Sharp interface limit of stochastic Cahn-Hilliard equation

Rongchan Zhu

Beijing Institute of Technology/Bielefeld University

Joint work with Lubomir Banas and Huanyu Yang

[Banas/Yang/Z.: arXiv:1905.09182] [Yang/Z.:arXiv:1905.07216]

2 Singular noise for large σ

(3) Weak approach and tightness for small σ

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

• $F(u) = \frac{1}{4}(u^2 - 1)^2$: the double-well potential

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

- $F(u) = \frac{1}{4}(u^2 1)^2$: the double-well potential
- $v = -\Delta u + F'(u)$

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

• $F(u) = \frac{1}{4}(u^2 - 1)^2$: the double-well potential

•
$$v = -\Delta u + F'(u)$$

• well-known model to describe phase separation

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

- $F(u) = \frac{1}{4}(u^2 1)^2$: the double-well potential • $v = -\Delta u + F'(u)$
- well-known model to describe phase separation
- is also H^{-1} -gradient flow of the energy functional

$$\mathcal{E}(u) := \frac{1}{2} \int_{\mathcal{D}} |\nabla u(x)|^2 dx + \int_{\mathcal{D}} F(u(x)) dx, \qquad (2)$$

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

- F(u) = ¹/₄(u² 1)²: the double-well potential
 v = -Δu + F'(u)
- well-known model to describe phase separation
- is also H^{-1} -gradient flow of the energy functional

$$\mathcal{E}(u) := \frac{1}{2} \int_{\mathcal{D}} |\nabla u(x)|^2 dx + \int_{\mathcal{D}} F(u(x)) dx, \qquad (2)$$

If u is a solution to equation (1), then

$$\frac{d}{dt}\mathcal{E}(u(t,\cdot))=-\int_{\mathcal{D}}|\nabla v(x)|^2dx\leq 0.$$

Introduction

The Cahn-Hilliard equation

$$\partial_t u = \Delta(-\Delta u + F'(u)),$$

on $[0, T] \times D$ with Neumann boundary condition.

- F(u) = ¹/₄(u² 1)²: the double-well potential
 v = -Δu + F'(u)
- well-known model to describe phase separation
- is also H^{-1} -gradient flow of the energy functional

$$\mathcal{E}(u) := \frac{1}{2} \int_{\mathcal{D}} |\nabla u(x)|^2 dx + \int_{\mathcal{D}} F(u(x)) dx, \qquad (2)$$

If u is a solution to equation (1), then

$$\frac{d}{dt}\mathcal{E}(u(t,\cdot)) = -\int_{\mathcal{D}} |\nabla v(x)|^2 dx \leq 0.$$

The minimizers of the energy (2) are the constant functions $u \equiv 1$ and $u \equiv -1$, which represent the "pure phases" of the system.

Introduction

In a large scale, let

$$\tau = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$,

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_ au u^arepsilon = \Delta_\eta (-arepsilon \Delta_\eta u^arepsilon + rac{1}{arepsilon} {\cal F}'(u^arepsilon)),$$

(3)

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_ au u^arepsilon = \Delta_\eta (-arepsilon \Delta_\eta u^arepsilon + rac{1}{arepsilon} {\cal F}'(u^arepsilon)),$$

(3)

Introduction

In a large scale, let

$$\tau = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_ au u^arepsilon = \Delta_\eta (-arepsilon \Delta_\eta u^arepsilon + rac{1}{arepsilon} {\sf F}'(u^arepsilon)),$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential

(3)

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_{\tau} u^{\varepsilon} = \Delta_{\eta} (-\varepsilon \Delta_{\eta} u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})), \tag{3}$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential • As $\varepsilon \to 0$, (3) represent a long time behavior of (1) in a large scale.

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_{\tau} u^{\varepsilon} = \Delta_{\eta} (-\varepsilon \Delta_{\eta} u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})), \tag{3}$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential

- As $\varepsilon \to 0$, (3) represent a long time behavior of (1) in a large scale.
- The energy functional of (3) is

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx, \tag{4}$$

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_{\tau} u^{\varepsilon} = \Delta_{\eta} (-\varepsilon \Delta_{\eta} u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})), \tag{3}$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential

- As $\varepsilon
 ightarrow$ 0, (3) represent a long time behavior of (1) in a large scale.
- The energy functional of (3) is

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx, \tag{4}$$

and satisfies

$$\frac{d}{dt}\mathcal{E}^{\varepsilon}(u^{\varepsilon}) = -\int_{\mathcal{D}} |\nabla v^{\varepsilon}|^2 \leq 0.$$
(5)

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_{\tau} u^{\varepsilon} = \Delta_{\eta} (-\varepsilon \Delta_{\eta} u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})), \tag{3}$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential

- As $\varepsilon
 ightarrow$ 0, (3) represent a long time behavior of (1) in a large scale.
- The energy functional of (3) is

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx, \tag{4}$$

and satisfies

$$\frac{d}{dt}\mathcal{E}^{\varepsilon}(u^{\varepsilon}) = -\int_{\mathcal{D}} |\nabla v^{\varepsilon}|^2 \le 0.$$
(5)

