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Models from equilibrium statistical mechanics
I Relatively simple definition on discrete lattice. Interest in

behavior as lattice size gets large (or lattice spacing
shrinks to zero)

I Fractal nonMarkovian random curves or surfaces at
criticality.

I Can describe the distribution of curves directly or in terms
of a surrounding field

I (Discrete or continuous) Gaussian free field, Liouville
quantum gravity

I Measures and soups of Brownian (random walk) loops.
I Isomorphism theorems relate these.

I Discrete models can be analyzed using combinatorial
techniques.
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I Hope to define and describe continuous object that is
scaling limit. Try to use analytic and continous
probability tools to analyze.

I Behavior strongly dependent on spatial dimension.
(Upper) critical dimension above which behavior is
relatively easy to describe.

I Nontrivial below critical dimension.
I If d = 2, limit is conformally invariant.
I Considering negative and complex measures can be very

useful.
I We will consider one model loop-erased random walk

(LERW) and the closely related uniform spanning tree as
well as the “field” given by the (random walk and
Brownian motion) loop measures and soups
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Outline of mini-course

1. Loop measures and soups and relations to LERW,
spanning trees, Gaussian field

2. General facts about LERW in Zd

3. Four-dimensional case (slowly recurrent sets)
4. Two dimensions and exact Green’s function
5. Continuum limit in two dimensions, Schramm-Loewner

evolution (SLE) and natural parametrization
6. Two-sided LERW
7. The transition probability for two-sided LERW in d = 2

and potential theory of “random walk with zipper”.
8. For three dimensions see talks of X. Li and D. Shiraishi.
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Part 1
(Discrete Time) Loop Measure and Soup

I Discrete analog of Brownian loop measure (work with J.
Trujillo Ferreras and V. Limic)

I Le Jan independently developed a continuous time
version. Developed further by Lupu with cable systems.

I There are advantages in each approach.
I Discrete time is more closely related to loop-erased walk

and is easier to generalize to non-positive weights.
I Discrete time Markov processes reduce to multiplication

of nonnegative matrices.
I For many purposes, no need to require nonnegative

entries (and there are good reasons not to!)
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General set-up

I Finite set of vertices A and a function p or q on A× A.
I When we use p the function will be nonnegative. When

we use q negative and complex values are possible.
I Symmetric: p(x, y) = p(y, x);

Hermitian: q(x, y) = q(y, x)
I Examples

I irreducible Markov chain on A = A ∪ ∂A with transition
probabilities p, viewed as a subMarkov chain on A.

I (Simple) random walk in A ⊂ Zd:

p(x, y) = 1
2d, |x− y| = 1.
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I Measure on paths ω = [ω0, . . . , ωk],

q(ω) =
k∏
j=1

q(ωj−1, ωj).

q(ω) = 1 for trivial paths (single point).
I Green’s function

G(x, y) = Gq(x, y) =
∑

ω:x→y
q(ω).

The weight q is integrable if for all x, y,∑
ω:x→y

|q(ω)| <∞.

I ∆ denotes Laplacian: P − I or Q− I

∆f(x) = ∆pf(x) =
[∑
y

p(x, y) f(y)
]
− f(x).

Usually using −∆ = I − P = I −Q = G−1.
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I Rooted loop : path l = [l0, . . . , lk] with l0 = lk.
Nontrivial if |l| := k ≥ 1.

I The rooted loop measure m̃ = m̃q gives each nontrivial
loop l measure

m̃(l) = 1
|l|
q(l).

I F (A) defined by

F (A) = F q(A) := exp
{∑

l

m̃q(l)
}

= 1
det(I −Q) .

I One way to see the last equality,

− log det(I −Q) =
∞∑
j=1

1
j

tr(Qj).
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(Unrooted) loop measure

I An (oriented) unrooted loop ` is a rooted loop that
forgets the root.

I More precisely, it is an equivalence class of rooted loops
under the equivalence relation

[l0, . . . , lk] ∼ [l1, . . . , lk, l1] ∼ [l2, . . . , lk, l1, l2] ∼ · · · .

I (Unrooted) loop measure

m(`) = mq(`) =
∑
l∈`
m̃(l) = K(`)

|`|
q(`),

where K(`) is the number of rooted representatives of `.
(Note that K(`) divides |`|.)

