九州大学理学部

学生番号

2009年度前期 定期試験

問題・解答用紙 (1)

次頁以降にも問題がある

評点

	于生于叩	<u> </u>				问题:胜合用似(1)
授業科目	解析学 B2	試験日時	7月31日	13:00~15:00	担当教員	野村隆昭
	ue 可測な ℝ の部分集合の全体を A が正しいかどうか,理由とともにネ		oesgue 測度を <i>m</i>	とする.		
(2) E ∈ L カ(3) ℝ の開集	する。 $m(E)=0$ ならば, E は高 河界ならば, $m(E)<\infty$ である。 合 E が $m(E)<\infty$ をみたすなら $\mathbb R$ 上の Lebesgue 可測函数とする.	, <i>E</i> は有界で				
	(*) 定数 $M>0$ に対して	$ f(x) \leq M$	が m-a.e.x で成	り立つ		
と仮定する.	(*) の性質をもつ定数 M の下限を	: M ₀ とすると	$ f(x) \le M_0$	が <i>m</i> -a.e. <i>x</i> で成り	立つ.	

氏名

2009年度前期 定期試験

問題・解答用紙 (2)

授業科目		解析学 B2		試験日時	7月31日	13:00~15:00	担当教員	野村隆昭
	•	ſ∞	$\sin x$					

- $oxed{oxed{2}}$ a>0 のとき, $F(a):=\int_0^\infty e^{-ax} rac{\sin x}{x} \, dx$ とおく.問題 [3],[4] の結果を使わないで以下の問に答えよ(参考にするのは構わない).
- (1) F(a) は well-defined であることを示せ. (2) 優収束定理を用いて、 $\lim_{a \to \infty} F(a) = 0$ を示せ.
- (3) F'(a) を計算することにより、F(a) を求めよ.

[3] $\frac{\sin x}{x}$ を Taylor 展開してから項別積分することにより、次式を示せ、ただし a>1 とする.

$$\int_0^\infty e^{-ax} \, \frac{\sin x}{x} \, dx = \operatorname{Arctan} \frac{1}{a}$$

(Arctan t の Taylor 展開は、知らなくても、 $\frac{1}{1+t^2}$ の Taylor 展開の項別積分で得られる.)

次頁にも問題がある

学生番号 氏名 評点

九州大学理学部

2009年度前期 定期試験

問題・解答用紙 (3)

授業科目 解析学 B2 試験日時 7月31日 13:00~15:00 担当教員 野村隆昭

[**4**] a > 0 とする.

- (1) 函数 $f(x,y):=e^{-axy}\sin x$ は $E:=[0,\infty)\times[1,\infty)$ で可積分であることを示せ.
- (2) Fubini の定理を用いて次の公式を導け: $\int_0^\infty e^{-ax} \frac{\sin x}{x} dx = \frac{\pi}{2} \operatorname{Arctan} a.$

[5] f(x) は \mathbb{R} 上の函数で、次のように定義されているとする: $f(x) := \begin{cases} \frac{1}{\sqrt{x}} & (0 < x < 1) \\ 0 & (その他) \end{cases}$

 $\mathbb Q$ は可算集合であるから,それを $\{r_1,r_2,\dots\}$ とし,函数 $g(x):=\sum\limits_{n=1}^\infty rac{1}{2^n}f(x-r_n)$ $(-\infty < x < \infty)$ を考える.

- (1) g(x) は \mathbb{R} 上 Lebesgue 可積分であること、及びほとんどいたる所有限値であることを示せ.
- (2) g(x) 任意の開区間で有界でないことを示せ、またいたる所不連続である事も示せ、
- (3) $g(x)^2$ はいたる所有限であるが、任意の開区間で Lebesgue 可積分とはならないことを示せ.