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Integrable systems around box-ball system
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Ud-KDV equation : Euler representation of BBS
Ud-Toda equation : Lagrange representation of BBS



Classical integrable systems
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classical integrable system



Discrete integrable systems
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discrete integrable system



Korteweg-de Vries (KdV) equation

In the 1830s, John Scott Russell observed the formation of solitary waves
with constant shape and constant speed, or ‘solitons’, in canals:

Source: Shnir

To model such shallow water waves, Korteweg and de Vries introduced the
following equation:

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0



Solitons in KdV

The KdV admits soliton solutions. For example, with u(x , t)→ 0 as
x →∞, 1- soliton solutions are given by:

u(x , t) =
1

2
c2sech2

(
1

2
c(x + c2t)

)
,

Source: Brunelli



Toda equation (Toda lattice)

Chain of oscillators with potential function V (r) = exp(−r) + r − 1.{
dqn
dt = ∂H

∂pn
= pn

dpn
dt = − ∂H

∂qn
= − exp(−(qn+1 − qn)) + exp(−(qn − qn−1))

Change of variables: In := pn, Vn := − exp(−(qn+1 − qn)){
dIn
dt = Vn − Vn−1

dVn
dt = Vn(In − In+1)

• Infinitely many conserved quantities

• Integrable system (Lax pair expression exists)



Motivation

• The discrete integrable systems are well studied as classical integrable
systems
• Explicit special solutions (soliton solutions, tau functions)
• Relation to special orthogonal polynomials
• Relation to crystals (which relate to solvable lattice models)
• Initial value problem with periodic or zero boundary condition

Questions

• Start the dynamics from random initial condition
• Well-posedness of the initial value problem with non-zero boundary

condition (or simply, definition of infinite system. Non-trivial also for
higher spin stochastic vertex models)
• Invariant measures? Generalized Gibbs ensembles? (Cf. GGE and

random matrix for Toda lattice (Spohn, 2019), White-noise is
invariant for KdV (Killip-Murphy-Visan, 2019))
• Various scaling limit (between different models, generalized HDL,

integrated current, tagged particle...)
• Relation to other models (vertex models, LPP, random polymer)
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Today’s talk

• Well-posedness of the initial value problem with non-zero boundary
condition

• Some class of invariant measures

“Key idea : Pitman’s type transform”

Remark

Relation between (some versions of) Pitman’s transform and several
important integrable systems, and its application to stochastic models
have been studied by O’Connell and his collaborators.
(Quantum Toda lattice, random polymers, random matrices, KPZ
equation...)



Pitman’s transform

One-sided version S : R≥0 → R : a continuous path, S0 = 0

Mx := max
0≤y≤x

Sy , x ∈ R≥0

TSx := 2Mx − Sx

Theorem (Pitman)

S : BM (+drift) → TS : 3-dimensional Bessel process (+drift)

Two-sided version S : R→ R : a continuous path, S0 = 0

Mx := max
y≤x

Sy , x ∈ R

TSx := 2Mx − Sx − 2M0

Theorem (Harrison-Williams)

S : BM + positive drift → S
d
= TS



Exponential version of Pitman’s transform

One-sided version S : R≥0 → R : a continuous path, S0 = 0

Mx := log

∫ x

0
exp(Sy )dy , x ∈ R≥0

TSx := 2Mx − Sx

Theorem (Matsumoto-Yor)

S : BM → TS : BM conditioned to survive in the potential e−x

Two-sided version S : R→ R : a continuous path, S0 = 0

Mx := log

∫ x

−∞
exp(Sy )dy , x ∈ R

TSx := 2Mx − Sx − 2M0

Theorem (O’Connell-Yor)

S : BM + positive drift → S
d
= TS



Pitman’s type transform for two-sided path

Path spaces

• F := {f : Z→ R} or {f : R→ R ; f : continuous}
• F0 := {f ∈ F ; f0 = 0}

Let M : S → F for some S ⊂ F0 and TS ∈ F0

TS := 2M − S − 2M0 (= 2M(S)− S − 2M(S)0)

When S
d
= TS holds?



Reflections and invariance

Reflection operators:
• R : F → F : Rfx := −f−x

• R̄ : F → F : R̄fx := f−x

Let W (S) = M(S)− S .

Theorem

Suppose S is a random process supported on S. If

(i) S
d
= RS , (ii) (W ,M −M0)

d
= (R̄W ,R(M −M0))

then, S
d
= TS.