I For example, if [x, y, x, y, x] ∈ `, then |`| = 4 and
K(`) = 2.
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F (A) = exp
{∑

`

m(`)
}

= 1
det(I −Q) .

Another way to compute F (A)

I Let A = {x1, . . . , xn} be an ordering of A. Let
Aj = A \ {x1, . . . , xj−1}. Then

F (A) =
n∏
j=1

GAj(xj, xj).

I In particular, the right-hand side is independent of the
ordering of the vertices.
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I More generally, if V ⊂ A, define

FV (A) = exp

 ∑
`∩V 6=∅

m(`)

.
I If V = {x1, . . . , xk} and Aj = A \ {x1, . . . , xj−1},

FV (A) =
k∏
j=1

GAj(xj, xj).

Again, the right-hand side is independent of the ordering
of V .

I Note that

FV1∪V2(A) = FV1(A)FV2(A \ V1).
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(Chronological) Loop-erasure

I Start with path ω = [ω0, . . . , ωn]
I Let

s0 = max{t : ωt = ω0}.
I Recursively, if sj < n, let

sj+1 = max{t : ωt = ωsj+1}.

I When sj = n, we stop and LE(ω) = η where

η = LE(ω) = [ωs0 , ωs1 , . . . , ωsj ].

I η is a self-avoiding walk (SAW) contained in ω with the
same initial and terminal points.
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Poisson and boundary Poisson kernels

I Assume q is defined on A× A where A = A ∪ ∂A.
I If z ∈ A,w ∈ ∂A,

HA(z, w) = Hq
A(z, w) =

∑
ω:z→w

q(ω),

where the sum is over all paths ω starting at z, ending at
w, and otherwise staying in A.

I If z ∈ ∂A,w ∈ ∂A,

H∂A(z, w) = Hq
∂A(z, w) =

∑
ω:z→w

q(ω),

where the sum is over all paths (of length at least 2)
starting at z, ending at w, and otherwise staying in A.
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LERW from A to ∂A

I For each SAW η starting at x ∈ A, ending at ∂A, and
otherwise in A define

q̂(η) =
∑

ω:x→∂A,LE(ω)=η
q(ω).

I Here the sum is over all paths starting at x, ending at
∂A, and otherwise in A.

I Note that ∑
η

q̂(η) =
∑
ω

q(ω) =
∑
y∈∂A

Hq
A(x, y).

I In particular, if q = p is a Markov chain, then p̂ is a
probability measure.
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Fact: q̂(η) = q(η)F q
η (A).

I Write η = [η0, . . . , ηk].
I Decompose any ω with LE(ω) = η uniquely as

l0 ⊕ [η0, η1]⊕ l1 ⊕ [η1, η2]⊕ l2 ⊕ · · · ⊕ lk−1 ⊕ [ηk−1, ηk],

where lj is a loop rooted at ηj avoiding [η0, . . . , ηj−1].
I Measure of possible lj is Gq

Aj
(ηj, ηj) where

Aj = A \ {η0, . . . , ηj−1}.
I Each [ηj−1, ηj] gives a factor of q(ηj−1, ηj).
I Multiplying we get

k∏
j=1

q(ηj−1, ηj)
k−1∏
j=0

Gq
Aj

(ηj, ηj) = q(η)F q
η (A).
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Wilson’s Algorithm

I A = A ∪ ∂A and p a Markov chain on A.
I V = A ∪ {∂A} (wired boundary)
I Choose a spanning tree of V as follows

I Choose z ∈ A, run MC until reaches ∂A; erase loops,
and add those edges to the tree.

I If there is a vertex that is not in the tree yet, run MC
from there until it reaches a vertex in the tree. Erase
loops, and add those edges to the tree.

I Continue until a spanning tree T is produced.
I Fact: The probability that T is chosen is p(T )F p(A).

p(T ) =
∏
~xy∈T

p(x, y),

where ~xy is oriented towards the root ∂A.
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Uniform Spanning Trees (UST)

I If G is an undirected graph with vertices A ∪ ∂A and p is
simple random walk on the graph, then each T has the
same probability of being chosen in Wilson’s algorithm

p(T )F (A) =
[∏
x∈A

deg(x)
]−1 1

det(I − P ) ,

I The number of spanning trees is given by[∏
x∈A

deg(x)
]

det(I − P ) = det(Deg − Adj)

where Deg,Adj are the degree and adjacency matrices of
G restricted to rows, columns in A. (Kirchhoff).
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Random Walk Loop Soup

I If p is a positive weight, the random walk loop soup with
intensity λ is a Possonian realization from λm̃ or λm.