• As $\varepsilon
ightarrow 0$, $F(u^{\varepsilon})
ightarrow 0$,

Introduction

In a large scale, let

$$au = \varepsilon^3 t, \ \eta = \varepsilon x,$$

and $u^{\varepsilon} = u(\tau, \eta)$, then u^{ε} satisfies

$$\partial_{\tau} u^{\varepsilon} = \Delta_{\eta} (-\varepsilon \Delta_{\eta} u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})), \tag{3}$$

• $v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} F'(u^{\varepsilon})$: chemical potential

- As $\varepsilon
 ightarrow$ 0, (3) represent a long time behavior of (1) in a large scale.
- The energy functional of (3) is

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx, \tag{4}$$

and satisfies

$$\frac{d}{dt}\mathcal{E}^{\varepsilon}(u^{\varepsilon}) = -\int_{\mathcal{D}} |\nabla v^{\varepsilon}|^2 \leq 0.$$
(5)

• As $\varepsilon \to 0$, $F(u^{\varepsilon}) \to 0$, which implies $u^{\varepsilon} \to -1 + 2\mathbf{1}_E$ for some $E \subset [0, T] \times \mathcal{D}$. $\Gamma_t := \partial E_t$ is the interface.

Motion of Γ_t

• $u^arepsilon$ approximates to 1 on one region D^+ and to -1 in D^- , $u^arepsilon o -1 + 2 {f 1}_E$

Motion of Γ_t

• u^{ε} approximates to 1 on one region D^+ and to -1 in D^- , $u^{\varepsilon} \to -1 + 2\mathbf{1}_E$ • $v^{\varepsilon} \to v$,

$$2\partial_t \mathbf{1}_{E_t} = \Delta v.$$

Motion of Γ_t

• u^{ε} approximates to 1 on one region D^+ and to -1 in D^- , $u^{\varepsilon} \to -1 + 2\mathbf{1}_E$ • $v^{\varepsilon} \to v$,

$$2\partial_t \mathbf{1}_{E_t} = \Delta v.$$

• $\Delta v = 0$ in $\mathcal{D} \setminus \Gamma_t$;

Motion of Γ_t

• u^{ε} approximates to 1 on one region D^+ and to -1 in D^- , $u^{\varepsilon} \to -1 + 2\mathbf{1}_E$ • $v^{\varepsilon} \to v$,

$$2\partial_t \mathbf{1}_{E_t} = \Delta v.$$

• $\Delta v = 0$ in $\mathcal{D} \setminus \Gamma_t$; • $\frac{\partial v}{\partial n} = 0$ on $\partial \mathcal{D}$;

Motion of Γ_t

• u^{ε} approximates to 1 on one region D^+ and to -1 in D^- , $u^{\varepsilon} \to -1 + 2\mathbf{1}_E$ • $v^{\varepsilon} \to v$,

$$2\partial_t \mathbf{1}_{E_t} = \Delta v.$$

- $\Delta v = 0$ in $\mathcal{D} \setminus \Gamma_t$;
- $\frac{\partial v}{\partial n} = 0$ on $\partial \mathcal{D}$;
- Formally,

$$\begin{split} \int_0^t \int_{\mathcal{D}} \partial_t \mathbf{1}_{E_t} \psi &= -\frac{1}{2} \int_0^t \int_{\mathcal{D}^+} \nabla v \nabla \psi - \frac{1}{2} \int_0^t \int_{\mathcal{D}^-} \nabla v \nabla \psi \\ &= \frac{1}{2} \int_0^t \int_{\mathcal{D}^+} \operatorname{div}(\nabla v \psi) + \frac{1}{2} \int_0^t \int_{\mathcal{D}^-} \operatorname{div}(\nabla v \psi) \\ &= \frac{1}{2} \int_0^t \int_{\Gamma_t} (\partial_n v^+ - \partial_n v^-) \psi. \end{split}$$

Hele-Shaw model

Formally derived by [Pego: 1989] and rigorous proved by [Alikakos, Bates, Chen: 1994]: $v^{\varepsilon} \rightarrow v$, (v, Γ) solves the following free boundary problem:

$$\begin{split} \Delta v &= 0 \text{ in } \mathcal{D} \setminus \Gamma_t, \ t > 0, \\ \frac{\partial v}{\partial n} &= 0 \text{ on } \partial \mathcal{D}, \\ v &= \frac{2}{3}H \text{ on } \Gamma_t, \\ \mathcal{V} &= \frac{1}{2}(\partial_n v^+ - \partial_n v^-) \text{ on } \Gamma_t, \end{split}$$

• *H*: mean curvature of Γ_t ; \mathcal{V} : normal velocity of Γ

(6)

Hele-Shaw model

Formally derived by [Pego: 1989] and rigorous proved by [Alikakos, Bates, Chen: 1994]: $v^{\varepsilon} \rightarrow v$, (v, Γ) solves the following free boundary problem:

$$\begin{split} \Delta v &= 0 \text{ in } \mathcal{D} \setminus \Gamma_t, \ t > 0, \\ \frac{\partial v}{\partial n} &= 0 \text{ on } \partial \mathcal{D}, \\ v &= \frac{2}{3} H \text{ on } \Gamma_t, \\ \mathcal{V} &= \frac{1}{2} (\partial_n v^+ - \partial_n v^-) \text{ on } \Gamma_t, \end{split}$$

• *H*: mean curvature of Γ_t ; \mathcal{V} : normal velocity of Γ

(6)

Approximate solution to the deterministic Hele-Shaw

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6).

