Scaling limit of uniform spanning tree in three dimensions

Daisuke Shiraishi, Kyoto University
ongoing work with Omer Angel (UBC), David Croydon (Kyoto University) and Sarai Hernandez Torres (UBC)

August 2019, Kyushu University

Uniform Spanning Tree (UST)

- For a graph $G=(V, E)$, a spanning tree T of G is a subgraph of G that is a tree with (the vertex set of T) $=V$.

Uniform Spanning Tree (UST)

- For a graph $G=(V, E)$, a spanning tree T of G is a subgraph of G that is a tree with (the vertex set of T) $=V$.
- A uniform spanning tree (UST) in G is a random spanning tree chosen uniformly from a set of all spanning trees.

Uniform Spanning Tree (UST)

- For a graph $G=(V, E)$, a spanning tree T of G is a subgraph of G that is a tree with (the vertex set of T) $=V$.
- A uniform spanning tree (UST) in G is a random spanning tree chosen uniformly from a set of all spanning trees.
- UST has important connections to several areas:

Uniform Spanning Tree (UST)

- For a graph $G=(V, E)$, a spanning tree T of G is a subgraph of G that is a tree with (the vertex set of T) $=V$.
- A uniform spanning tree (UST) in G is a random spanning tree chosen uniformly from a set of all spanning trees.
- UST has important connections to several areas:
- Loop-erased random walk (LERW)
- Loop soup
- Conformally invariant scaling limits
- The Abelian sandpile model
- Gaussian free field
- Domino tiling
- Random cluster model
- Random interlacements
- Potential theory
- Amenability ...

Uniform Spanning Tree (UST)

2D UST in a fine grid.
Picture credit: Adrien Kassel.

Uniform Spanning Tree (UST)

- Today's talk: Scaling limit of UST in $\delta \mathbb{Z}^{3}$ as $\delta \rightarrow 0$ w.r.t. the spatial Gromov-Hausdorff topology.

Uniform Spanning Tree (UST)

- Today's talk: Scaling limit of UST in $\delta \mathbb{Z}^{3}$ as $\delta \rightarrow 0$ w.r.t. the spatial Gromov-Hausdorff topology.

In particular, we want to define a random metric χ in \mathbb{R}^{3} which is the limit of the rescaled graph distance in UST.

Namely, χ satisfies that for all $x, y \in \mathbb{R}^{3}$, the rescaled graph distance between x and y in UST in $\delta \mathbb{Z}^{3}$ converges weakly to $\chi(x, y)$.

The Gromov-Hausdorff convergence

- A pointed metric space (X, ρ) is a pair of a metric space X and a distinguished point ρ of X.

The Gromov-Hausdorff convergence

- A pointed metric space (X, ρ) is a pair of a metric space X and a distinguished point ρ of X.
- For two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a correspondence between X_{1} and X_{2} is a subset \mathcal{R} of $X_{1} \times X_{2}$ s.t.
$\forall x_{1} \in X_{1}, \exists x_{2} \in X_{2}$ s.t. $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and conversely $\forall y_{2} \in X_{2}, \exists y_{1} \in X_{1}$ s.t. $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.

The Gromov-Hausdorff convergence

- A pointed metric space (X, ρ) is a pair of a metric space X and a distinguished point ρ of X.
- For two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a correspondence between X_{1} and X_{2} is a subset \mathcal{R} of $X_{1} \times X_{2}$ s.t.
$\forall x_{1} \in X_{1}, \exists x_{2} \in X_{2}$ s.t. $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and conversely $\forall y_{2} \in X_{2}, \exists y_{1} \in X_{1}$ s.t. $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- The distortion of the correspondence \mathcal{R} is defined by $\operatorname{dis}(\mathcal{R})=\sup \left\{\left|d_{1}\left(x_{1}, y_{1}\right)-d_{2}\left(x_{2}, y_{2}\right)\right|:\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathcal{R}\right\}$.

The Gromov-Hausdorff convergence

Correspondence between X_{1} and X_{2}.
Picture credit: Daisuke Shiraishi.

The Gromov-Hausdorff convergence

- A pointed metric space (X, ρ) is a pair of a metric space X and a distinguished point ρ of X.
- For two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a correspondence between X_{1} and X_{2} is a subset \mathcal{R} of $X_{1} \times X_{2}$ s.t. $\forall x_{1} \in X_{1}, \exists x_{2} \in X_{2}$ s.t. $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and conversely $\forall y_{2} \in X_{2}, \exists y_{1} \in X_{1}$ s.t. $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- The distortion of the correspondence \mathcal{R} is defined by $\operatorname{dis}(\mathcal{R})=\sup \left\{\left|d_{1}\left(x_{1}, y_{1}\right)-d_{2}\left(x_{2}, y_{2}\right)\right|:\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathcal{R}\right\}$.

