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Uniform Spanning Tree (UST)

I For a graph G = (V ,E ), a spanning tree T of G is a
subgraph of G that is a tree with (the vertex set of T ) = V .

I A uniform spanning tree (UST) in G is a random spanning
tree chosen uniformly from a set of all spanning trees.

I UST has important connections to several areas:
I Loop-erased random walk (LERW)
I Loop soup
I Conformally invariant scaling limits
I The Abelian sandpile model
I Gaussian free field
I Domino tiling
I Random cluster model
I Random interlacements
I Potential theory
I Amenability · · ·
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Uniform Spanning Tree (UST)

2D UST in a fine grid.
Picture credit: Adrien Kassel.
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Uniform Spanning Tree (UST)

I Today’s talk: Scaling limit of UST in δZ3 as δ → 0 w.r.t.
the spatial Gromov-Hausdorff topology.

In particular, we want to define a random metric χ in R3

which is the limit of the rescaled graph distance in UST.

Namely, χ satisfies that for all x , y ∈ R3, the rescaled graph
distance between x and y in UST in δZ3 converges weakly to
χ(x , y).
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The Gromov-Hausdorff convergence

I A pointed metric space (X , ρ) is a pair of a metric space X
and a distinguished point ρ of X .

I For two metric spaces (X1, d1) and (X2, d2), a correspondence
between X1 and X2 is a subset R of X1 × X2 s.t.
∀x1 ∈ X1, ∃x2 ∈ X2 s.t. (x1, x2) ∈ R and conversely
∀y2 ∈ X2, ∃y1 ∈ X1 s.t. (y1, y2) ∈ R.

I The distortion of the correspondence R is defined by
dis(R) = sup

{∣∣d1(x1, y1)−d2(x2, y2)
∣∣ : (x1, x2), (y1, y2) ∈ R

}
.
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The Gromov-Hausdorff convergence

x1
x2

y1 y2

X1 X2

Correspondence between X1 and X2.
Picture credit: Daisuke Shiraishi.
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The Gromov-Hausdorff convergence

isometry

Two equivalent trees in the Gromov-Hausdorff topology.
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The spatial Gromov-Hausdorff convergence

I A quadruplet X = (X , dX , ρX , φX ) is called a pointed spatial
compact metric space if (X , dX , ρX ) is a pointed compact
metric space and φX is a continuous map from (X , dX ) to R3.

I For two pointed spatial compact metric spaces
Xi = (Xi , di , ρi , φi ) (i = 1, 2), define d sp

GH(X1,X2) by

d sp
GH(X1,X2) = inf

(
dis(R) ∨ sup

(x1,x2)∈R
dEuclid

(
φ1(x1), φ2(x2)

))
,

where the infimum is over all correspondences R between X1

and X2 with (ρ1, ρ2) ∈ R.
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The spatial Gromov-Hausdorff convergence

isometry

These two trees are distinguished in the spatial Gromov-Hausdorff
topology.
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Main Result

I Let U be the UST in Z3 endowed with the graph distance dU .

I Suppose that (U , dU ) is pointed at the origin.

I φU : U → R3: the identity on vertices, with linear
interpolation along edges of U .

I Let LERWn be the loop-erased random walk from 0 to ∂B(2n)
in Z3. Denote the number of steps of LERWn by

∣∣LERWn

∣∣.
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SRW and LERW

O

2n

Erase Loops
O

SRW (left) and Loop-erased random walk (right) in Z3.
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Main Result

I Let U be the UST in Z3 endowed with the graph distance dU .

I Suppose that (U , dU ) is pointed at the origin.
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interpolation along edges of U .

I Let LERWn be the loop-erased random walk from 0 to
∂B(2n). Denote the number of steps of LERWn by

∣∣LERWn

∣∣.

I (S. ’14, Li-S. ’18) It is proved that ∃ a constant β ∈ (1, 53 ] s.t.

lim
n→∞

2−βnE
(∣∣LERWn

∣∣) ∈ (0,∞).