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$\tag{7}$$

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$\tag{7}$$

• Γ_t is the zero level set of $u_A^{\varepsilon}(t)$

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$\tag{7}$$

- Γ_t is the zero level set of $u_A^{\varepsilon}(t)$
- $\|r_A^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_T)} \lesssim \varepsilon^{K-2}$.

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$\tag{7}$$

- Γ_t is the zero level set of $u_A^{\varepsilon}(t)$
- $\|r_A^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_T)} \lesssim \varepsilon^{K-2}$.
- $\|v_A^{\varepsilon} v^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_T)} \lesssim \varepsilon.$

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$(7)$$

- Γ_t is the zero level set of $u^{\varepsilon}_A(t)$
- $\|\mathbf{r}_{A}^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_{T})} \lesssim \varepsilon^{K-2}$.

4

- $\|v_A^{\varepsilon} v^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_T)} \lesssim \varepsilon.$
- For x with $d(x, \Gamma_t) > C\varepsilon$,

$$|u^arepsilon_A(t,x)-1|\lesssim arepsilon \quad |u^arepsilon_A(t,x)+1|\lesssim arepsilon.$$

Approximate solution to the deterministic Hele-Shaw

Let (v, Γ) be a smooth solution to deterministic Hele-Shaw model (6). [Alikakos, Bates, Chen 1994]: construct a pair $(u_A^{\varepsilon}, v_A^{\varepsilon})$ such that

$$\begin{cases} \partial_t u_A^{\varepsilon} = \Delta v_A^{\varepsilon} \text{ in } \mathcal{D}_T, \\ v_A^{\varepsilon} = \frac{1}{\varepsilon} F'(u_A^{\varepsilon}) - \varepsilon \Delta u_A^{\varepsilon} + r_A^{\varepsilon} \text{ in } \mathcal{D}_T, \end{cases}$$

$$(7)$$

- Γ_t is the zero level set of $u^{\varepsilon}_A(t)$
- $\|\mathbf{r}_{A}^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_{T})} \lesssim \varepsilon^{K-2}$.

4

- $\|v_A^{\varepsilon} v^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_T)} \lesssim \varepsilon.$
- For x with $d(x, \Gamma_t) > C\varepsilon$,

$$|u^arepsilon_A(t,x)-1|\lesssim arepsilon \quad |u^arepsilon_A(t,x)+1|\lesssim arepsilon.$$

•
$$\|u^{\varepsilon} - u^{\varepsilon}_A\|_{C(\mathcal{D}_T)} \to 0.$$

Stochastic Cahn-Hilliard equation

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW \text{ in } \mathcal{D}_{T}, \\ v^{\varepsilon} = \frac{1}{\varepsilon} F'(u^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon} \text{ in } \mathcal{D}_{T}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D} \end{cases}$$

Stochastic Cahn-Hilliard equation

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW \text{ in } \mathcal{D}_{T}, \\ v^{\varepsilon} = \frac{1}{\varepsilon} F'(u^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon} \text{ in } \mathcal{D}_{T}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D} \end{cases}$$

[Antonopoulou, Blömker, Karali 2018]: W is a trace-class Wiener process and $\sigma > \frac{23}{3}$, the limit is the same as the deterministic case.

Stochastic Cahn-Hilliard equation

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW \text{ in } \mathcal{D}_{T}, \\ v^{\varepsilon} = \frac{1}{\varepsilon} F'(u^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon} \text{ in } \mathcal{D}_{T}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D} \end{cases}$$

[Antonopoulou, Blömker, Karali 2018]: W is a trace-class Wiener process and $\sigma > \frac{23}{3}$, the limit is the same as the deterministic case.

Idea of proof: Compare u^{ε} and u^{ε}_A + Itô's formula.
Stochastic Cahn-Hilliard equation

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW \text{ in } \mathcal{D}_{T}, \\ v^{\varepsilon} = \frac{1}{\varepsilon} F'(u^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon} \text{ in } \mathcal{D}_{T}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D} \end{cases}$$

[Antonopoulou, Blömker, Karali 2018]: W is a trace-class Wiener process and $\sigma > \frac{23}{3}$, the limit is the same as the deterministic case.

Idea of proof: Compare u^{ε} and u^{ε}_A + Itô's formula.

