Didier ARNAL

Diamond cones and quasistandard Young tableaux

Abstract. In this lecture, we shall recall the notion of shape algebra S for a semisimple Lie algebra \mathfrak{g} . Then we define the diamond cone C of \mathfrak{g} as a quotient of S.

Diamond cone was introduced by N.J. Wildberger for $\mathfrak{sl}(3)$. If \mathfrak{n} is the nilpotent part of the Iwasawa decomposition of \mathfrak{g} , the diamond cone is a \mathfrak{n} module, built from the collection of all maximal, locally nilpotent \mathfrak{n} modules.

To understand the structure of the \mathfrak{n} module C, we look for an explicit, combinatorial basis for C. Generally speaking, such a basis is given by particular Young tableaux: the quasistandard Young tableaux. We shall present here explicit results for the following cases:

```
\mathfrak{g}=\mathfrak{sl}(m) (with N. Bel Baraka and N.J. Wildberger), \mathfrak{g}=\mathfrak{sp}(2m) \text{ (with O. Khlifi)}, \mathrm{rank}(\mathfrak{g})=2 \text{ (with B. Agrebaoui and O. Khlifi)}, \mathfrak{g}=\mathfrak{sl}(m,1) \text{ (this generalization is due to O. Khlifi)}.
```