I For the unrooted loop soup can use m or can use m̃ and
then forget the root.

I Can be considered as an independent collection of
Poisson processes {N `

λ} with rate m(`) where N `
λ denotes

the number of times that unrooted loop ` has appeared
by time λ.
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Loop soup with nonpositive weights?

I Sometimes one wants a Poissonian realization from a
negative weight.

I The soup at intensity λ gives a distribution µλ on the set
of N-valued functions k = (k`) that equal zero except for
a finite number of loops.

µλ(k) =
∏
`

[
e−λm(`) m(`)k`

k`!

]
= F (A)−λ

∏
`

m(`)k`
k`!

.

Here
k` = # of times ` appears.

I This definition can be extended to nonpositive weights q.

19 / 106



Putting loops back on

I A be a set, z ∈ A. p Markov chain on A
I Take independently:

I A loop-erased walk from z to ∂A outputting η
I A realization of the loop soup with intensity 1

outputting a collection of unrooted loops `1, `2, . . .
ordered by the time that they occurred.

I For each loop ` that intersects η choose the first point on
η, say ηj that ` hits.

I Choose a rooted representative of ` that is rooted at ηj
and add it to the curve. (If more than one choice, choose
randomly.)

I The curve one gets has the distribution of the MC from z
to ∂A.
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Brownian Loop Measure/Soup (L-Werner)

I Scaling limit of random walk loop
I Rooted (Brownian) loop measure in Rd: choose (z, t, γ̃)

according to

(Lebesgue)× 1
t

dt

(2πt)d/2 × (Brownian bridge of time 1).

and output

γ(s) = z +
√
t γ̃(s/t), 0 ≤ s ≤ t.

I (Unrooted) Brownian loop measure: rooted loop measure
“forgetting the root”.

I Poissonian realizations are called Brownian loop soup.
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I The measure of loops restricted to a bounded domain is
infinite because of small loops.

I Measure of loops of diameter ≥ ε in a bounded domain is
finite.

I If d = 2, then the Brownian loop measure (on unrooted
loops) is conformally invariant: if f : D → f(D) is a
conformal transformation and f ◦ γ is defined with
change of parametrization, then for every set of curves V ,

µf(D)(V ) = µD{γ : f ◦ γ ∈ V }.

I True for unrooted loops but not true for rooted loops.
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Convergence of Random Walk Soup

I Consider (simple) random walk measure on Z2 scaled to
N−1Z2.

I Scale the paths using Brownian scaling but do not scale
the measure.

I The limit is Brownian loop measure in a strong sense.
(L-Trujillo Ferreras).

I Given a bounded, simply connected domain D, we can
couple the Brownian soup and the random walk soup with
scaling N−1 such that, except for an event of probability
O(N−α), the loops of time duration at least N−β are
very close.

I A version for all loops, viewing the soup as a field, in
preparation (L-Panov).
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Loop soups and Gaussian Free Field

I Let A be a finite set with real-valued, symmetric,
integrable weight q. Let G = (I −Q)−1 be the Green’s
function which is positive definite.

I If q is a positive weight, G has all nonnegative entries.
However, negative q allow for G to have some negative
entries.

I The corresponding (discrete) Gaussian free field (with
Dirichlet boundary conditions) is a centered multivariate
normal Zx, x ∈ A with covariance matrix G.

I (Le Jan) Use the random walk loop soup to sample from
Z2
x/2.

I (Lupu) If Q is positive, find way to add signs to get Zx.
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Discrete time version of isomorphism theorem

I Consider the loop soup at intensity 1/2. For each
configuration of loops, let Nx denote the number of times
that vertex x is visited.

I The random walk loop measure gives a measure on
possible values {Nx : x ∈ A}.

