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• Homogeneous convex cones provide
many examples of non-reductive prehomogeneous vector spaces

 important to know the basic relative invariants

• Applications to statistics
(from positive-definite matrices to general convex cones)

• Matrix realizations of interesting homogeneous convex cones

By Vinberg (1963), homogeneous cones are sets of matrices of the form TT ⇤,
where T ’s are eeeeeeeeeeeeeeeeeeeeeeeeeeregular upper triangular matrices
from some eeeeeeeeeeeeeeeenon-associative algebras.

� beautiful in theory but hard to handle in practice
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Homogeneous convex cones

V : a real vector space (dim V <1)
V � ⌦: a regular open convex cone (containing no entire line)

GL(⌦) := {g 2 GL(V ) ; g(⌦) = ⌦}: the linear automorphism group of ⌦
(a Lie group as a closed subgroup of GL(V ))

⌦ is homogeneous
def() GL(⌦) y ⌦ is transitive.

Vinberg (1963)

homogeneous (regular a�ne) convex domain

� algebraic structure of eeeeeeeeeeeeeeeeeeeeeeeeeeethe ambient vector space

(⌘ tangent space of a reference point)
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Algebras associated to homogeneous convex domains (Vinberg 1963)
Definition

V is a real VS with a bilinear product x4 y = L(x)y.

V is a clan
def()

(1) [L(x), L(y)] = L(x4 y � y4x) (left symmetric algebra),

(2) 9s 2 V ⇤ s.t. s(x4 y) is an onner pruduct of V (compact),

(3) Each L(x) has only real eigenvalues (normal).

• clans eeeeeeeeeeeeeeeeeeewith unit element  ! homogeneous convex cones.

• homogeneous convex cones =) clans

9H: a split solvable subgroup of GL(⌦) s.t. H y ⌦ simply transitively.
 Fixing E 2 ⌦, we have H ⇡ HE = ⌦ (di↵eo)
 h := Lie(H) ⇠= TE(⌦) ⌘ V (linear isomorphism obtained by di↵erentiation)
 8x 2 V , 91T 2 h s.t. TE = x.
 Writing T = L(x), we define a product 4 by x4 y := L(x)y.

E is a unit element.
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• the dual cone ⌦⇤ of ⌦ (w.r.t h · | · i)
def() ⌦⇤ :=

�
y 2 V ; hx | y i > 0 (8x 2 ⌦ \ {0})

 
• ⌦ is selfdual

def() 9h · | · i s.t. ⌦⇤ = ⌦

• symmetric cone
def() homogeneous selfdual open convex cone

• symmetric cone ⌦ � Euclidean Jordan algebra V : ⌦ = Int{x2 ; x 2 V }.

• V : a vector space with bilinear product xy.

V is a Jordan algbera
def() (1) xy = yx, (2) x2(xy) = x(x2y).

• real Jordan algebra with unit element e0 is Euclidean
def() 9h · | · i (associative inner product) s.t. hxy | z i = hx | yz i (8x, y).

• symmetric cone is eeeeeeeeeeeirreducible () corresponding EJA is eeeeeesimple
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Example. V = Sym(r, R)

• Jordan product � is given by x � y := 1
2(xy + yx).

• clan product 4 is given by x4 y = x y + yt(x),

where for x = (xij) 2 Sym(r, R), we set x :=

0
BBBB@

1
2x11 0
x21

1
2x22

... . . . . . .

xr1 · · · xr,r�1
1
2xrr

1
CCCCA.

Note x = x + t(x).
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classification
of irreducible symmetric cones () of simple EJA

• ⌦ = Sym(r, R)++ ⇢ V = Sym(r, R)
• ⌦ = Herm(r, C)++ ⇢ V = Herm(r, C)
• ⌦ = Herm(r, H)++ ⇢ V = Herm(r, H)
• ⌦ = Herm(3, O)++ ⇢ V = Herm(3, O)
• ⌦ = ⇤n (n-dim. Lorentz cone) ⇢ V = Rn: linear part of Cli↵ord algebra

• Non-symm. homogeneous open convex cones (HOCC) appear from dimension 5.
• In dim. � 11, 9mutually linearly inequivalent HOCC with a continuous parameter.
• In dim.  10, only finitely many irreducible HOCC exist up to linearly equiv.

