Irreducible homogeneous non-symmetric cones linearly isomorphic to the dual cones

By Hideyuki Ishi and Takaaki Nomura

§1. Introduction.

In this note we present irreducible homogeneous non-symmetric open convex cones of rank 3 that are linearly isomorphic to the dual cones. As noted in [4, p. 343], if the irreducibility condition is dropped, then we have an easy example $\Omega \oplus \Omega^{*}$ of non-symmetric cone that is linearly isomorphic to its dual cone. One motivation of trying to find a concrete example with the property in question stems from the proof of non-selfduality of the Vinberg cone given in [2, Exercise 10, p. 21]. There one actually proves a stronger fact that the Vinberg cone is never linearly isomorphic to its dual cone, and the non-selfduality follows as a corollary. Here one wonders if there is a concretely described non-symmetric cone which is linearly isomorphic to its dual cone. In fact selfduality of a cone requires a positive definite operator which gives a linear isomorphism between the cone and its dual as in the following lemma.

Lemma 1.1. Let Ω be an open convex cone in a real inner product vector space $(V,\langle\cdot \mid \cdot\rangle)$. Denote by Ω^{*} the dual cone of Ω defined by

$$
\Omega^{*}:=\{y \in V ;\langle x \mid y\rangle>0 \quad \text { for all } x \in \bar{\Omega} \backslash\{0\}\}
$$

Then, Ω is selfdual if and only if there is a positive definite operator T on V such that $\Omega^{*}=T(\Omega)$.

Proof. Suppose $\Omega^{*}=T(\Omega)$ for some positive definite T. Then we define a new inner product in V by $\langle x \mid y\rangle_{T}:=\langle T x \mid y\rangle$. Let

$$
\Omega_{T}:=\left\{y \in V ;\langle x \mid y\rangle_{T}>0 \quad(\forall x \in \bar{\Omega} \backslash\{0\})\right\} .
$$

It is clear that $\Omega_{T}=T^{-1}\left(\Omega^{*}\right)=\Omega$. Therefore Ω is selfdual. Conversely, suppose that Ω is selfdual with respect to some inner product. Represent this inner product as the form $\langle T x \mid y\rangle$ with a positive definite operator T. Then we have $\Omega=\Omega_{T}=$ $T^{-1}\left(\Omega^{*}\right)$.

§2. Description of the cones.

Let \boldsymbol{e} be the column m-vector with the first entry equal to 1 and the others 0 :

$$
e:=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \in \mathbb{R}^{m} .
$$

Writing I_{m} for the m-th order identity matrix, we denote by V the vector space of matrices x of the $(m+2)$-th order such that

$$
x:=\left(\begin{array}{c|cc}
x_{11} I_{m} & x_{21} \boldsymbol{e} & \boldsymbol{\xi} \tag{2.1}\\
\hline x_{21}{ }^{t} \boldsymbol{e} & x_{22} & x_{32} \\
{ }^{t} \boldsymbol{\xi} & x_{32} & x_{33}
\end{array}\right),
$$

where $x_{i j} \in \mathbb{R}$ and $\boldsymbol{\xi} \in \mathbb{R}^{m}$. We note that $V \subset \operatorname{Sym}(m+2, \mathbb{R})$. Let Ω be the cone of positive definite ones in V :

$$
\Omega:=\{x \in V ; x \text { is positive definite }\} .
$$

If $m=1$, we have evidently $V=\operatorname{Sym}(3, \mathbb{R})$, so that we assume $m \geqq 2$ in what follows.

Let us show that Ω is homogeneous. To do so, we consider the following two subgroups A and N of $G L(m+2, \mathbb{R})$:

$$
\begin{aligned}
& A:=\left\{a:=\left(\begin{array}{c|cc}
a_{1} I_{m} & 0 & 0 \\
\hline 0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right) ; a_{j}>0 \quad(j=1,2,3)\right\}, \\
& N:=\left\{n:=\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
n_{21}^{t} \boldsymbol{e} & 1 & 0 \\
{ }^{t_{\boldsymbol{n}}} & n_{32} & 1
\end{array}\right) ; n_{21}, n_{32} \in \mathbb{R}, \boldsymbol{n} \in \mathbb{R}^{m}\right\} .
\end{aligned}
$$