I Take independent Gamma processes Γx(t) of rate 1 at
each x ∈ A and let Tx = Γx(1

2 +Nx).
I Theorem: {Tx : x ∈ A} has the same distribution as
{Z2

x/2 : x ∈ A}.
I As an example, if q ≡ 0, so that there are no loops then
N ≡ 0, and {Tx : x ∈ A} are independent Γ(1

2), that is,
have the distribution of Y 2/2 where Y is a standard
normal.
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Proof of Isomorphism Theorem

I Just check it.
I (L-Perlman) Using Laplace transform adapting proof of

Le Jan. Does not need positive weights.
I Can give a direct proof at intensity 1/2 using a

combinatorial graph identity and get the joint distribution
of Tx and the current (local time on undirected edges).

I (L-Panov) Direct proof with intensity 1 for the sum of
two indpendent copies (or for |Z|2 for a complex field
Z = X + iY ). Uses an easier combinatorial identity.

I Intensity λ is related to central charge c of conformal
field theory, λ = ±c

2 .
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Part 2
(One-sided) LERW in Zd, d ≥ 2

I (d ≥ 3) Take simple random walk (SRW) and erase loops
chronologically. This gives an infinite self-avoiding path.

I We get the same measure by starting with SRW
conditioned to never return to the origin.

I The latter definition extends to d = 2 by using SRW
“conditioned to never return to 0”, more precisely, tilted
by the potential kernel (Green’s function).

I This is equivalent to other natural definitions such as take
SRW stopped when it reaches distance R, erase loops,
and take the (local) limit of measure as R→∞.
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LERW as the Laplacian Random Walk

I Start with Ŝ0 = 0.
I Given [Ŝ0, . . . , Ŝn] = η = [x0, . . . , xn] choose xn+1 among

nearest neighbors of xn using distribution c φ where
I φ = φη is the unique function that vanishes on η; is

(discrete) harmonic on Zd \ η and has asymptotics

φ(z)→ 1, d ≥ 3,

φ(z) ∼ 2
π

log |z|, d = 2.

I Could also consider Laplacian-b walk where we use c φb
with b 6= 1 but this is much more difficult and very little is
known about.
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Basic idea for understanding LERW

I If the number of points in the first n steps of the walk
remaining after loop-erasure is f(n) then

|Ŝf(n)|2 = |Sn|2 � n, |Ŝm|2 � f−1(m).

I The point Sn is not erased if and only if

LE(S[0, n]) ∩ S[n+ 1,∞) = ∅.

Hence,

f(n) � nP{LE(S[0, n]) ∩ S[n+ 1,∞) = ∅}.
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Critical Exponent

I Let S1, S2, . . . be independent SRWs and

T jn = min{t : |Sjt | ≥ en}.

ωjn = Sj[1, T jn], ηjn = LE(Sj[0, T jn]).
I Interested in

p̂1,1(n) = P{η1
n ∩ ω2

n = ∅} ≈ e−ξn.

This should be comparable to e−2n f(e2n) of previous
slide.

I Fractal dimension of LERW should be 2− ξ.
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Similar problem — SRW intersection exponent

p1,k(n) = P{ω1
n ∩ [ω2

n ∪ · · · ∪ ωk+1
n ] = ∅}.

I d = 4 is critical dimension for intersections of
two-dimensional sets.

I If d ≥ 5, p1,k(∞) > 0.
I Using relation with harmonic measure, we can show

p1,2(n) �
{
en(d−4) d < 4
n−1 d = 4.

I Cauchy-Schwarz gives

en(d−4)

n−1

}
. p1,1(n) .

{
en(d−4)/2 d < 4
n−1/2 d = 4.
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I For d = 4, “mean-field behavior” holds, that is

p1,1(n) � [p1,2(n)]1/2 � n−1/2.

I For d < 4, mean-field behavior does not hold. In fact,

p1,1(n) ∼ c e−ξn

where ξ = ξd(1, 1) ∈ (4−d
2 , 4− d) is the Brownian

intersection exponent.
I For d = 2, ξ = 5/4. Proved by L-Schramm-Werner using

Schramm-Loewner evolution (SLE).
I For d = 3, ξ is not known and may never be known

exactly. Numerically ξ ≈ .58 and rigorously 1/2 < ξ < 1.
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I Ŝ infinite LERW obtained from SRW S; X, independent
SRW, started distance R = en away

Tn = min{j : |Xj| ≥ en}.