— Classification by Kaneyuki–Tsuji (’74)
— concrete realizations up to 7-dim.

• Methods to realize general HOCC by real symmetric matrices
(1) By Ishi
(2) By Yamasaki–N. (more direct than (1); preprint just finished a few days ago)

(2) obtains realizations of 8, 9, 10-dim. HOCC left unrealized by K.–T.
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Basic relative invariants

⌦: HOCC ⇢ V，GL(⌦): the linear automorphism group of ⌦.
9H: a split solvable ⇢ GL(⌦) s.t. H y ⌦ simply transitively

• a function f on ⌦ is relatively invariant (w.r.t. H)
def() 9�: 1-dim. rep of H s.t. f (hx) = �(h)f (x) (h 2 H, x 2 ⌦).

Theorem [Ishi 2001]

9�1, . . . , �r (r := rank(⌦))：eeeeeeeeeeeirreducible relat. inv. polynomial functions on V

s.t. any relat. inv. polynomial function P on V is uniquely written as

P (x) = c �1(x)m1 · · ·�r(x)mr (c = const., (m1, . . . , mr) 2 Zr
=0).

• �1(x), . . . , �r(x): the basic relative invariants associated to ⌦
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Example. When V = Sym(r, R),
�k(x) is the k-th principal minor of x 2 V taken from the upper-left corner

(also can be taken from the lower-right corner)
• general EJA: Fix a Jordan frame c1, . . . , cr

(complete system of orthogonal primitive idempotents)
 JA principal minors �1(x), . . . , �r(x) are the basic relative invariants.

In V = Sym(r, R),
ck := Ekk (k = 1, . . . , r) =) �k(x) is from the upper-left corner
ck := Er�k+1,r�k+1 (k = 1, . . . , r) =) �k(x) is from the lower-right corner.

In general, suppose HOCC ⌦ ⇢ V with clan structure of V .

Theorem [Ishi-N. 2008]

R(x)y := y4x: the right multiplication operator by x in V

=) the irreducible factors of Det R(x) coincide with �1(x), . . . , �r(x).
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Problem

Let us put Det R(x) = �1(x)n1�2(x)n2 · · ·�r(x)nr. Then express the positive
integers n1, . . . , nr in terms of the constants related to the clan V .

n := (n1, . . . , nr) is called the basic index of V．

Example. If V is a simple JA, we have n = (d, . . . , d, 1),

where d := common dim. of the “o↵-diagonals” Vkj (j < k).

Sym(r, R)：d = 1，
Herm(r, K) (K = C, H, O)：d = dimR K (only r = 3 occurs when K = O)

if ⌦ = ⇤n, the Lorentz cone in Rn (n � 3), then r = 2, d = n� 2.
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• For general clan V , the result is due to H. Nakashima (preprint, 2013).

n = m��1

V =

0
BB@

R V21 · · · Vr�1,1 Vr1

V21 R
...

...
. . .

...

Vr�1,1 R Vr,r�1

Vr1 · · · · · · Vr,r�1 R

1
CCA: the normal decomposition of V .

Let mk := 1 +
P
l>k

dim Vlk, and put m := (m1, . . . , mr)．

� is the multiplier matrix of V
def() r ⇥ r-matrix obtained by arranging the parameters of the 1-dim. rep.

corresponding to �1(x), . . . , �r(x).

• If V is a simple EJA, then � =

✓
1 0
... ...
1 ··· 1

◆
．

• In general, � is a unipotent matrix with non-negative interger entries.
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Defining a clan from representations of a EJA

V is a EJA with unit element e0, and E is a real vector space with h · | · iE.