The Gromov-Hausdorff convergence

- A pointed metric space (X, ρ) is a pair of a metric space X and a distinguished point ρ of X.
- For two metric spaces $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, a correspondence between X_{1} and X_{2} is a subset \mathcal{R} of $X_{1} \times X_{2}$ s.t. $\forall x_{1} \in X_{1}, \exists x_{2} \in X_{2}$ s.t. $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and conversely $\forall y_{2} \in X_{2}, \exists y_{1} \in X_{1}$ s.t. $\left(y_{1}, y_{2}\right) \in \mathcal{R}$.
- The distortion of the correspondence \mathcal{R} is defined by $\operatorname{dis}(\mathcal{R})=\sup \left\{\left|d_{1}\left(x_{1}, y_{1}\right)-d_{2}\left(x_{2}, y_{2}\right)\right|:\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathcal{R}\right\}$.
- For two pointed compact metric spaces $\left(X_{1}, \rho_{1}\right)$ and $\left(X_{2}, \rho_{2}\right)$, define the distance $d_{\mathrm{GH}}\left(X_{1}, X_{2}\right)$ by

$$
d_{\mathrm{GH}}\left(X_{1}, X_{2}\right)=\inf \operatorname{dis}(\mathcal{R})
$$

where the infimum is over all correspondences \mathcal{R} between X_{1} and X_{2} with $\left(\rho_{1}, \rho_{2}\right) \in \mathcal{R}$.

The Gromov-Hausdorff convergence

Two equivalent trees in the Gromov-Hausdorff topology.

The spatial Gromov-Hausdorff convergence

- A quadruplet $\underline{X}=\left(X, d_{X}, \rho_{X}, \phi_{X}\right)$ is called a pointed spatial compact metric space if $\left(X, d_{X}, \rho_{X}\right)$ is a pointed compact metric space and ϕ_{X} is a continuous map from $\left(X, d_{X}\right)$ to \mathbb{R}^{3}.

The spatial Gromov-Hausdorff convergence

- A quadruplet $\underline{X}=\left(X, d_{X}, \rho_{X}, \phi_{X}\right)$ is called a pointed spatial compact metric space if $\left(X, d_{X}, \rho_{X}\right)$ is a pointed compact metric space and ϕ_{X} is a continuous map from $\left(X, d_{X}\right)$ to \mathbb{R}^{3}.
- For two pointed spatial compact metric spaces $\underline{X_{i}}=\left(X_{i}, d_{i}, \rho_{i}, \phi_{i}\right)(i=1,2)$, define $d_{\mathrm{GH}}^{\mathrm{sp}}\left(\underline{X_{1}}, \underline{X_{2}}\right)$ by $d_{\mathrm{GH}}^{\mathrm{SP}}\left(\underline{X_{1}}, \underline{X_{2}}\right)=\inf \left(\operatorname{dis}(\mathcal{R}) \vee \sup _{\left(x_{1}, x_{2}\right) \in \mathcal{R}} d_{\text {Euclid }}\left(\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right)\right)\right)$, where the infimum is over all correspondences \mathcal{R} between X_{1} and X_{2} with $\left(\rho_{1}, \rho_{2}\right) \in \mathcal{R}$.

The spatial Gromov-Hausdorff convergence

These two trees are distinguished in the spatial Gromov-Hausdorff topology.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.
- Let LERW ${ }_{n}$ be the loop-erased random walk from 0 to $\partial B\left(2^{n}\right)$ in \mathbb{Z}^{3}. Denote the number of steps of LERW $_{n}$ by \mid LERW $_{n} \mid$.