It is clear that A normalizes N and we consider the semidirect product group $H:=$ $N \rtimes A$. We actually show that the action of H on Ω given by $H \times \Omega \ni(h, x) \mapsto$ $\rho(h) x:=h x^{t} h$ is simply transitive. Thus given $x \in \Omega$, we just look for unique $a \in A$ and $n \in N$ so that $n a^{t} n=x$. In view of $n a^{t} n=\rho\left(n a^{1 / 2}\right) I_{m+2}$, we will obtain the desired simple transitivity. In order to describe the unique solution, we introduce the following polynomial functions $\Delta_{j}(j=1,2,3)$ on V : for x of the form (2.1)

$$
\begin{aligned}
& \Delta_{1}(x):=x_{11}, \\
& \Delta_{2}(x):=x_{11} x_{22}-x_{21}^{2}, \\
& \Delta_{3}(x):=\left(x_{11} x_{22}-x_{21}^{2}\right)\left(x_{11} x_{33}-\|\boldsymbol{\xi}\|^{2}\right)-\left(x_{11} x_{32}-x_{21} \xi_{1}\right)^{2},
\end{aligned}
$$

where ξ_{1} is the first entry of the vector $\boldsymbol{\xi} \in \mathbb{R}^{m}$ appearing in the expression (2.1) of x. Now the solution to the equation $n a^{t} n=x$ is uniquely given by

$$
\begin{aligned}
& a_{1}=\Delta_{1}(x), \quad a_{2}=\frac{\Delta_{2}(x)}{\Delta_{1}(x)}, \quad a_{3}=\frac{\Delta_{3}(x)}{\Delta_{1}(x) \Delta_{2}(x)}, \\
& \boldsymbol{n}=\frac{\boldsymbol{\xi}}{\Delta_{1}(x)}, \quad \quad n_{21}=\frac{x_{21}}{\Delta_{1}(x)}, \quad \quad n_{32}=\frac{x_{11} x_{32}-x_{21} \xi_{1}}{\Delta_{2}(x)} .
\end{aligned}
$$

Therefore H acts on Ω simply transitively. Note that proceeding as in [3, Theorem 2.2], we see that $\Delta_{j}(x)(j=1,2,3)$ are irreducible polynomials ${ }^{1}$.

Let us describe Ω in another way. Using an elementary determinant formula

$$
\operatorname{det}\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)=(\operatorname{det} A)\left(\operatorname{det}\left(D-C A^{-1} B\right)\right) \quad(\text { if } \operatorname{det} A \neq 0)
$$

we see that the principal minors $\delta_{j}(x)(j=1, \ldots, m+2)$ of the matrix x in (2.1) computed by starting with $(1,1)$-entry are given by

$$
\delta_{j}(x)= \begin{cases}\Delta_{1}(x)^{j} & (1 \leqq j \leqq m), \\ \Delta_{1}(x)^{m-1} \Delta_{2}(x) & (j=m+1), \\ \Delta_{1}(x)^{m-2} \Delta_{3}(x) & (j=m+2) .\end{cases}
$$

Hence we get the following description of Ω :

$$
\Omega=\left\{x \in V ; \Delta_{1}(x)>0, \Delta_{2}(x)>0, \Delta_{3}(x)>0\right\} .
$$

§3. Dual cones.

Let us introduce an inner product in V by the formula

$$
\begin{equation*}
\left\langle x \mid x^{\prime}\right\rangle=x_{11} x_{11}^{\prime}+x_{22} x_{22}^{\prime}+x_{33} x_{33}^{\prime}+2\left(x_{21} x_{21}^{\prime}+x_{32} x_{32}^{\prime}+\boldsymbol{\xi} \cdot \boldsymbol{\xi}^{\prime}\right) \tag{3.1}
\end{equation*}
$$

for $x, x^{\prime} \in V$ as in (2.1), where $\boldsymbol{\xi} \cdot \boldsymbol{\xi}^{\prime}$ stands for the standard inner product in \mathbb{R}^{m}. Let Ω^{*} denote the dual cone of Ω realized in V through the inner product (3.1):

$$
\Omega^{*}:=\left\{x^{\prime} \in V ;\left\langle x \mid x^{\prime}\right\rangle>0 \quad \text { for any } x \in \bar{\Omega} \backslash\{0\}\right\} .
$$

Let us define a linear operator m_{0} on V by

$$
m_{0}(x)=\left(\begin{array}{c|cc}
x_{33} I_{m} & x_{32} \boldsymbol{e} & \boldsymbol{\xi} \\
\hline x_{32}{ }^{t} \boldsymbol{e} & x_{22} & x_{21} \\
{ }^{t} \boldsymbol{\xi} & x_{21} & x_{11}
\end{array}\right) \quad \text { (for } x \text { as in (2.1)). }
$$

It is obvious that m_{0}^{2} is the identity operator, so that m_{0} is an involution. Moreover m_{0} is an isometry relative to the inner product (3.1). Put $\sigma(h):=m_{0} \rho(h) m_{0}$ for

[^0]$h \in H$. Clearly σ defines a representation of H on V. Observe that the group H is described as the set of all
\[

h:=\left($$
\begin{array}{c|cc}
h_{1} I_{m} & 0 & 0 \tag{3.2}\\
\hline h_{21}{ }^{t} \boldsymbol{e} & h_{2} & 0 \\
{ }^{t} \boldsymbol{h} & h_{32} & h_{3}
\end{array}
$$\right)
\]

with $h_{j}>0(j=1,2,3), h_{21} \in \mathbb{R}, h_{32} \in \mathbb{R}$ and $\boldsymbol{h} \in \mathbb{R}^{m}$. Then we define an involution $h \mapsto \check{h}$ in H by

$$
\check{h}:=\left(\begin{array}{c|cc}
h_{3} I_{m} & 0 & 0 \\
\hline h_{32}{ }^{t} \boldsymbol{e} & h_{2} & 0 \\
{ }^{t} \boldsymbol{h} & h_{21} & h_{1}
\end{array}\right) \quad \text { for } h \text { as in (3.2). }
$$

