Derivation of viscous Burgers equations from weakly asymmetric simple exclusion processes

Kenkichi TSUNODA joint with M. Jara and C. Landim

Department of Mathematics, Osaka University

31, Jul, 2019

Outline of the talk

- Overview and Related Works
- 2 Model and Main Results
- Comments on the Proof

1. Overview and Related Works

Overview

■ The macroscopic density of the $(WASEP)_n$ evolves according to the nonlinear heat eq. as the system size n grows to infinity (Hydrodynamic limit):

$$\partial_t u = \nabla \cdot [D(u)\nabla u] + \nabla \cdot [\sigma(u)\mathbf{m}] , \qquad (1)$$

where D, σ are $d \times d$ -matrices (Diffusivity and Mobility).

■ For small $\varepsilon > 0$, let us consider the first order correction to (1) around a constant profile $\alpha_0 \in (0,1)$:

$$\begin{cases} \partial_t u^{\varepsilon} = \nabla \cdot [D(u^{\varepsilon}) \nabla u^{\varepsilon}] + \varepsilon^{-1} \nabla \cdot [\sigma(u^{\varepsilon}) \mathbf{m}] , \\ u^{\varepsilon}(0, \cdot) = \alpha_0 + \varepsilon v_0 , \end{cases}$$
 (2)

for some smooth function v_0 .

- The solution u^{ε} should evolve as $u_t^{\varepsilon} \sim \alpha_0 + \varepsilon v_t$.
- Indeed, if $\sigma'(\alpha_0) = 0$, the sequence $\{\varepsilon^{-1}(u^{\varepsilon} \alpha_0)\}_{\varepsilon>0}$ converges to the solution to the Burgers eq. as $\varepsilon \downarrow 0$ (Incompressible limit):

$$\begin{cases} \partial_t v = \nabla \cdot [D(\alpha_0) \nabla v] + (1/2) \nabla \cdot [v^2 \sigma''(\alpha_0) \mathbf{m}] , \\ v(0, \cdot) = v_0(\cdot) . \end{cases}$$

■ Main Result (rough version): Taking $\varepsilon = \varepsilon_n \downarrow 0 \ (n \to \infty)$, the correctly scaled density of the WASEP evolves according to the Burgers eq.

Related Works

- Many results on hydrodynamic limits.
 e.g. Guo-Papanicolaou-Varadhan, 88, Yau, 91.
- Esposito-Marra-Yau, 94, 96 · · · Derivation of Burgers equation and Navier-Stokes equation $(d \ge 3)$.
- Quastel-Yau, $98 \cdots$ Large deviations for the incompressible limits (d = 3).
- Beltán-Landim, 08 · · · Derivation of Burgers equation and Navier-Stokes equation in any dimensions but with (meso-scopically) big jumps.
- Jara-Menezes, 19+ · · · Sharp entropy bound.

2. Model and Main Results

Model

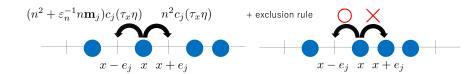
- Each particle moves on the *d*-dimensional discrete torus $\mathbb{T}_n^d = (\mathbb{Z}/n\mathbb{Z})^d = \{1, 2, \cdots, n\}^d, n \in \mathbb{N}$. Let \mathbb{T}^d be the *d*-dimensional torus $\mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d = [0, 1)^d$.
- Denote the number of particles at site $x \in \mathbb{T}_n^d$ at time t by $\eta_t^n(x)$ $(\eta_t^n = \{\eta_t^n : x \in \mathbb{T}_n^d\} \in \{0,1\}^{\mathbb{T}_n^d})$.
- Some parameters:
 - $\{\varepsilon_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$: a sequence converging to 0.
 - $(c_j)_{j=1}^d$: nonnegative local functions.
 - $\mathbf{m} = (\mathbf{m}_1, \dots, \mathbf{m}_d)$: a vector in \mathbb{R}^d .

Let η_t^n be a Markov process on $\{0,1\}^{\mathbb{T}_n^d}$ with the generator $L_n=n^2L_n^S+\varepsilon_n^{-1}nL_n^A$ with

for a function $f: \{0,1\}^{\mathbb{T}_n^d} \to \mathbb{R}$.

The dynamics of our particle system is as follows:

■ Each particle can jump from x to x+1 or x-1 at given rates only if the site x is occupied and the site x+1 or x-1 is vacant.