SRW and LERW

SRW (left) and Loop-erased random walk (right) in \mathbb{Z}^{3}.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.
- Let LERW ${ }_{n}$ be the loop-erased random walk from 0 to $\partial B\left(2^{n}\right)$. Denote the number of steps of LERW $_{n}$ by \mid LERW $_{n} \mid$.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.
- Let LERW n be the loop-erased random walk from 0 to $\partial B\left(2^{n}\right)$. Denote the number of steps of LERW $_{n}$ by \mid LERW $_{n} \mid$.
- (S. '14, Li-S. '18) It is proved that \exists a constant $\beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
\lim _{n \rightarrow \infty} 2^{-\beta n} E\left(\left|\operatorname{LERW}_{n}\right|\right) \in(0, \infty)
$$

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.
- Let LERW n be the loop-erased random walk from 0 to $\partial B\left(2^{n}\right)$. Denote the number of steps of LERW $_{n}$ by \mid LERW $_{n} \mid$.
- (S. '14, Li-S. '18) It is proved that \exists a constant $\beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
\lim _{n \rightarrow \infty} 2^{-\beta n} E\left(\left|\mathrm{LERW}_{n}\right|\right) \in(0, \infty)
$$

- (Wilson '10) Numerical simulation: $\beta=1.624 \cdots$.

Main Result

- Let \mathcal{U} be the UST in \mathbb{Z}^{3} endowed with the graph distance $d_{\mathcal{U}}$.
- Suppose that $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is pointed at the origin.
- $\phi_{\mathcal{U}}: \mathcal{U} \rightarrow \mathbb{R}^{3}$: the identity on vertices, with linear interpolation along edges of \mathcal{U}.
- Let LERW ${ }_{n}$ be the loop-erased random walk from 0 to $\partial B\left(2^{n}\right)$. Denote the number of steps of LERW $_{n}$ by \mid LERW $_{n} \mid$.
- (S. '14, Li-S. '18) It is proved that \exists a constant $\beta \in\left(1, \frac{5}{3}\right]$ s.t.

$$
\lim _{n \rightarrow \infty} 2^{-\beta n} E\left(\left|\mathrm{LERW}_{n}\right|\right) \in(0, \infty)
$$

- (Wilson '10) Numerical simulation: $\beta=1.624 \cdots$.

Theorem (Angel-Croydon-S.-Hernandez Torres. '19+)
As $n \rightarrow \infty$, the pointed spatial tree $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$ converges weakly w.r.t. the metric $d_{G H}^{S P}$.

Remarks

- Remark 1: This is the first result to prove the existence of the scaling limit of 3D UST!

Remarks

- Remark 1: This is the first result to prove the existence of the scaling limit of 3D UST!
- Remark 2: One of the key ingredient is the convergence of 3D LERW in the natural parametrization established by Li-S. ('18).

Remarks

- Remark 1: This is the first result to prove the existence of the scaling limit of 3D UST!
- Remark 2: One of the key ingredient is the convergence of 3D LERW in the natural parametrization established by Li-S. ('18).
- Remark 3: Kozma ('07) proved the existence of weak convergence limit of 3D LERW w.r.t. the Hausdorff metric. But the topology he used is weaker than we want.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.

Remarks

A subtree in the UST (top left) and its limit in the Euclidean topology (bottom left). The right tree is equivalent to the UST subtree in the Gromov-Hausdorff topology.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.
- For a fixed point $x \in \mathbb{R}^{3}$, the preimage $\left\{x^{\prime}\right\}=\phi_{\mathcal{T}}^{-1}(x)$ of x is a singleton a.s.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.
- For a fixed point $x \in \mathbb{R}^{3}$, the preimage $\left\{x^{\prime}\right\}=\phi_{\mathcal{T}}^{-1}(x)$ of x is a singleton a.s.
- $\exists M<\infty$ deterministic s.t. $\max _{x \in \mathbb{R}^{3}} \sharp \phi_{\mathcal{T}}^{-1}(x) \leq M$ a.s.

Remarks

Five non-intersecting arms from $\partial B(r)$ to $\partial B(R)$ for UST in \mathbb{Z}^{3}.

Remarks

Five non-intersecting arms from $\partial B(r)$ to $\partial B(R)$ for UST in \mathbb{Z}^{3}. It is proved that $\exists \epsilon, C>0$ s.t.
$P(\exists k$ arms between $\partial B(r)$ and $\partial B(R)$ in UST $) \leq C(r / R)^{\epsilon k}$ for all $k \geq 2$ and $r<R$ with $\mathrm{Cr}<R$.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.
- For a fixed point $x \in \mathbb{R}^{3}$, the preimage $\left\{x^{\prime}\right\}=\phi_{\mathcal{T}}^{-1}(x)$ of x is a singleton a.s.
- $\exists M<\infty$ deterministic s.t. $\max _{x \in \mathbb{R}^{3}} \sharp \phi_{\mathcal{T}}^{-1}(x) \leq M$.