Problems: Singular noise or Small $\sigma \Rightarrow$? Stochastic Hele shaw

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

• Let
$$R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon}_A$$
,

$$dR^{\varepsilon} = -\varepsilon \Delta^2 R^{\varepsilon} dt + \frac{1}{\varepsilon} \Delta \left(F'(u_{\varepsilon}^{A} + R^{\varepsilon}) - F'(u_{\varepsilon}^{A}) \right) dt + \Delta r_{\varepsilon}^{A} dt + \varepsilon^{\sigma} dW_{t};$$

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

• Let $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon}_A$,

$$dR^{\varepsilon} = -\varepsilon \Delta^2 R^{\varepsilon} dt + \frac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + R^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) dt + \Delta r^{\mathcal{A}}_{\varepsilon} dt + \varepsilon^{\sigma} dW_t;$$

• Da prato-Debussche's trick: $Z_t^{\varepsilon} := \varepsilon^{\sigma} \int_0^t e^{-(t-s)\varepsilon\Delta^2} dW_s$, $Y^{\varepsilon} := R^{\varepsilon} - Z^{\varepsilon}$ satisfies:

$$\partial_t Y^{\varepsilon} = -\varepsilon \Delta^2 Y^{\varepsilon} + \frac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + Y^{\varepsilon} + Z^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) + \Delta r^{\mathcal{A}}_{\varepsilon};$$

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

• Let $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon}_A$,

$$dR^{\varepsilon} = -\varepsilon \Delta^2 R^{\varepsilon} dt + \frac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + R^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) dt + \Delta r^{\mathcal{A}}_{\varepsilon} dt + \varepsilon^{\sigma} dW_t;$$

• Da prato-Debussche's trick: $Z_t^{\varepsilon} := \varepsilon^{\sigma} \int_0^t e^{-(t-s)\varepsilon\Delta^2} dW_s$, $Y^{\varepsilon} := R^{\varepsilon} - Z^{\varepsilon}$ satisfies:

$$\partial_t Y^{\varepsilon} = -\varepsilon \Delta^2 Y^{\varepsilon} + \frac{1}{\varepsilon} \Delta \left(F'(u^A_{\varepsilon} + Y^{\varepsilon} + Z^{\varepsilon}) - F'(u^A_{\varepsilon}) \right) + \Delta r^A_{\varepsilon};$$

•
$$\mathbb{E}(\|Z^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_{T})}) \lesssim \varepsilon^{(\sigma-\frac{1}{4})^{-}};$$

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

• Let $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon}_A$,

$$dR^{\varepsilon} = -\varepsilon \Delta^2 R^{\varepsilon} dt + \frac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + R^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) dt + \Delta r^{\mathcal{A}}_{\varepsilon} dt + \varepsilon^{\sigma} dW_t;$$

• Da prato-Debussche's trick: $Z_t^{\varepsilon} := \varepsilon^{\sigma} \int_0^t e^{-(t-s)\varepsilon\Delta^2} dW_s$, $Y^{\varepsilon} := R^{\varepsilon} - Z^{\varepsilon}$ satisfies:

$$\partial_t Y^{\varepsilon} = -\varepsilon \Delta^2 Y^{\varepsilon} + rac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + Y^{\varepsilon} + Z^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) + \Delta r^{\mathcal{A}}_{\varepsilon};$$

•
$$\mathbb{E}(\|Z^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_{T})}) \lesssim \varepsilon^{(\sigma-\frac{1}{4})^{-}};$$

• Stopping time argument yields that

Theorem 1

[Banas, Yang, Z. 19] For $\sigma > \frac{107}{12}$, $\|R^{\varepsilon}\|_{L^{3}_{t}L^{3}_{x}}$ converges to 0 in probability.

Singular noise: space-time white noise

In our case, W is an L^2 -cylindrical Wiener process.

• Let $R^{\varepsilon} = u^{\varepsilon} - u^{\varepsilon}_A$,

$$dR^{\varepsilon} = -\varepsilon \Delta^2 R^{\varepsilon} dt + \frac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + R^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) dt + \Delta r^{\mathcal{A}}_{\varepsilon} dt + \varepsilon^{\sigma} dW_t;$$

• Da prato-Debussche's trick: $Z_t^{\varepsilon} := \varepsilon^{\sigma} \int_0^t e^{-(t-s)\varepsilon\Delta^2} dW_s$, $Y^{\varepsilon} := R^{\varepsilon} - Z^{\varepsilon}$ satisfies:

$$\partial_t Y^{\varepsilon} = -\varepsilon \Delta^2 Y^{\varepsilon} + rac{1}{\varepsilon} \Delta \left(F'(u^{\mathcal{A}}_{\varepsilon} + Y^{\varepsilon} + Z^{\varepsilon}) - F'(u^{\mathcal{A}}_{\varepsilon}) \right) + \Delta r^{\mathcal{A}}_{\varepsilon};$$

- $\mathbb{E}(\|Z^{\varepsilon}\|_{\mathcal{C}(\mathcal{D}_{T})}) \lesssim \varepsilon^{(\sigma \frac{1}{4})^{-}};$
- Stopping time argument yields that

Theorem 1

[Banas, Yang, Z. 19] For $\sigma > \frac{107}{12}$, $||R^{\varepsilon}||_{L_t^3 L_x^3}$ converges to 0 in probability. \Rightarrow the limit is the same as the deterministic case

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

This method can be applied to

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

• $W^h = W * \rho_h$

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

- $W^h = W * \rho_h$
- $c_{h,t}^{\varepsilon}$ is renormalization constant

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

- $W^h = W * \rho_h$
- $c_{h,t}^{\varepsilon}$ is renormalization constant
- $|c_{h,t}^{\varepsilon}| \lesssim \varepsilon^{2\sigma-1} |\log h|$

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

- $W^h = W * \rho_h$
- $c_{h,t}^{\varepsilon}$ is renormalization constant
- $|c_{h,t}^{\varepsilon}| \lesssim \varepsilon^{2\sigma-1} |\log h|$
- Global well-posedness has been obtained in [Röckner, Yang, Z. 18].