■ For a continuous function $u_0 : \mathbb{T}^d \to [0,1]$, let $\nu_{u_0}^n$ be the product Bernoulli measure on $\{0,1\}^{\mathbb{T}_n^d}$:

$$u_{u_0}^n (\eta : \eta(x) = 1) = u_0(x/n), \quad x \in \mathbb{T}_n^d.$$

■ Gradient condition: For each j, there exist finitely supported signed measures $m_{j,p}$, $p=1,\ldots,n_j$ and local functions $g_{j,p}$ such that

$$c_{j}(\eta)[\eta_{0} - \eta_{e_{j}}] = \sum_{p=1}^{n_{j}} \sum_{y \in \mathbb{Z}^{d}} m_{j,p}(y) g_{j,p}(\tau_{y}\eta) ,$$

 $\sum_{y \in \mathbb{Z}^{d}} m_{j,p}(y) = 0 .$

Classical case $(\varepsilon_n = 1)$

- Assume that $\eta_0^n \stackrel{\mathrm{d}}{=} \nu_{u_0}^n$ for some continuous function $u_0 : \mathbb{T}^d \to [0,1]$.
- Hydrodynamic limit: For any $t \ge 0$ and any smooth function $H: \mathbb{T}^d \to \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{E}^n \left[\left| \frac{1}{n^d} \sum_{x\in \mathbb{T}_n^d} H(x/n) \eta_t^n(x) - \int_{\mathbb{T}^d} H(x) u(t,x) dx \right| \right] = 0,$$

where $u:[0,\infty)\times\mathbb{T}^d\to[0,1]$ is the unique weak solution of the Cauchy problem

$$\begin{cases} \partial_t u = \nabla \cdot [D(u)\nabla u] + \nabla \cdot [\sigma(u)\mathbf{m}] , \\ u(0,\cdot) = u_0(\cdot) . \end{cases}$$

Incompressible case $(\varepsilon_n \downarrow 0)$

- Fix $\alpha_0 \in (0,1)$ with $\sigma'(\alpha_0) = 0$ and assume that $\eta_0^n \stackrel{\mathrm{d}}{=} \nu_{\alpha_0 + \varepsilon_n \nu_0}^n$ for some function $\nu_0 \in C^{3+}(\mathbb{T}^d)$.
- Let $v:[0,\infty)\times\mathbb{T}^d\to\mathbb{R}$ be the unique weak (classical) solution of the Burgers eq.:

$$\begin{cases} \partial_t v = \nabla \cdot [D(\alpha_0) \nabla v] + (1/2) \nabla \cdot [v^2 \sigma''(\alpha_0) \mathbf{m}] , \\ v(0, \cdot) = v_0(\cdot) . \end{cases}$$

■ For each $t \ge 0$, let $u_t^n = \alpha_0 + \varepsilon_n v_t$, $\nu_t^n = \nu_{u_t^n}^n$ and let μ_t^n be the distribution of η_t^n .

Main Results

Theorem 1 (Jara-Landim-T., 19+)

Assume that $n^2 \varepsilon_n^4 \leq C_0 g_d(n)$ for some constant C_0 , where $g_d(n) = n, \log n, 1$ if $d = 1, d = 2, d \geq 3$, respectively. Then, for any T > 0, there exists a constant $C_1 = C_1(T, v_0, C_0)$ such that for any $0 \leq t \leq T$,

$$H(\mu_t^n|\nu_t^n) \leq C_1 n^{d-2} g_d(n) ,$$

where $H(\mu|\nu)$ is the relative entropy of μ w.r.t. ν .

Corollary 2 (Jara-Landim-T., 19+)

Assume that $n^2 \varepsilon_n^4 \leq C_0 g_d(n)$ and $\varepsilon_n^2 n^2 g_d(n)^{-1} \uparrow \infty$. For any $t \geq 0$ and any smooth function $H : \mathbb{T}^d \to \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{E}^n \left[\left| \frac{1}{\varepsilon_n n^d} \sum_{x\in \mathbb{T}_n^d} H(x/n) [\eta_t^n(x) - \alpha_0] - \int_{\mathbb{T}^d} H(x) v(t,x) dx \right| \right] = 0,$$

Remarks

- Initial distribution: The assumption $\eta_0^n \stackrel{\mathrm{d}}{=} \nu_{\alpha_0 + \varepsilon_n \nu_0}^n$ can be replaced with the entropy bound at time 0.
- $\sigma'(\alpha_0) = 0$: In the case of general $\alpha \in (0,1)$, introducing the Galilean transformation $\alpha + \varepsilon_n v(t, x \varepsilon_n^{-1} \sigma'(\alpha) \mathbf{m} t)$, we can obtain a similar result.

3. Comments on the Proof

■ Following [Jara-Menezes, 19+], we shall compute the entropy production. Let $H_t = H(\mu_t^n | \nu_t^n)$. Then, we have

$$\frac{d}{dt}H_t \leq -n^2D(g_t^n, L_n^S, \nu_t^n) + \int \left\{L_n^{*,\nu_t^n}\mathbf{1} - \partial_t \log \nu_t^n\right\} d\mu_t^n.$$

- We need to compute the integrand $L_n^{*,\nu_t^n}\mathbf{1} \partial_t \log \nu_t^n$ explicitly. Indeed, it can be expressed in terms of the "Fourier coefficients" of $g_{j,p}$ (but quite messy...).
- We also need to expand several terms in ε_n properly: e.g. $E_{\nu_n^n}[\tau_{-e_i}g_{j,p}-g_{j,p}]$.
- Together with these calculations, we shall apply techniques developed in [Jara-Menezes, 19+].

Thank you for your attention.