I Long range intersection

P{X[Tn, Tn+1] ∩ Ŝ 6= ∅} �


1, d < 4
n−1, d = 4
e(4−d)n d > 4.

I Two exact exponents — third moment and three-arm
exponent. Both obtained by considering the event
S[Tn, Tn+1] ∩ Ŝ 6= ∅ and considering the “first”
intersection.

I The difference comes from whether one takes the first on
S or the first on X.
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Let S1, S2, . . . be independent simple random walk starting at
the origin and

ηjn = LE(Sj[0, T jn]), ωjn = Sj[1, T jn].

Third moment estimate

P{η1
n ∩ (ω2

n ∪ ω3
n ∪ ω4

n) = ∅} �
{
n−1, d = 4
e(d−4)n, d < 4.

Three-arm estimate

P{η1
n ∩ (ω2

n ∪ ω3
n) = ∅, η2

n ∩ ω3
n = ∅} �

{
n−1, d = 4
e(d−4)n, d < 4.
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I Let Zn = P{η1
n ∩ ω2

n = ∅ | η1
n}. We are interested in

P{η1
n ∩ ω2

n = ∅} = E [Zn] .

I The third moment estimate tells us

E[Z3
n] �

{
n−1, d = 4
e(d−4)n, d < 4.

n−1

e(d−4)n

}
. E[Zn] .

{
n−1/3, d = 4
e(d−4)n/3, d < 4.

I Mean-field or non-multifractal behavior would be
E[Zλ

n ] � E[Zn]λ.
I Basic principle: Mean-field behavior holds at the critical

dimension d = 4 but not below the critical dimension.
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Part 3
Slowly recurrent set in Zd

I Let A ⊂ Zd, d ≥ 2 and let X be a simple random walk
starting at the origin with stopping times
Tn = min{j : |Xj| ≥ en}. Let En be the event

En = {X[Tn−1, Tn] ∩ A 6= ∅}.

I A is recurrent if X visits A infintely often, that is, if
P{En i.o.} = 1. This is equivalent to (Wiener’s test)

∞∑
n=1

P(En) =∞.

It is slowly recurrent if also

P(En)→ 0.

Mostly interested in sets with P(En) � 1/n.
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Examples of slowly recurrent sets

I A single point in Z2.
I Line or a half-line in Z3

A = {(j, 0, 0) : j ∈ Z},

A+ = {(j, 0, 0) : j ∈ Z+}.
I A simple random walk path A = S[0,∞) in Z4.
I A loop-erased walk A = Ŝ[0,∞) in Z4.
I The intersection of two simple random walk paths in Z3.
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Basic Idea for Slowly Recurrent Sets
En = {X[Tn−1, Tn] ∩ A 6= ∅}.

Vn = P{X[1, Tn] ∩ A = ∅} = P(Ec
1 ∩ · · · ∩ Ec

n).

P(Vn) =
n∏
j=1

P(Ec
j | Vj−1).

I Although P(Vn−1) is small it is asymptotic to P(Vn−logn).
Hence

P(En | Vn−1) ∼ P(En | Vn−logn).
I The distribution of X(Tn−1) given Vn−logn is almost the

same as the unconditional distribution. Hence,
P(En | Vn−logn) ∼ P(En).

I More precisely, find summable δn such that
P(En | Vn−1) = P(En) +O(δn).

38 / 106



Suppose that
P(Ej) = αj

j
.

Then,

P(Vn) =
n∏
j=1

P(Ec
j | Vj−1)

=
n∏
j=1

[
1− αj

j
+O(δj)

]

∼ c exp

−
n∑
j=1

αj
j

 .
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If X1, . . . , Xk are independent simple random walks and

V j
n = {Xj[1, T jn] ∩ A = ∅},

then

P(V 1
n ∩ · · · ∩ V k

n ) = P(V 1
n )k ∼ c′ exp

−
n∑
j=1

kαj
j

 .
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Example: line A and half-line A+ in Z3

P(En) = 1
n

+O
( 1
n2

)
,

P(E+
n ) = 1

2n +O
( 1
n2

)
P(Vn) ∼ c

n
,

P(V +
n ) ∼ c′√

n
�
√
P(Vn).
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(Not quite precise) description of LERW in Z4

I Ŝ[0,∞) infinite LERW in Z4.
I Let Γn be Ŝ[0,∞) from the first visit to {|z| > en−1} to

the first visit to {|z| > en} (almost the same as
LE(S[Tn−1, Tn)).