I (Wilson ’10) Numerical simulation: β = 1.624 · · · .

Theorem (Angel-Croydon-S.-Hernandez Torres. ’19+)

As n→∞, the pointed spatial tree (U , 2−βndU , 0, 2−nφU )
converges weakly w.r.t. the metric d sp

GH.
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Remarks

I Remark 1: This is the first result to prove the existence of
the scaling limit of 3D UST!

I Remark 2: One of the key ingredient is the convergence of
3D LERW in the natural parametrization established by Li-S.
(’18).

I Remark 3: Kozma (’07) proved the existence of weak
convergence limit of 3D LERW w.r.t. the Hausdorff metric.
But the topology he used is weaker than we want.
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Remarks

I Remark 4: Let (T , dT , ρT , φT ) be the limit of
(U , 2−βndU , 0, 2−nφU ). It is proved that

I (T , dT , ρT , φT ) is a pointed spatial tree a.s.
I φT (T ) = R3 and φT is not injective a.s.
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Remarks

≃

2−nZ3

GH

n → ∞

R3w

♯ϕ−1
T (w) = 2

A subtree in the UST (top left) and its limit in the Euclidean
topology (bottom left). The right tree is equivalent to the UST
subtree in the Gromov-Hausdorff topology.
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Remarks

I Remark 4: Let (T , dT , ρT , φT ) be the limit of
(U , 2−βndU , 0, 2−nφU ). It is proved that

I (T , dT , ρT , φT ) is a pointed spatial tree a.s.
I φT (T ) = R3 and φT is not injective a.s.

I For a fixed point x ∈ R3, the preimage {x ′} = φ−1T (x) of x is a
singleton a.s.

I ∃M <∞ deterministic s.t. maxx∈R3 ]φ−1T (x) ≤ M a.s.
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Remarks

r

R

Five non-intersecting arms from ∂B(r) to ∂B(R) for UST in Z3.

It is proved that ∃ε,C > 0 s.t.

P
(
∃k arms between ∂B(r) and ∂B(R) in UST

)
≤ C (r/R)εk

for all k ≥ 2 and r < R with Cr < R.
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Remarks

I Remark 4: Let (T , dT , ρT , φT ) be the limit of
(U , 2−βndU , 0, 2−nφU ). It is proved that

I (T , dT , ρT , φT ) is a pointed spatial tree a.s.
I φT (T ) = R3 and φT is not injective a.s.
I For a fixed point x ∈ R3, the preimage {x ′} = φ−1T (x) of x is a

singleton a.s.
I ∃M <∞ deterministic s.t. maxx∈R3 ]φ−1T (x) ≤ M.

I For x , y ∈ R3, we define a random metric χ in R3 by

χ(x , y) := dHaus

(
φ−1T (x), φ−1T (y)

)
= max

{
max

x′∈φ−1
T (x)

dT
(
x ′, φ−1T (y)

)
, max
y ′∈φ−1

T (y)
dT

(
y ′, φ−1T (x)

)}
.

(Note that for typical x , y ∈ R3, χ(x , y) = dT (x ′, y ′) a.s.)
Then χ is the limit of rescaled graph distances of UST’s.
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Remarks

I Remark 5: I believe

max
v∈T

degT (v) = 3 a.s.

although this is not yet proved.

I Remark 6: Our topology is stronger than the topology Oded
Schramm considered in the paper (’00) introducing his SLE.

I Remark 7: Several properties of (T , dT , ρT , φT ) as well as
the SRW on U and its scaling limit will be studied in our
forthcoming paper. (Scaling limit of the SRW on 2D UST was
studied in Barlow-Croydon-Kumagai (’17).)
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Big Problem

What is the scaling limit of 3D UST?

Can we give a “nice” description of it?
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Thank you for your attention!
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