Lower-tail large deviations of the KPZ equation

Li-Cheng Tsai

Rutgers University

Stochastic Analysis, Random Fields and Integrable Probability The 12th Mathematical Society of Japan, Seasonal Institute

The Kardar–Parisi–Zhang (KPZ) equation

Random growth with smoothing effect and slope dependence

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + \xi$$

 $\xi = \xi(t,x) = \text{spacetime white noise}$

同下 イヨト イヨト

The Kardar–Parisi–Zhang (KPZ) equation

$$\partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + \xi$$
 (KPZ)
$$\partial_t Z = \frac{1}{2} \partial_{xx} Z + \xi Z$$
 (Stochastic HE)
$$Iorder = e^{h(t,x)}$$

• Define
$$h(t, x) := \log Z(t, x)$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Kardar–Parisi–Zhang (KPZ) equation

$$\begin{array}{l} \partial_t h = \frac{1}{2} \partial_{xx} h + \frac{1}{2} (\partial_x h)^2 + \xi \qquad ({\sf KPZ}) \\ \partial_t Z = \frac{1}{2} \partial_{xx} Z + \xi Z \qquad ({\sf Stochastic HE}) \end{array} \begin{array}{l} {\sf Hopf-Cole} \\ Z(t,x) := e^{h(t,x)} \end{array}$$

- Define $h(t, x) := \log Z(t, x)$.
- This talk: $Z(0, x) = \delta(x)$. For small $t \ll 1$, $Z(t, x) \approx \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$.

$t \rightarrow \infty$ behaviors: centering, fluctuations, and tails

$t ightarrow \infty$ behaviors: centering, fluctuations, and tails

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

For $Z(0,x) = \delta(x)$, as $t \to \infty$,

$$t^{-\frac{1}{3}}(h(2t,0)+\frac{t}{12}) \Longrightarrow \mathsf{GUE}$$
 Tracy Widom

$t \rightarrow \infty$ behaviors: centering, fluctuations, and tails

 $\Phi_{\pm}(z) =$ rate functions

Speed t v.s. t^2

$$e^{h(2t,0)} = Z(2t,0) = \mathbf{E}_{\mathsf{BB}} \left[e^{\int_0^{2t} \xi(s, b(2t-s)) \mathrm{d}s} \right]$$

Perturbative versus non-perturbative

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

$$\mathbf{E}\left[\exp\left(-e^{\frac{t}{12}+tz}Z(2t,0)\right)\right] = \det\left(I-K_{t,z}\right)_{L^2(\mathbb{R}_+)}$$

$$\det(I - K_{t,z}) := 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\mathbb{R}^n_+} \det(K_{t,z}(x_i, x_j))_{i,j=1}^n \mathrm{d}^n x$$

$$K_{t,z}(x,x') := \int_{\mathbb{R}_+} (1 + \exp(-t^{1/3}\lambda - tz))^{-1} \operatorname{Ai}(x+r) \operatorname{Ai}(x'+r) dr$$

<回▶ < 国▶ < 国▶

Perturbative versus non-perturbative

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

$$\mathbf{E}\left[\exp\left(-e^{\frac{t}{12}+tz+h(2t,0)}\right)\right] = \det\left(I-K_{t,z}\right)_{L^2(\mathbb{R}_+)}$$

$$\det(I - K_{t,z}) := 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\mathbb{R}^n_+} \det(K_{t,z}(x_i, x_j))_{i,j=1}^n \mathrm{d}^n x$$

母▶★臣▶★臣▶

Perturbative versus non-perturbative

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

$$\mathbf{P}\left[h(2t,0) + \frac{t}{12} < tz\right] \approx \det\left(I - K_{t,z}\right)_{L^2(\mathbb{R}_+)}$$

$$\det(I - K_{t,z}) := 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\mathbb{R}^n_+} \det(K_{t,z}(x_i, x_j))_{i,j=1}^n \mathrm{d}^n x$$

同下 イヨト イヨト

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

$$\mathbf{P}\left[h(2t,0) + \frac{t}{12} < tz\right] \approx \det\left(I - K_{t,z}\right)_{L^2(\mathbb{R}_+)}$$

$$\det(I - K_{t,z}) := 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\mathbb{R}^n_+} \det(K_{t,z}(x_i, x_j))_{i,j=1}^n \mathrm{d}^n x$$