Moreover, if M −M0 = L(W )a.s. for some functional L satisfying
L(R̄W ) = RL(W ), (ii) is equivalent to

(ii)′ W
d
= R̄W

* For the original Pitman’s transform, if S is a two-sided BM, W is a
reflected BM and L(W ) is a local time of W at 0
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Box-Ball System (BBS)

Introduced in 1990 by Takahashi-Satsuma

• Discrete time deterministic dynamics (Cellular-Automaton)

• Finite number of balls

・・・
１    2     3    4     5    6     7     8    9    10  11  12  13  14   

box

ball



Box-Ball System (BBS)

Def 1

• Every ball moves exactly once in each evolution time step

• The leftmost ball moves first and the next leftmost ball moves next
and so on...

• Each ball moves to its nearest right vacant box

・・・

・・・

１    2     3    4     5    6     7     8    9    10  11  12  13  14   

１    2     3    4     5    6     7     8    9    10  11  12  13  14   

t = 0

t = 1



Box-Ball System

Def 2

• A carrier moves from left to
right

• The carrier picks up a ball if it
finds a ball (The carrier can
load any number of balls)

• The carrier puts down a ball if
it comes to an empty box
when it carries at least one
ball



Box-Ball System (BBS)

Def 2

• η = (ηn)n∈Z ∈ {0, 1}Z,
∑

n∈Z ηn <∞
• BBS operator T : η → Tη

• Wn : the number of balls on the carrier as it passes location n

• Tηn = 0 if ηn = 1

• Tηn = 1 if ηn = 0 and Wn−1 ≥ 1

• Wn =
∑n

m=−∞(ηm − Tηm)

• Tηn = min{1− ηn,Wn−1}



What is known for BBS

Key properties

• Solitonic behavior

• Integrable system (infinitely many conserved quantities)

• Initial value problem is solved by various methods

• Reversible as a dynamical system (skew-symmetry)

Connections to many physical models

• Ultra-discretization of discrete KdV equation

• Crystallization of an integrable lattice model (six vertex model)

• Ultra-discretization of discrete Toda equation

• Many variations of BBS have been also studied and known to have
connections to variants of above models



Solitons in BBS

• (1, 0), (1, 1, 0, 0), (1, 1, 1, 0, 0, 0)... are ”Solitons”

• (1, 1, 1, . . . , 1, 0, 0, 0, . . . , 0) : soliton of size K

• soliton of size K moves with speed K



Solitons in BBS

• Number of each type of solitons is conserved ⇒ ∃ Infinite number of
conserved quantities

• The interaction between solitons are nonlinear

• Integrable system



Our previous result

arXiv:1806.02147 (Croydon-Kato-S-Tsujimoto)

• Define the dynamics for configuration with infinitely many particles
for both direction (cf. Ferrari-Nguyen-Rolla-Wang)

• Study general properties of invariant measures for BBS

• Find some explicit invariant measures

• Ergodicity of BBS ( = Pitman’s transform) for the above examples
(cf. For BM, the ergodicity of Pitman’s transform is open. For the
white-noise, the ergodicity of the KdV flow is open. )

• LLN, CLT and LDP for integrated currents of particles at origin for
the above examples

• LLN, CLT and LDP for a tagged particle for some of the above
examples

Key Observation: BBS is Pitman’s transform



Path encoding

• η = (ηn)n∈Z ∈ {0, 1}Z

• S = (Sn)n∈Z ∈ S0, S0 := {S : Z→ Z; S0 = 0, |Sn − Sn−1| = 1}
• η ↔ S : Sn − Sn−1 = 1− 2ηn : One-to-one

• ηn = 1: particle ↔ Sn − Sn−1 = −1: down jump

• ηn = 0: empty ↔ Sn − Sn−1 = 1: up jump

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6

S : Path encoding of η



Past maximum and the carrier via path encoding

Suppose
∑

n∈Z ηn <∞

Lemma

Wn = Mn − Sn where Mn = supm≤n Sm.

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6

Wn: the number of particles on the carrier



BBS is the reflection w.r.t. the past maximum

Suppose
∑

n∈Z ηn <∞.

S → TS is the reflection with respect to the past maximum :

Lemma

TSn = 2Mn − Sn − 2M0 where TS is the path encoding of Tη.

0 1-5 -4 -3 -2 -1 2 3 4 5-6 6



Dynamics with infinitely many particles on both sides

The definition S 7→ TS = 2M − S − 2M0 can be extended to two-sided
functions in the domain:

ST := {S : M0 <∞} .

Moreover, can check:

• η
[k]
n := ηn1{n≥k}: truncated configuration

• Tη
[k]
n : well-defined for any k

• Tηn = limk→−∞ Tη
[k]
n = min{1− ηn,Wn−1}, where W = M − S

For η ∈ ST , we define the box ball dynamics by S 7→ TS = 2M−S − 2M0.



