$
\begin{cases}\Delta_{0}^{0}(v)=\lambda, & (j=1, \ldots, p), \\
\Delta_{j}^{0}(v)=\Delta_{j}\left(\lambda x-\frac{1}{2} \xi \xi^{*}\right) & (j=p+1, \ldots, r) . \\
\Delta_{j}^{0}(v)=\operatorname{det}^{(p+j)}\left(\begin{array}{cc}
\lambda I_{p} & \frac{1}{\sqrt{2}} \xi^{*} \\
\frac{1}{\sqrt{2}} \xi & x
\end{array}\right) & \end{cases}
$$

Here, $\operatorname{det}^{(p+j)} X$ is the upper-left $(p+j)$-th principal minor of X. Moreover if $\mathbb{K}=\mathbb{H}$, it should be taken as the Jordan algebra determinant.

Dual cone $\left(\Omega^{0}\right)^{*}$, and the associated basic relative invariants
Introduce an inner product in $V_{E}^{0}=\mathbb{R} u \oplus E \oplus V$ by

$$
\left\langle\lambda u+\xi+x \mid \lambda^{\prime} u+\xi^{\prime}+x^{\prime}\right\rangle^{0}=\lambda \lambda^{\prime}+\left\langle\xi \mid \xi^{\prime}\right\rangle_{E}+\left\langle x \mid x^{\prime}\right\rangle .
$$

Let $\left(\Omega^{0}\right)^{*}$ be the dual cone of Ω^{0} w.r.t this inner product:

$$
\left(\Omega^{0}\right)^{*}:=\left\{v \in V_{E}^{0} ;\left\langle v \mid v^{\prime}\right\rangle^{0}>0 \forall v^{\prime} \in \overline{\left(\Omega^{0}\right)} \backslash\{0\}\right\} .
$$

- $v \nabla v^{\prime}={ }^{t} L^{0}(v) v^{\prime}$ defines a clan structure in V_{E}^{0}

$$
\left(L^{0}(v) \text { is the left-multiplication operator in } V_{E}^{0}\right) .
$$

Proposition

$$
\left(\Omega^{0}\right)^{*}=\left\{v=\lambda u+\xi+x ; x \in \Omega, \lambda>\frac{1}{2}\left\langle\varphi(x)^{-1} \xi \mid \xi\right\rangle_{E}\right\} .
$$

Remark. The proposition says that $\left(\Omega^{0}\right)^{*}$ coincides with what Rothaus ('66) called the extension of Ω by the representation φ.
$\Delta_{1}^{*}(x), \ldots, \Delta_{r}^{*}(x)$: JA principal minors associated to c_{r}, \ldots, c_{1} (we have reversed the order of the original Jordan frame)

- In the case $\operatorname{Sym}(r, \mathbb{R})$, we just take the lower-right princial minors.

-Theorem-

The basic relative invarants $P_{j}(v)$ associated to $\left(\Omega^{0}\right)^{*}$ are

$$
\begin{aligned}
P_{j}(\lambda u+\xi+x) & =\Delta_{j}^{*}(x) \quad(j=1, \ldots, r), \\
P_{r+1}(\lambda u+\xi+x) & =\lambda \operatorname{det} x-\frac{1}{2}\left\langle\varphi\left({ }^{\operatorname{co}} x\right) \xi \mid \xi\right\rangle .
\end{aligned}
$$

- If $x \in V$ is invertible, then ${ }^{c o} x:=(\operatorname{det} x) x^{-1}$.
- In general ${ }^{\text {co }} x$ is a polynomial map of degree $r-1$ that is defined through the JA version of the Cayley-Hamilton theorem.
- $\operatorname{deg} P_{j}=j(j=1, \ldots, r, r+1)$.

The previous theorem systematically provides examples of HOCC such that the degrees of the asociated basic relative invariants are

$$
1,2, \ldots, r=\operatorname{rank}(\Omega)
$$

even for non-symmetric cones.
This generalizes an example given in Ishi-N. [2008].

Problem

Let Ω be a HOCC of rank r
Then Ω is a symmeric cone
\Longleftrightarrow the degrees of the basic relative invariants associted to Ω, and the degrees of the basic relative invariants associted to Ω^{*} are both $1,2, \ldots, r$.
T. Yamasaki wrote up a paper very recently in the affirmative. (I'm currently checking his first draft ...)

- Another project: Starting with a clan rep. instead of JA rep.
H. Nakashima, preprint (submitted 1 month ago).