- Upper tail z > 0 as $t \to \infty$, we have $K_{t,z} \to 0$
 - Perturbative: det $(I K_{t,z}) = 1 \operatorname{Tr}(K_{t,z}) + \dots$
 - [Le Doussal Majumdar Schehr 16] predicted $\Phi_+(z) = \frac{4}{3}z^{\frac{3}{2}}$
 - Proof in progress

・ 同 ト ・ ヨ ト ・ ヨ ト

[Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10]

$$\mathbf{P}\left[h(2t,0) + \frac{t}{12} < tz\right] \approx \det\left(I - K_{t,z}\right)_{L^2(\mathbb{R}_+)}$$

$$\det(I - K_{t,z}) := 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\mathbb{R}^n_+} \det(K_{t,z}(x_i, x_j))_{i,j=1}^n \mathrm{d}^n x$$

- Upper tail z > 0 as $t \to \infty$, we have $K_{t,z} \to 0$
 - Perturbative: det $(I K_{t,z}) = 1 \operatorname{Tr}(K_{t,z}) + \dots$
 - [Le Doussal Majumdar Schehr 16] predicted $\Phi_+(z) = rac{4}{3}z^{rac{3}{2}}$
 - Proof in progress
- Lower tail z < 0, $K_{t,z} \not\rightarrow I$ as $t \rightarrow \infty$
 - Non-perturbative

・ 同 ト ・ ヨ ト ・ ヨ ト

Physics results

• [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large |z| behaviors

Math results

• [Corwin Ghosal 18] obtained bounds ($\forall t \geq t_0$) capturing small/large |z| behaviors

Physics results

- [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large $|\boldsymbol{z}|$ behaviors
- [Sasorov Meerson Prolhac 17] predicted

$$\Phi_{-}(z) = \frac{4}{15\pi^6} (1 - \pi^2 z)^{\frac{5}{2}} - \frac{4}{15\pi^6} + \frac{2}{3\pi^4} z - \frac{1}{2\pi^2} z^2$$

by WKB approx of an integral-diff eqn

Math results

• [Corwin Ghosal 18] obtained bounds ($\forall t \geq t_0$) capturing small/large |z| behaviors

Physics results

- [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large $|\boldsymbol{z}|$ behaviors
- [Sasorov Meerson Prolhac 17] predicted

$$\Phi_{-}(z) = \frac{4}{15\pi^6} (1 - \pi^2 z)^{\frac{5}{2}} - \frac{4}{15\pi^6} + \frac{2}{3\pi^4} z - \frac{1}{2\pi^2} z^2$$

by WKB approx of an integral-diff eqn

- [Corwin Ghosal Krajenbrink Le Doussal Tsai 18] same Φ_- by log/Coulomb gas
- [Krajenbrink Le Doussal Prolhac 18] same Φ_{-} by cumulant expansion

Math results

• [Corwin Ghosal 18] obtained bounds ($\forall t \geq t_0$) capturing small/large |z| behaviors

Physics results

- [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large $|\boldsymbol{z}|$ behaviors
- [Sasorov Meerson Prolhac 17] predicted

$$\Phi_{-}(z) = \frac{4}{15\pi^6} (1 - \pi^2 z)^{\frac{5}{2}} - \frac{4}{15\pi^6} + \frac{2}{3\pi^4} z - \frac{1}{2\pi^2} z^2$$

by WKB approx of an integral-diff eqn

- [Corwin Ghosal Krajenbrink Le Doussal Tsai 18] same Φ_- by log/Coulomb gas
- [Krajenbrink Le Doussal Prolhac 18] same Φ_{-} by cumulant expansion

Math results

- [Corwin Ghosal 18] obtained bounds ($\forall t \geq t_0$) capturing small/large |z| behaviors
- [Tsai 18] proof of Φ_- by stochastic Airy operator

• = •

Result

Theorem (Tsai 18)

Consider the IC $Z(0,x) = \delta(x)$. For z < 0, as $t \to \infty$,

$$\lim_{t \to \infty} \frac{1}{t^2} \log \left(\mathbf{P}[h(2t,0) + \frac{t}{12} < tz] \right) = -\Phi_-(z)$$
where $\Phi_-(z) := \frac{4}{15\pi^6} (1 - \pi^2 z)^{\frac{5}{2}} - \frac{4}{15\pi^6} + \frac{2}{3\pi^4} z - \frac{1}{2\pi^2} z^2$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Exponential functional of Airy Point Process