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.
- For a fixed point $x \in \mathbb{R}^{3}$, the preimage $\left\{x^{\prime}\right\}=\phi_{\mathcal{T}}^{-1}(x)$ of x is a singleton a.s.
- $\exists M<\infty$ deterministic s.t. $\max _{x \in \mathbb{R}^{3}} \sharp \phi_{\mathcal{T}}^{-1}(x) \leq M$.
- For $x, y \in \mathbb{R}^{3}$, we define a random metric χ in \mathbb{R}^{3} by

$$
\begin{aligned}
& \chi(x, y):=d_{\text {Haus }}\left(\phi_{\mathcal{T}}^{-1}(x), \phi_{\mathcal{T}}^{-1}(y)\right) \\
& =\max \left\{\max _{x^{\prime} \in \phi_{\mathcal{T}}^{-1}(x)} d_{\mathcal{T}}\left(x^{\prime}, \phi_{\mathcal{T}}^{-1}(y)\right), \max _{y^{\prime} \in \phi_{\mathcal{T}}^{-1}(y)} d_{\mathcal{T}}\left(y^{\prime}, \phi_{\mathcal{T}}^{-1}(x)\right)\right\} .
\end{aligned}
$$

Remarks

- Remark 4: Let $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ be the limit of $\left(\mathcal{U}, 2^{-\beta n} d_{\mathcal{U}}, 0,2^{-n} \phi_{\mathcal{U}}\right)$. It is proved that
- $\left(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ is a pointed spatial tree a.s.
- $\phi_{\mathcal{T}}(\mathcal{T})=\mathbb{R}^{3}$ and $\phi_{\mathcal{T}}$ is not injective a.s.
- For a fixed point $x \in \mathbb{R}^{3}$, the preimage $\left\{x^{\prime}\right\}=\phi_{\mathcal{T}}^{-1}(x)$ of x is a singleton a.s.
- $\exists M<\infty$ deterministic s.t. $\max _{x \in \mathbb{R}^{3}} \sharp \phi_{\mathcal{T}}^{-1}(x) \leq M$.
- For $x, y \in \mathbb{R}^{3}$, we define a random metric χ in \mathbb{R}^{3} by

$$
\begin{aligned}
& \chi(x, y):=d_{\text {Haus }}\left(\phi_{\mathcal{T}}^{-1}(x), \phi_{\mathcal{T}}^{-1}(y)\right) \\
& =\max \left\{\max _{x^{\prime} \in \phi_{\mathcal{T}}^{-1}(x)} d_{\mathcal{T}}\left(x^{\prime}, \phi_{\mathcal{T}}^{-1}(y)\right), \max _{y^{\prime} \in \phi_{\mathcal{T}}^{-1}(y)} d_{\mathcal{T}}\left(y^{\prime}, \phi_{\mathcal{T}}^{-1}(x)\right)\right\} .
\end{aligned}
$$

(Note that for typical $x, y \in \mathbb{R}^{3}, \chi(x, y)=d_{\mathcal{T}}\left(x^{\prime}, y^{\prime}\right)$ a.s.)
Then χ is the limit of rescaled graph distances of UST's.

Remarks

- Remark 5: I believe

$$
\max _{v \in \mathcal{T}} \operatorname{deg}_{\mathcal{T}}(v)=3 \text { a.s. }
$$

although this is not yet proved.

Remarks

- Remark 5: I believe

$$
\max _{v \in \mathcal{T}} \operatorname{deg}_{\mathcal{T}}(v)=3 \text { a.s. }
$$

although this is not yet proved.

- Remark 6: Our topology is stronger than the topology Oded Schramm considered in the paper ('00) introducing his SLE.

Remarks

- Remark 5: I believe

$$
\max _{v \in \mathcal{T}} \operatorname{deg}_{\mathcal{T}}(v)=3 \text { a.s. }
$$

although this is not yet proved.

- Remark 6: Our topology is stronger than the topology Oded Schramm considered in the paper ('00) introducing his SLE.
- Remark 7: Several properties of ($\left.\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}, \phi_{\mathcal{T}}\right)$ as well as the SRW on \mathcal{U} and its scaling limit will be studied in our forthcoming paper. (Scaling limit of the SRW on 2D UST was studied in Barlow-Croydon-Kumagai ('17).)

Big Problem

What is the scaling limit of 3D UST?

Can we give a "nice" description of it?

Thank you for your attention!