Definition

A linear map ' : V ! End(E) is a selfadjoint representation of V

def()
(

(1) '(x) 2 Sym(E) for 8x 2 V,

(2) '(xy) = 1
2

�
'(x)'(y) + '(y)'(x)

�
, '(e0) = I if ' 6= 0.

• V = Herm(3, O) =) ' = 0

• V = Herm(r, K) (K = R, C, H)
=) E = Mat(r ⇥ p, K)，'(x)⇠ = x⇠ (x 2 V, ⇠ 2 E)

• V : Lorentzian =) V = Re0 �W , where (W, B) is a Euclidean VS.

JA representation of V � Cli↵ord algebra representation of Cl(W )
(Cl(W ): Cli↵ord algebra with w2 = B(w, w))

In fact, V ,! Cl(W )
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c1, . . . , cr: Jordan frame of V . Then V =

0
BB@

Rc1 V21 · · · Vr�1,1 Vr1

V21 Rc2
...

...
. . .

...

Vr�1,1 Rcr�1 Vr,r�1

Vr1 · · · · · · Vr,r�1 Rcr

1
CCA

(', E) is a selfadjoint representation of V with dim E > 0．
 '(c1), . . . , '(cr) are complete system of orthogonal projections of equal rank.

• the lower triangular part '(x) of '(x) is defined as

'(x) := 1
2

P
i

�i'(ci) +
P
j<k

'(ck)'(xkj)'(cj)
�
x =

P
i

�ici +
P
j<k

xkj

�
.

Then, '(x) + '(x)⇤ = '(x).

Proposition

' is also a clan representation of V :

'(x4 y) = '(x)'(y) + '(y)'(x)⇤ (x, y 2 V ).
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• the symmetric bilinear map Q : E ⇥ E ! V associated to ':

h'(x)⇠ | ⌘ iE = hQ(⇠, ⌘) |x i (x 2 V, ⇠, ⌘ 2 E).

• Define a product 4 in VE := E � V by

(⇠ + x)4 (⌘ + y) := '(x)⌘ + (Q(⇠, ⌘) + x4 y) (x, y 2 V, ⇠, ⌘ 2 E).

Theorem

(VE,4) is a clan, and as an admissible linear form we take

s0(⇠ + x) := Tr L(x) (⇠ 2 E, x 2 V ).

• VE does not have unit element.

*) If ⌘0 + y0 is a unit element, then taking 0 6= ⇠ 2 E, we have a contradiction
⇠ + 0 = (⇠ + 0)4 (⌘0 + y0) = 0 + Q(⇠, ⌘0).

• The homogeneous convex domain corresponding to VE is the following eeereal Siegel
domain defined by

D(⌦, Q) =
�
⇠ + x ; x� 1

2Q(⇠, ⇠) 2 ⌦
 
.
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Adjoining the unit element e to VE, we have V 0
E := Re� VE.

Put u := e� e0 (recall e0 is the unit element of V ), we have V 0
E = Ru�E � V .

The product is written as

(�u + ⇠ + x)4 (µu + ⌘ + y) = (�µ)u + (µ⇠ + 1
2�⌘ + '(x)⌘) + (Q(⇠, ⌘) + x4 y)

(�, µ 2 R, ⇠, ⌘ 2 E and x, y 2 V ).

• V 0
E may be imaged as

V 0
E =

0
BBBBBB@

�
. . . tE

�

E V

1
CCCCCCA

.

• Let ⌦0 be the HOCC corresponding to V 0
E.
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• Description of ⌦0

⌦0 =
�
�u + ⇠ + x 2 V 0

E ; � > 0, �x� 1
2Q(⇠, ⇠) 2 ⌦

 
．

If you cut ⌦0 by the hyperplane � = 1, then the Siegel domain D(⌦, Q) appears
as the cross-section.
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Basic relative invariants associated to ⌦0

Let V be a EJA, and ' : V ! Sym(E) a selfadjoint representation of V .

Definition

' is regular
def() 9⇠0 2 E s.t. Q(⇠0, ⇠0) = e0 (the unit element of V ).