[Borodin Gorin 16]

$$\mathbf{E}\left[e^{-Z(2t,0)e^{\frac{t}{12}+tz}}\right] = \mathbf{E}_{\text{Airy}}\left[\prod_{i=1}^{\infty} \frac{1}{1+e^{-t^{1/3}(\lambda_i+t^{2/3}z)}}\right]$$

 $oldsymbol{\lambda}_1 < oldsymbol{\lambda}_2 < \ldots \in \mathbb{R}$ (space-reversed) Airy Point Process

Exponential functional of Airy Point Process

[Borodin Gorin 16]

$$\mathbf{E}\left[e^{-Z(2t,0)e^{\frac{t}{12}+tz}}\right] = \mathbf{E}\left[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\lambda_i)}\right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Exponential functional of Airy Point Process

[Borodin Gorin 16]

$$\mathbf{P}[h(2t,0) + \frac{t}{12} < tz] \approx \mathbf{E}\left[e^{-\sum_{i=1}^{\infty} \psi_{t,z}(\boldsymbol{\lambda}_i)}\right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathbf{E}\left[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}\right] = \int e^{-\psi_{t,z}(\boldsymbol{\rho})} \underbrace{e^{-\mathsf{penalty}(\boldsymbol{\rho})}}_{::=\mathrm{d}\mathbf{P}[\boldsymbol{\rho}]}$$

直 ト イヨ ト イヨト

$$\mathbf{E}\left[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}\right] \approx \exp\left(-\min_{\boldsymbol{\rho}}\left\{\psi_{t,z}(\boldsymbol{\rho}) + \mathsf{penalty}(\boldsymbol{\rho})\right\}\right)$$

日本・モト・モト

$$\mathbf{E}\left[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}\right] \approx \exp\left(-\min_{\boldsymbol{\rho}}\left\{\psi_{t,z}(\boldsymbol{\rho}) + \mathsf{penalty}(\boldsymbol{\rho})\right\}\right)$$

Examples [Corwin Ghosal 18] $\mathbf{P}[\boldsymbol{\rho} \approx \rho_{sq}] \approx 1$, but $e^{-\int_{\mathbb{R}} \psi_{t,z}(\lambda) \rho_{sq}(\lambda) d\lambda} \approx e^{-t^2 b_1(z)}$.

$$\mathbf{E}\left[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}\right] \approx \exp\left(-\min_{\boldsymbol{\rho}}\left\{\psi_{t,z}(\boldsymbol{\rho}) + \mathsf{penalty}(\boldsymbol{\rho})\right\}\right)$$

Stochastic Airy Operator

Theorem (Ramirez Rider Virag 06)

The Stochastic Airy Operator

$$\mathcal{A} := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x + \sqrt{2}W'(x)$$

acting on $\text{Dom}(\mathcal{A}) \subset L^2(\mathbb{R}_+)$ has spectrum $\{\lambda_1 < \lambda_2 < \ldots\}$, where W := standard BM. Large deviations controlled by W'

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{\boldsymbol{\rho}}\left\{\psi_{t,z}(\boldsymbol{\rho}) + \mathsf{penalty}(\boldsymbol{\rho})\right\}\right)$$

ho= eigenvalues distribution of

$$\mathcal{A} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x + \sqrt{2}W'(x)$$

Large deviations controlled by W' and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{\boldsymbol{\rho}}\left\{\psi_{t,z}(\boldsymbol{\rho}) + \mathsf{penalty}(\boldsymbol{\rho})\right\}\right)$$

ho = eigenvalues distribution of

$$\mathcal{A} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x + \sqrt{2}W'(x)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

(eigen prob)
$$-f''(x) + xf(x) + \sqrt{2}W'(x)f(x) = \lambda f(x)$$

 λ of order $t^{\frac{2}{3}}$

直 ト イヨ ト イヨト

Large deviations controlled by W^\prime and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{v}\left\{\psi_{t,z}(\boldsymbol{\rho}(v)) + \operatorname{penalty}(v)\right\}\right)$$
$$\boldsymbol{\rho}(v) = \text{eigenvalues distribution of}$$

$$\mathcal{A}_{v} = -\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} + x + \sqrt{2}t^{\frac{2}{3}}v(t^{-\frac{2}{3}}x)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

 $\mathsf{penalty}(v) = oldsymbol{
ho}(v) =$

(日) (日) (日)