This method can be applied to

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

- $W^h = W * \rho_h$
- $c_{h,t}^{\varepsilon}$ is renormalization constant
- $|c_{h,t}^{\varepsilon}| \lesssim \varepsilon^{2\sigma-1} |\log h|$
- Global well-posedness has been obtained in [Röckner, Yang, Z. 18].

Let $R^{\varepsilon,h} = u^{\varepsilon,h} - u^{\varepsilon}_A$,

Theorem 2

[Banas, Yang, Z. 19] Assume $\varepsilon^{\theta} \lesssim h^2$. Then for $\sigma > \frac{26}{3} + \theta$, $\|R^{\varepsilon,h}\|_{L^3_t L^3_x}$ converges to 0 in probability.

This method can be applied to

$$du^{\varepsilon,h} = \Delta\left(-\varepsilon\Delta u^{\varepsilon,h} + \frac{1}{\varepsilon}\left(F'(u^{\varepsilon,h}) - 3\frac{c_{h,t}^{\varepsilon}}{c_{h,t}^{\varepsilon}}u^{\varepsilon,h}\right)\right)dt + \varepsilon^{\sigma}\nabla\cdot dW_{t}^{h},$$

- $W^h = W * \rho_h$
- $c_{h,t}^{\varepsilon}$ is renormalization constant
- $|c_{h,t}^{\varepsilon}| \lesssim \varepsilon^{2\sigma-1} |\log h|$
- Global well-posedness has been obtained in [Röckner, Yang, Z. 18].

Let $R^{\varepsilon,h} = u^{\varepsilon,h} - u^{\varepsilon}_A$,

Theorem 2

[Banas, Yang, Z. 19] Assume $\varepsilon^{\theta} \lesssim h^2$. Then for $\sigma > \frac{26}{3} + \theta$, $||R^{\varepsilon,h}||_{L^3_t L^3_x}$ converges to 0 in probability. \Rightarrow the limit is the same as the deterministic case

• [Antonopoulou, Blömker, Karali 2018]: Conjecture: $\sigma=1$ formally derive stochastic Hele Shaw model

- [Antonopoulou, Blömker, Karali 2018]: Conjecture: $\sigma=1$ formally derive stochastic Hele Shaw model
- Difficult to prove convergence for small σ by the approximate solution u_A^{ε} ;

- [Antonopoulou, Blömker, Karali 2018]: Conjecture: $\sigma=1$ formally derive stochastic Hele Shaw model
- Difficult to prove convergence for small σ by the approximate solution u_A^{ε} ;
- Only possible to prove the convergence to deterministic Hele-Shaw model;

- [Antonopoulou, Blömker, Karali 2018]: Conjecture: $\sigma=1$ formally derive stochastic Hele Shaw model
- Difficult to prove convergence for small σ by the approximate solution u_A^{ε} ;
- Only possible to prove the convergence to deterministic Hele-Shaw model;
- Difficulty: Noise is not regular enough w.r.t. time t.

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open domain $\mathcal{D} \subset \mathbb{R}^d$ (d = 2, 3):

$$\begin{cases}
du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_{t}, & (t, x) \in [0, T] \times \mathcal{D}, \\
v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), & (t, x) \in [0, T] \times \mathcal{D}, \\
\frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, & (t, x) \in [0, T] \times \partial \mathcal{D}, \\
u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), & x \in \mathcal{D}.
\end{cases}$$
(8)

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open domain $\mathcal{D} \subset \mathbb{R}^d$ (d = 2, 3):

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_{t}, & (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), & (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, & (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), & x \in \mathcal{D}. \end{cases}$$

$$(8)$$

Main results [Yang Z. 19]

For $\sigma \geq 1/2,$ in radial symmetric case the limit is the deterministic Hele Shaw model

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open domain $\mathcal{D} \subset \mathbb{R}^d$ (d = 2, 3):

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_{t}, & (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), & (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, & (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), & x \in \mathcal{D}. \end{cases}$$

$$(8)$$

Main results [Yang Z. 19]

For $\sigma \geq 1/2,$ in radial symmetric case the limit is the deterministic Hele Shaw model

 \Rightarrow Conjecture in [Antonopoulou, Blömker, Karali 2018] may not ture.

We consider the stochastic Cahn-Hilliard equation on a bounded smooth open domain $\mathcal{D} \subset \mathbb{R}^d$ (d = 2, 3):

$$\begin{cases} du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_{t}, & (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), & (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, & (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), & x \in \mathcal{D}. \end{cases}$$

$$(8)$$

Main results [Yang Z. 19]

For $\sigma \geq 1/2,$ in radial symmetric case the limit is the deterministic Hele Shaw model

⇒ Conjecture in [Antonopoulou, Blömker, Karali 2018] may not ture. We conjecture in general case for $\sigma \ge 1/2$, the limit is the deterministic Hele Shaw model.