By direct computation we see that this involution is an anti-automorphism.
Lemma 3.1. $\langle\rho(h) x \mid y\rangle=\langle x \mid \sigma(\breve{h}) y\rangle$ for any $x, y \in V$ and $h \in H$.
Proof. Since m_{0} is an involutive isometry, what we have to prove is

$$
\begin{equation*}
\langle\rho(h) x \mid y\rangle=\left\langle m_{0}(x) \mid \rho(\breve{h}) m_{0}(y)\right\rangle . \tag{3.3}
\end{equation*}
$$

We note that

$$
\left(\begin{array}{c|cc}
h_{1} I_{m} & 0 & 0 \\
\hline h_{21}{ }^{t} \boldsymbol{e} & h_{2} & 0 \\
{ }^{t} \boldsymbol{h} & h_{32} & h_{3}
\end{array}\right)=\left(\begin{array}{c|cc}
h_{1} I_{m} & 0 & 0 \\
\hline h_{21}{ }^{t} \boldsymbol{e} & 1 & 0 \\
{ }^{t} \boldsymbol{h} & 0 & 1
\end{array}\right)\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & h_{2} & 0 \\
0 & h_{32} & 1
\end{array}\right)\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & 1 & 0 \\
0 & 0 & h_{3}
\end{array}\right)
$$

and that the first and the second terms on the right hand side still decompose as follows:

$$
\begin{aligned}
\left(\begin{array}{c|cc}
h_{1} I_{m} & 0 & 0 \\
\hline h_{21}^{t} \boldsymbol{e} & 1 & 0 \\
{ }^{t} \boldsymbol{h} & 0 & 1
\end{array}\right) & =\left(\begin{array}{c|cc}
h_{1} I_{m} & 0 & 0 \\
\hline 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline h_{21}{ }^{t} \boldsymbol{e} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & 1 & 0 \\
{ }^{t} \boldsymbol{h} & 0 & 1
\end{array}\right), \\
\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & h_{2} & 0 \\
0 & h_{32} & 1
\end{array}\right) & =\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & h_{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c|cc}
I_{m} & 0 & 0 \\
\hline 0 & 1 & 0 \\
0 & h_{32} & 1
\end{array}\right) .
\end{aligned}
$$

Since $h \mapsto \check{h}$ is an anti-automorphism, it is enough to prove (3.3) for each of these pieces. We omit the details of simple computations.

Theorem 3.2. One has $\Omega^{*}=m_{0}(\Omega)$.
Proof. Any $x \in \bar{\Omega}$ is a positive semidefinite matrix, so that $\left\langle x \mid I_{m+2}\right\rangle=x_{11}+x_{22}+$ $x_{33}>0$ if $x \neq 0$. Thus $I_{m+2} \in \Omega^{*}$. By Lemma 3.1, this implies $\Omega^{*}=\sigma(H) I_{m+2}$. Since

$$
\sigma(H) I_{m+2}=\left(m_{0} \rho(H) m_{0}\right)\left(I_{m+2}\right)=m_{0}\left(\rho(H) I_{m+2}\right)=m_{0}(\Omega),
$$

we get $\Omega^{*}=m_{0}(\Omega)$.

Asano's criterion [1, Theorem 4] says that our cone Ω is irreducible, and Vinberg's criterion [5, Proposition 3, p. 73] together with the classification of irreducible symmetric cones tells us that Ω is not symmetric. Hence our cone is an irreducible non-symmetric cone that is linearly isomorphic to Ω^{*}.

References

[1] H. Asano, On the irreducibility of homogeneous convex cones, J. Fac. Sci. Univ. Tokyo, 15 (1968), 201-208.
[2] J. Faraut and A. Korányi, Analysis on symmetric cones, Clarendon Press, Oxford, 1994.
[3] H. Ishi, Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory, 11 (2001), 155-171.
[4] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403.
[5] E. V. Vinberg, The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 13 (1965), 63-93.

Graduate School of Mathematics, Nagoya University, Chikusa-ku 464-8602, Nagoya, JAPAN

E-mail address: hideyuki@math.nagoya-u.ac.jp
Faculty of Mathematics, Kyushu University, Higashi-ku 812-8581, Fukuoka, Japan
E-mail address: tnomura@math.kyushu-u.ac.jp

[^0]: ${ }^{1}$ However, $\Delta_{3}(x)$ is reducible if $m=1$, the case we have excluded.