A sufficient condition to be invariant under T

Theorem (Three conditions theorem)

Any two of the three following conditions imply the third:

←−η d
= η (⇔ RS

d
= S), R̄W

d
= W , Tη

d
= η (⇔ TS

d
= S)

where ←−η is the reversed configuration and R̄W is the reversed carrier
process given as

←−η n = η−(n−1), R̄Wn = W−n.

Any one of the three conditions does not imply the others.



Invariant measures for BBS

Applying the three conditions theorem, we can show that the following
measures are invariant for BBS:

• Bernoulli product measure with density p ∈ [0, 12) (Pitaman’s theorem
for SRW with drift)

• Two sided stationary Markov chain on {0, 1} with p0 + p1 < 1 where
pi = P(η1 = 1|η0 = i)

• Bernoulli product measure with density p ∈ [0, 1) conditioned on the
event supn∈ZWn ≤ K

• Periodic Gibbs measures with infinitely many parameters associated
to the density of solitons
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Results for other discrete integrable systems

• Introduce path encoding for Ud-KdV equation, d-KdV equation,
Ud-Toda equation, d-Toda equation

• Define an infinite system of them through a Pitman’s type transform

• Three conditions theorem for Ud-KdV equation, d-KdV equation,
Ud-Toda equation

• Apply the three conditions theorem to obtain an explicit class of
invariant measures



Ultra-discrete KdV (Ud-KdV) equation

• L > 0: model parameter

ηt+1
n = min{L− ηtn,

n−1∑
m=−∞

(ηtm − ηt+1
m )}

Remark

L = 1, ηtn ∈ {0, 1} is BBS. L ∈ N, ηtn ∈ {0, 1, 2, . . . , L} is BBS with boxes
of capacity L.

Path encoding and Pitman’s transform for UdKdV equation

Sn − Sn−1 := L− 2ηn, S0 := 0, Mn := max
m≤n

Sm + Sm−1

2

Theorem

Suppose S is the path encoding of (ηtn)n. Then, TS := 2M − S − 2M0 is
the path encoding of (ηt+1

n )n.



Discrete KdV (dKdV) equation

• 0 < δ < 1 : model parameter, utn > 0

ut+1
n =

δ

utn
+

n−1∏
m=−∞

utm
ut+1
m

“⇔ ”
1

ut+1
n+1

− 1

utn
= δ(ut+1

n − utn+1)

Remark

By a proper scaling limit, solutions for dKdV equation converges to a
solution of KdV equation.

Path encoding and Pitman’s transform for dKdV equation

Sn−Sn−1 := − log δ−2 log(un), S0 := 0, Mn := log(
∑
m≤n

exp(
Sn + Sn−1

2
))

Theorem

Suppose S is the path encoding of (utn)n. Then, TS := 2M − S − 2M0 is
the path encoding of (ut+1

n )n.



Ultra-discretization

Ultra-discretization “=” tropicalization “=” zero-temperature limit :
(+,×)→ (min,+)

• {utn(ϵ)}n,t∈Z : sols. of dKdV equation δ(ϵ) with parameter ϵ > 0.

Suppose the following limit exists.

ηtn := lim
ϵ→0
−ϵ log(utn(ϵ)),

−ϵ log δ(ϵ)→ L.

Then, {ηtn} : sol of UdKdV.

d-KdV equation

ut+1
n =

δ

utn
+

n−1∏
m=−∞

utm
ut+1
m

Ud-KdV equation

ηt+1
n = min{L− ηtn,

n−1∑
m=−∞

(ηtm − ηt+1
m )}



Ultra-discrete Toda equation

{
Qt+1

n = min{E t
n ,

∑n
j=−∞Qt

j −
∑n−1

j=−∞Qt+1
j }

E t+1
n = Qt

n+1 + E t
n − Qt+1

n

Remark

If Qt
n,E

t
n ∈ Z≥0, the dynamics is BBS where Qn (resp. En) are the number

of 1’s (0’s) in the n-th set of consecutive 1’s (0’s).

Path encoding and Pitman’s transform for UdToda equation

S2n+1 − S2n := −Qn+1, S2n − S2n−1 := En,

M2n+1 := max
m≤n

S2m, M2n =
M2n−1 +M2n+1

2

Theorem

Suppose S is the path encoding of (Qt
n,E

t
n)n. Then, θTS is the path

encoding of (Qt+1
n ,E t+1

n )n where θSn = Sn+1 and TS := 2M − S − 2M0 .