Idea of Proof: Lyapunov property

Recall

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := rac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + rac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx.$$

Idea of Proof: Lyapunov property

Recall

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx.$$

By Itô's formula

$$d\mathcal{E}^{\varepsilon}(u^{\varepsilon}) = \langle D\mathcal{E}^{\varepsilon}(u^{\varepsilon}), du^{\varepsilon} \rangle + \frac{\varepsilon^{2\sigma}}{2} \operatorname{Tr}(QD^{2}\mathcal{E}^{\varepsilon}(u^{\varepsilon}))dt$$
$$= - \langle \nabla v^{\varepsilon}, \nabla v^{\varepsilon} \rangle dt + \frac{\varepsilon^{2\sigma+1}}{2} \operatorname{Tr}(-\Delta Q)dt + \frac{\varepsilon^{2\sigma-1}}{2} \operatorname{Tr}(F''(u^{\varepsilon})Q)dt + \varepsilon^{\sigma} \langle v^{\varepsilon}, dW_{t} \rangle$$

Idea of Proof: Lyapunov property

Recall

$$\mathcal{E}^{\varepsilon}(u^{\varepsilon}) := \frac{\varepsilon}{2} \int_{\mathcal{D}} |\nabla u^{\varepsilon}(x)|^2 dx + \frac{1}{\varepsilon} \int_{\mathcal{D}} F(u^{\varepsilon}(x)) dx.$$

By Itô's formula

$$d\mathcal{E}^{\varepsilon}(u^{\varepsilon}) = \langle D\mathcal{E}^{\varepsilon}(u^{\varepsilon}), du^{\varepsilon} \rangle + \frac{\varepsilon^{2\sigma}}{2} \operatorname{Tr}(QD^{2}\mathcal{E}^{\varepsilon}(u^{\varepsilon}))dt$$
$$= - \langle \nabla v^{\varepsilon}, \nabla v^{\varepsilon} \rangle dt + \frac{\varepsilon^{2\sigma+1}}{2} \operatorname{Tr}(-\Delta Q)dt + \frac{\varepsilon^{2\sigma-1}}{2} \operatorname{Tr}(F''(u^{\varepsilon})Q)dt + \varepsilon^{\sigma} \langle v^{\varepsilon}, dW_{t} \rangle$$

Lemma 3

(Lyapunov property) Assume $Tr(-\Delta Q) < \infty$ and $\sup_{0 < \varepsilon < 1} \mathcal{E}^{\varepsilon}(u_0^{\varepsilon}) < \mathcal{E}_0$ then there exists $\varepsilon_0 \in (0, 1)$ such that for any $\varepsilon \in (0, \varepsilon_0]$ and any $p \ge 1$,

$$\mathbb{E} \sup_{t\in[0,T]} \mathcal{E}^{arepsilon}(t)^{
ho} \lesssim (arepsilon^{2\sigma-1}+\mathcal{E}_0)^{
ho}, \ \mathbb{E} \left(\int_0^T \|
abla v^{arepsilon}\|_{L^2}^2 dt
ight)^{
ho} \lesssim (arepsilon^{2\sigma-1}+\mathcal{E}_0)^{
ho}.$$

Rongchan Zhu (Beijing Institute of Technology)

Idea of Proof: Tightness for $\sigma \geq \frac{1}{2}$

Lemma 4

Assume $\sigma \geq \frac{1}{2}$. For any $\beta \in (0, \frac{1}{12})$ $\mathbb{E} \left(\| u^{\varepsilon} \|_{C^{\beta}([0,T];L^{2})} \right) \lesssim 1$

For any $\delta > 0$, there exists a constant $C \equiv C(\delta, T) > 0$, such that

$$\mathbb{P}\left(\int_0^{\mathcal{T}} \| v^arepsilon(t) \|_{H^1}^2 dt \leq C
ight) \geq 1-\delta.$$

Idea of Proof: Tightness for $\sigma \geq \frac{1}{2}$

Lemma 4

Assume
$$\sigma \geq \frac{1}{2}$$
. For any $\beta \in (0, \frac{1}{12})$
$$\mathbb{E} \left(\| u^{\varepsilon} \|_{C^{\beta}([0, T]; L^{2})} \right) \lesssim 1$$

For any $\delta > 0$, there exists a constant $C \equiv C(\delta, T) > 0$, such that

$$\mathbb{P}\left(\int_0^T \|v^arepsilon(t)\|_{\mathcal{H}^1}^2 dt \leq C
ight) \geq 1-\delta.$$

 $\mathsf{Tightness} + \mathsf{Skorohod \ theorem} \Rightarrow$

Theorem 5

[Y, Zhu: 19] For any
$$\sigma \ge \frac{1}{2}$$
, $\mathbb{P} - a.s. \omega$,
• $u^{\varepsilon} \rightarrow -1 + 2\mathbf{1}_{E}$ in $C([0, T], L^{2}_{w})$,
• $v^{\varepsilon} \rightarrow v$ in $L^{2}_{w}(0, T; H^{1})$
• $\mathbf{1}_{E} \in L^{\infty}(0, T; BV)$