In what follows let V = Herm(r, K) (r � 3; K = R, C, H). Then

E = Mat(r ⇥ p, K), '(x)⇠ = x⇠ (x 2 V, ⇠ 2 E), Q(⇠, ⌘) = 1
2(⇠⌘

⇤ + ⌘⇠⇤)

Fact: ' is regular () p � r (i.e., E = or E = ).

V 0
E = Ru�E�V 3 �u+ ⇠ +x =: v，�k(x): k-th principal minor (upper-left)

Theorem

If ' is eeeeeeeregular , then the basic relative invariants associated to ⌦0 are

�0
0(v) = �, �0

j(v) = �j(�x� 1
2⇠⇠
⇤) (j = 1, . . . , r).
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• If ' is not regular (p < r), then �j(⇠⇠⇤) = 0 (j = p + 1, . . . r)
=) For such j, the polynomial �j(�x� 1

2⇠⇠
⇤) is eeenot irreducible

=) at least should be ��(j�p)�j(�x� 1
2⇠⇠
⇤)  � I do not like this.

Theorem

If p < r, then the basic relative invariants associated to ⌦0 are8>>>>>><
>>>>>>:

�0
0(v) = �,

�0
j(v) = �j(�x� 1

2⇠⇠
⇤) (j = 1, . . . , p),

�0
j(v) = det(p+j)

 
�Ip

1p
2
⇠⇤

1p
2
⇠ x

!
(j = p + 1, . . . , r).

Here, det(p+j) X is the upper-left (p + j)-th principal minor of X.
Moreover if K = H, it should be taken as the Jordan algebra determinant.
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Dual cone (⌦0)
⇤, and the associated basic relative invariants

Introduce an inner product in V 0
E = Ru� E � V by

h�u + ⇠ + x |�0u + ⇠0 + x0 i0 = ��0 + h ⇠ | ⇠0 iE + hx |x0 i.
Let (⌦0)

⇤
be the dual cone of ⌦0 w.r.t this inner product:

(⌦0)
⇤

:=
�
v 2 V 0

E ; h v | v0 i0 > 0 8v0 2 (⌦0) \ {0}
 
.

• v
4

v0 = tL0(v)v0 defines a clan structure in V 0
E

(L0(v) is the left-multiplication operator in V 0
E).

Proposition

(⌦0)
⇤

=
�
v = �u + ⇠ + x ; x 2 ⌦, � > 1

2h'(x)�1⇠ | ⇠ iE
 
.

Remark. The proposition says that (⌦0)
⇤
coincides with what Rothaus (’66) called

the extension of ⌦ by the representation '.
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�⇤1(x), . . . , �⇤r(x): JA principal minors associated to cr, . . . , c1

(we have reversed the order of the original Jordan frame)

• In the case Sym(r, R), we just take the lower-right princial minors.

Theorem

The basic relative invarants Pj(v) associated to (⌦0)
⇤

are

Pj(�u + ⇠ + x) = �⇤j(x) (j = 1, . . . , r),

Pr+1(�u + ⇠ + x) = � det x� 1
2h'( cox)⇠ | ⇠ i.

• If x 2 V is invertible, then cox := (det x)x�1.
• In general cox is a polynomial map of degree r � 1 that is defined through

the JA version of the Cayley–Hamilton theorem.

• deg Pj = j (j = 1, . . . , r, r + 1).
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The previous theorem systematically provides examples of HOCC such that
the degrees of the asociated basic relative invariants are

1, 2, . . . , r = rank(⌦)
even for non-symmetric cones.
This generalizes an example given in Ishi–N. [2008].

Problem

Let ⌦ be a HOCC of rank r

Then ⌦ is a symmeric cone
() the degrees of the basic relative invariants associted to ⌦, and the degrees

of the basic relative invariants associted to ⌦⇤ are both 1, 2, . . . , r.

T. Yamasaki wrote up a paper very recently in the a�rmative.
(I’m currently checking his first draft . . .)

• Another project: Starting with a clan rep. instead of JA rep.
H. Nakashima, preprint (submitted 1 month ago).