Dynamics of (periodic) Ultra-discrete Toda equation

Qt

1 Qt

2
Qt

3

E
t
1 E

t
2

Qt

1
Qt

2
Qt

3
E t

2
E t

1 E t

3



Discrete Toda equation

• I tn > 0,V t
n > 0{

I t+1
n = I tn + V t

n − V t+1
n−1

V t+1
n =

I tn+1V
t
n

I t+1
n

“⇔ ”

I t+1
n = V t

n +
∏n

j=−∞ I tj∏n−1
j=−∞ I t+1

j

V t+1
n =

I tn+1V
t
n

I t+1
n

Path encoding and Pitman’s transform for UdToda equation

S2n+1 − S2n := log In+1, S2n − S2n−1 := − logVn,

M2n+1 := log(
∑
m≤n

exp(S2m)), M2n =
M2n−1 +M2n+1

2

Theorem

Suppose S is the path encoding of (I tn ,V
t
n )n. Then, θTS is the path

encoding of (I t+1
n ,V t+1

n )n where θSn = Sn+1 and TS := 2M − S − 2M0 .



Ud-Toda equation and D-Toda equation

• D-Toda equation shares many properties with (original) Toda
equation (ex. Lax pair expression exists). Generalized Gibbs
ensembles relate to random matrix theory (S, in preparation).

• Ud-Toda equation can be understood as a queueing model.

• Ud-Toda equation and the last passage percolation has a similar
structure.

• D-Toda equation and the random polymer model has a similar
structure.



Existence of solution for discrete integrable systems

• BBS : M
∨(1)
n := maxm≤n Sm for S : Z→ Z, |Sn − Sn−1| = 1

• UdKdV : M
∨(2)
n := maxm≤n

Sm+Sm−1

2 for S : Z→ R

• dKdV : M
∫
(2)

n := log(
∑

m≤n exp(
Sm+Sm−1

2 )) for S : Z→ R

• UdToda: M
∨(2),∗
2n+1 := maxm≤n S2m, M

∨(2),∗
2n =

M
∨(2),∗
2n−1 +M

∨(2),∗
2n+1

2 for
S : Z→ R

• dToda: M
∫
(2),∗

2n+1 := log(
∑

m≤n exp(S2m), M
∫
(2),∗

2n =
M

∫
(2),∗

2n−1 +M
∫
(2),∗

2n+1

2 for
S : Z→ R

All transforms are well-defined and invariant on asymptotically linear
functions with positive drift:

S lin := {S : ∗ → R ; lim
n→±∞

Sn
n

= c for some c > 0}

for ∗ = Z or R. Hence, under any shift ergodic initial measure with a
proper average, the solution is well-defined for all time t with prob. 1.



Invariant measures for Pitman’s type transforms

We apply the last theorem to find invariant measures for Pitman’s type
transforms:

Proposition

TS
d
= S holds for

• M∨(1) : S : SRW, W0 : geometric

• M∨(2) : S : RW with truncated shifted geometric increments, W0 :
shifted geometric

• M∨(2) : S : RW with truncated shifted exponential increments, W0 :
shifted exponential

• M∨(R) : S : BM, W0 : exponential

• M∨(R) : S : zig-zag process, W0 : exponential + delta measure at 0

• M
∫
(2) : S: RW with log of generalized inverse Gaussian increments,

exp(W0): inverse gamma

• M
∫
(R) : S : BM, exp(W0): inverse gamma

where we assume all processes have a positive drift.



Invariant measures for discrete integrable systems

Corollary

• BBS : {ηn}: i.i.d. Bernoulli is invariant
• BBS with capacity of box L : {ηn}: i.i.d. truncated geometric is

invariant

• UdKdV : {ηn}: i.i.d. truncated exponential is invariant

• dKdV : {un} : i.i.d. generalized inverse Gaussian is invariant

• UdToda : {Qn}, {En} : i.i.d. exponentials with parameters λQ , λE

with λQ > λE

• dToda : {In}, {Vn} : i.i.d. gamma with parameters γI , γV with
γI > γV



Remark on the inverse gamma distribution

Recall that if (Sx)x≥0 is a BM with negative drift, then∫ ∞

0
exp(Sx)dx

has an inverse gamma distribution.

Corollary

Suppose {Sn}n≥0 is a RW with generalized inverse Gaussian increments
with negative expectation. Then,

∞∑
n=0

exp(
Sn + Sn+1

2
)

has an inverse gamma distribution.

Remark

We do not know is there any RW (Sn)n≥0 for which
∑∞

n=0 exp(Sn) has an
inverse gamma distribution.



On-going and future work

• Generalized Gibbs ensembles

• Multi-color BBS ⇔ Multi-dimensional version of Pitman’s transform
(Kondo,2018)

• Scaling limit in non-equilibrium states

• Direct connections to other integrable stochastic models (random
polymers, random matrices, KPZ equation,...) and classical and
quantum integrable systems (KdV equation, Toda lattice, six-vertex
model,...)
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