Since

$$du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_t,$$

Since

$$du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_t,$$

 $\varepsilon \rightarrow$ 0, in a weak sense

$$2\partial_t \mathbf{1}_E = \Delta v.$$

Since

$$du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_t,$$

 $\varepsilon \rightarrow$ 0, in a weak sense

$$2\partial_t \mathbf{1}_E = \Delta v.$$

 \Rightarrow weak solutions to the deterministic model

Since

$$du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_t,$$

 $\varepsilon \rightarrow$ 0, in a weak sense

$$2\partial_t \mathbf{1}_E = \Delta v.$$

 \Rightarrow weak solutions to the deterministic model

 \Rightarrow rigorously proved in radial symmetric case and conjectured in general case to the deterministic Hele Shaw model:

$$\begin{cases} \Delta v = 0 \text{ in } \mathcal{D} \setminus \Gamma_t, \ t > 0, \\ \frac{\partial v}{\partial n} = 0 \text{ on } \partial \mathcal{D}, \\ v = \frac{2}{3}H \text{ on } \Gamma_t, \\ \mathcal{V} = \frac{1}{2}(\partial_n v^+ - \partial_n v^-) \text{ on } \Gamma_t \end{cases}$$

(9)

Since

$$du^{\varepsilon} = \Delta v^{\varepsilon} dt + \varepsilon^{\sigma} dW_t,$$

 $\varepsilon \rightarrow$ 0, in a weak sense

$$2\partial_t \mathbf{1}_E = \Delta v.$$

 \Rightarrow weak solutions to the deterministic model

 \Rightarrow rigorously proved in radial symmetric case and conjectured in general case to the deterministic Hele Shaw model:

$$\begin{cases} \Delta v = 0 \text{ in } \mathcal{D} \setminus \Gamma_t, \ t > 0, \\ \frac{\partial v}{\partial n} = 0 \text{ on } \partial \mathcal{D}, \\ v = \frac{2}{3}H \text{ on } \Gamma_t, \\ \mathcal{V} = \frac{1}{2}(\partial_n v^+ - \partial_n v^-) \text{ on } \Gamma_t. \end{cases}$$

 \Rightarrow The only possibility to converge to "stochastic Hele-Shaw model" is $\sigma = 0$.

(9)

Weak approach and tightness for small σ

Equation driven by "smeared" noise

We consider the following random PDE:

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \Delta v^{\varepsilon} + \varepsilon^{\sigma} \xi^{\varepsilon}_{t}, \quad (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), \quad (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), \quad x \in \mathcal{D}, \end{cases}$$
(10)

where $\xi^{\varepsilon} \rightarrow \frac{dW}{dt}$.

Weak approach and tightness for small σ

Equation driven by "smeared" noise

We consider the following random PDE:

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \Delta v^{\varepsilon} + \varepsilon^{\sigma} \xi^{\varepsilon}_{t}, \quad (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), \quad (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), \quad x \in \mathcal{D}, \end{cases}$$
(6)

where $\xi^{\varepsilon}
ightarrow rac{dW}{dt}$.

Theorem 6

[Y, Zhu 19]: For any
$$\sigma \ge 0$$
, $\mathbb{P} - a.s. \omega$,
• $u^{\varepsilon} \rightarrow -1 + 2\mathbf{1}_{E}$ in $C([0, T], L_{w}^{2})$,
• $v^{\varepsilon} \rightarrow v$ in $L_{w}^{2}(0, T; H^{1})$,
• $\mathbf{1}_{E} \in L^{\infty}(0, T; BV)$.

10)

Weak approach and tightness for small σ

Equation driven by "smeared" noise

We consider the following random PDE:

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \Delta v^{\varepsilon} + \varepsilon^{\sigma} \xi^{\varepsilon}_{t}, \quad (t, x) \in [0, T] \times \mathcal{D}, \\ v^{\varepsilon} = -\varepsilon \Delta u^{\varepsilon}(t) + \frac{1}{\varepsilon} F'(u^{\varepsilon}(t)), \quad (t, x) \in [0, T] \times \mathcal{D}, \\ \frac{\partial u^{\varepsilon}}{\partial n} = \frac{\partial v^{\varepsilon}}{\partial n} = 0, \quad (t, x) \in [0, T] \times \partial \mathcal{D}, \\ u^{\varepsilon}(0, x) = u^{\varepsilon}_{0}(x), \quad x \in \mathcal{D}, \end{cases}$$
(10)

where $\xi^{\varepsilon}
ightarrow rac{dW}{dt}$.

Theorem 6

[Y, Zhu 19]: For any
$$\sigma \ge 0$$
, $\mathbb{P} - a.s. \omega$,
• $u^{\varepsilon} \rightarrow -1 + 2\mathbf{1}_{E}$ in $C([0, T], L_{w}^{2})$,
• $v^{\varepsilon} \rightarrow v$ in $L_{w}^{2}(0, T; H^{1})$,
• $\mathbf{1}_{E} \in L^{\infty}(0, T; BV)$.

$$\sigma > 0 \Rightarrow$$
 deterministic model (9).
For $\sigma = 0$, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

For $\sigma = 0$, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

Main results for $\sigma = 0$ [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

$$2d\mathbf{1}_{E_t} = \Delta v dt + dW_t.$$

For $\sigma = 0$, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

Main results for $\sigma = 0$ [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

$$2d\mathbf{1}_{E_t} = \Delta v dt + dW_t.$$

In radial symmetric case,

$$v = \frac{2}{3}H$$
 on Γ_t .