Large deviations controlled by W' and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{v}\left\{\psi_{t,z}(\boldsymbol{\rho}(v)) + \text{penalty}(v)\right\}\right)$$
$$\boldsymbol{\rho}(v) = \text{eigenvalues distribution of}$$

$$\mathcal{A}_{v} = -\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} + x + \sqrt{2}t^{\frac{2}{3}}v(t^{-\frac{2}{3}}x)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

[LDP of BM] penalty
$$(v) = \frac{1}{2} \int t^{\frac{4}{3}} v^2 (t^{-\frac{2}{3}} x) dx$$

 $\rho(v) =$

Large deviations controlled by W' and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{v}\left\{\psi_{t,z}(\boldsymbol{\rho}(v)) + \operatorname{penalty}(v)\right\}\right)$$

$$\boldsymbol{\rho}(v) = \text{eigenvalues distribution of}$$

$$\mathcal{A}_{v} = -\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} + x + \sqrt{2}t^{\frac{2}{3}}v(t^{-\frac{2}{3}}x)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

[LDP of BM] penalty(v) =
$$\frac{1}{2} \int t^{\frac{4}{3}} v^2 (t^{-\frac{2}{3}}x) dx$$

[WKB approx] $\rho(v) \approx N'_v(\lambda) d\lambda$
 $N_v(\lambda) = \frac{t}{\pi} \int_0^\infty \sqrt{\left(-x + t^{-\frac{2}{3}}\lambda - \sqrt{2}v(x)\right)_+} dx$

Large deviations controlled by W^\prime and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{v}\left\{\psi_{t,z}(\boldsymbol{\rho}(v)) + \mathsf{penalty}(v)\right\}\right)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

[LDP of BM] penalty(v) = $\frac{1}{2} \int t^{\frac{4}{3}} v^2 (t^{-\frac{2}{3}}x) dx$ [WKB approx] $\rho(v) \approx N'_v(\lambda) d\lambda$ $N_v(\lambda) = \frac{t}{\pi} \int_0^\infty \sqrt{\left(-x + t^{-\frac{2}{3}}\lambda - \sqrt{2}v(x)\right)_+} dx$

Putting things together gives $(\psi_{t,z}(\boldsymbol{\rho}(v)) + \text{penalty}(v)) \approx t^2 J(v)$

$$J(v) = \int_0^\infty (\frac{1}{2}v^2(x) + ((-x + z - \sqrt{2}v(x))_+)^{\frac{3}{2}}) dx$$

伺 ト イヨ ト イヨ ト

Large deviations controlled by W^\prime and then by v

$$\mathbf{E}[e^{-\sum_{i=1}^{\infty}\psi_{t,z}(\boldsymbol{\lambda}_i)}] \approx \exp\left(-\min_{v}\left\{\psi_{t,z}(\boldsymbol{\rho}(v)) + \mathsf{penalty}(v)\right\}\right)$$

Postulate: relevant deviations controlled by $W'(x) \approx t^{\frac{2}{3}} v(t^{-\frac{2}{3}}x)$

[LDP of BM] penalty(v) = $\frac{1}{2} \int t^{\frac{4}{3}} v^2 (t^{-\frac{2}{3}}x) dx$ [WKB approx] $\rho(v) \approx N'_v(\lambda) d\lambda$ $N_v(\lambda) = \frac{t}{\pi} \int_0^\infty \sqrt{\left(-x + t^{-\frac{2}{3}}\lambda - \sqrt{2}v(x)\right)_+} dx$

Putting things together gives $(\psi_{t,z}(\rho(v)) + \text{penalty}(v)) \approx t^2 J(v)$

$$J(v) = \int_0^\infty (\frac{1}{2}v^2(x) + ((-x + z - \sqrt{2}v(x))_+)^{\frac{3}{2}}) \mathrm{d}x$$

which optimized to be

$$\min_{v} J(v) = \frac{4}{15\pi^{6}} (1 - \pi^{2}z)^{\frac{5}{2}} - \frac{4}{15\pi^{6}} + \frac{2}{3\pi^{4}}z - \frac{1}{2\pi^{2}}z^{2} = \Phi_{-}(z)$$

Further discussion

- More general cost functions, when does Postulate hold?
- What happens when *Postulate* fails?
- Full LDP of $\{\lambda_i\}_{i=1}^{\infty}$. Rate function conjectured in [Corwin Ghosal Krajenbrink Le Doussal Tsai 18]