For $\sigma = 0$, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

Main results for $\sigma = 0$ [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

$$2d\mathbf{1}_{E_t} = \Delta v dt + dW_t.$$

In radial symmetric case,

$$v = \frac{2}{3}H$$
 on Γ_t .

Formally

For $\sigma = 0$, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

Main results for $\sigma = 0$ [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

$$2d\mathbf{1}_{E_t} = \Delta v dt + dW_t.$$

In radial symmetric case,

$$v = \frac{2}{3}H$$
 on Γ_t .

Formally

•
$$-\Delta v = \xi := \frac{dW_t}{dt}$$
 in $\mathcal{D} \setminus \Gamma_t$;

For
$$\sigma = 0$$
, $\partial_t u^{\varepsilon} = \Delta v^{\varepsilon} + \xi^{\varepsilon}$.

Main results for $\sigma = 0$ [Y, Zhu: 19]

the limit equation (weak formula for stochastic Hele Shaw model):

$$2d\mathbf{1}_{E_t} = \Delta v dt + dW_t.$$

In radial symmetric case,

$$v = \frac{2}{3}H$$
 on Γ_t .

Formally

•
$$-\Delta v = \xi := \frac{dW_t}{dt}$$
 in $\mathcal{D} \setminus \Gamma_t$;
• Let $\hat{v} = v + \Delta^{-1}\xi$

$$\int_0^t \int_{\mathcal{D}} \partial_t \mathbf{1}_{E_t} \psi = -\frac{1}{2} \int_0^t \int_{\mathcal{D}^+} \nabla \hat{v} \nabla \psi - \frac{1}{2} \int_0^t \int_{\mathcal{D}^-} \nabla \hat{v} \nabla \psi$$

$$= \frac{1}{2} \int_0^t \int_{\Gamma_t} (\partial_n \hat{v}^+ - \partial_n \hat{v}^-) \psi.$$

For $\sigma = 0$, we proved in radial symmetric case, that the sharp interface limit of (10) is the weak formula of the following "stochastic Hele-Shaw" model:

$$\begin{cases} \Delta v dt = -dW_t \text{ in } \mathcal{D} \setminus \Gamma_t, \ t > 0, \\ \frac{\partial v}{\partial n} = 0 \text{ on } \partial \mathcal{D}, \\ v = \frac{2}{3} H \text{ on } \Gamma_t, \\ \mathcal{V} dt = \frac{1}{2} \left[\frac{\partial}{\partial n} \right]_{\Gamma_t} (v dt + \Delta^{-1} dW_t), \end{cases}$$

(11)

where H: mean curvature

$$\left[\frac{\partial}{\partial n}\right]_{\Gamma_t} f = \frac{\partial f^+}{\partial n} - \frac{\partial f^-}{\partial n}.$$

• Rigorous meaning of stochastic Hele-Shaw model (11);

- Rigorous meaning of stochastic Hele-Shaw model (11);
- Approximate solution to (11);

- Rigorous meaning of stochastic Hele-Shaw model (11);
- Approximate solution to (11);
- Rigorous proof of convergence to (11) in general case;

- Rigorous meaning of stochastic Hele-Shaw model (11);
- Approximate solution to (11);
- Rigorous proof of convergence to (11) in general case;
- Singular noise for small σ .

N D Alikakos, P W Bates, and Xinfu Chen. Convergence of the Cahn-Hilliard Equation to the Hele-Shaw Model. *Archive for Rational Mechanics and Analysis*, 128(2):165–205, 1994.

D C Antonopoulou, D Blömker, and G D Karali. The sharp interface limit for the stochastic Cahn-Hilliard equation. *Annales de l'Institut Henri Poincaré Probabilités et Statistiques*, 54(1):280–298, 2018.

Lubomir Banas, Huanyu Yang, and Rongchan Zhu. Sharp interface limit of stochastic Cahn-Hilliard equation with singular noise. *arXiv.org*, May 2019.

Xinfu Chen.

Global asymptotic limit of solutions of the Cahn-Hilliard equation. Journal of Differential Geometry, 44(2):262–311, 1996.

Giuseppe Da Prato and Arnaud Debussche. Stochastic Cahn-Hilliard equation.

Nonlinear Analysis: Theory, Methods & Applications, 26(2):241–263, 1996.

J E Hutchinson and Y Tonegawa.

Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. *Calculus of Variations and Partial Differential Equations*, 10(1):49–84, January 2000.

R L Pego.

Front Migration in the Nonlinear Cahn-Hilliard Equation.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 422(1863):261–278, April 1989.

Michael Röckner, Huanyu Yang, and Rongchan Zhu. Conservative stochastic 2-dimensional Cahn-Hilliard equation. February 2018.

Matthias Röger and Reiner Schaetzle. On a modified conjecture of De Giorgi. *Mathematische Zeitschrift*, 254(4):675–714, December 2006.

Matthias Röger and Yoshihiro Tonegawa. Convergence of phase-field approximations to the Gibbs-Thomson law. *Calculus of Variations and Partial Differential Equations*, 32(1):111–136, 2008.

Thank you!