I Let Xt be an independent simple random walk and let Kn

be the event that X intersects Γn.

P(Kn) = H(Γn) = Yn
n
,

where Yn has a limit distribution.
I Let

Zn = P
[
(K1 ∪ · · · ∪Kn)c | Ŝ

]
.
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I If the events Kn were independent we would have

Zn =
n∏
j=1

[
1− Yj

j

]
.

I 4-d LERW has the same behavior as the toy problem
where Y1, Y2. . . . are independent, nonnegative random
variables (with an exponential moment).

I

Zn = cn
n∏
j=1

[
1− Yj − µ

j

]
.

where µ = E[Yj] and

cn =
n∏
j=1

[
1− µ

j

]
∼ Cµ n

−µ.
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I There exists a random variable Z such that with
probability one

Z = lim
n→∞

nµ Zn.

I The convergence is in every Lp. Indeed,

Zp
n = cpn

n∏
j=1

[
1− Yj − µ

j

]p

= cpn

n∏
j=1

[
1− p(Yj − µ)

j
+O(j−2)

]

∼ c n−pµ
n∏
j=1

[
1− p(Yj − µ)

j

]
.
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Theorem (L-Sun-Wu)
Let S,X be independent simple random walks starting at the
origin in Z4 and let Ŝ denote the loop-erasure of S. Let Tn be
the first time that X reaches {|z| ≥ en}, and let

Zn = P{X[1, Tn] ∩ Ŝ[0,∞) = ∅ | S[0,∞)}.

Then the limit
Z = lim

n→∞
n1/3 Zn

exists with probability one and in Lp for all p. In particular,

E[Zp
n] ∼ cp n

−p/3.

I The third-moment estimate tells us that E[Z3
n] � n−1

which allows us to determine the exponent 1/3.
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Combining with earlier results:
I S simple random walk in Z4 with loop-erasure Ŝ.
I Define σ(k) = max{n : S(n) = Ŝ(k)}. That is,
Ŝ(k) = S(σ(k)).

I There exists c such that

σ(k) ∼ c k (log k)1/3.

I Let
W

(n)
t = Ŝ(tn)√

n (log n)1/3
, 0 ≤ t ≤ 1.

Then W (n) converges to a Brownian motion.
I For d ≥ 5, holds without log correction.
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Part 4
Two dimensions and conformal invariance

I Associate to each finite z = x+ iy ∈ Z + iZ, Sz, the
closed square of side length 1 centered at z.

I If A ⊂ Z2, there is the associated domain

int
[ ⋃
z∈A
Sz
]
.
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I Take D ⊂ C a bounded (simply) connected domain
containing the origin.

I For each N , let AN be the connected component of

{z ∈ Z2 : Sz ⊂ ND}.

containing the origin. If D is simply connected, then so is
A. We write DN ⊂ D for the domain associated to
N−1 AN .

I If z, w ∈ ∂D are distinct, we write zN , wN for appropraite
boundary points (edges) in ∂AN so that
N−1zN ∼ z,N−1wN ∼ w.

I Take simple random walk from zN to wN in AN and
erase loops.
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Main questions

I Let η = [η0, . . . , ηn] denote a loop-erased random walk
from zN to wN in AN .

I Find fractal dimension d such that typically n � Nd.
I Consider the scaled path

γN(t) = N−1 η(tNd), 0 ≤ t ≤ n/Nd.

What measure on paths on D does this converge to?
I Reasonable to expect the limit to be conformally

invariant: the limit of simple random walk is c.i. and
“loop-erasing” seems conformally invariant since it
depends only on the ordering of the points.
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Possible approaches

I Start by trying to find d directly.
I Assume that the limit is conformally invariant and see

what possible limits there are. Determine which one has
to be LERW limit. Then try to justify it.

I Both techniques work and both use conformal invariance.
I We will first consider the direct method looking at the

discrete process.
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I If A is a finite, simply connected subset of Z + iZ
containing the origin with corresponding domain DA, let
f = fA be a conformal transformation from DA to the
unit disk with f(0) = 0. (Riemann mapping theorem)

I Associate to each boundary edge of ∂eA, the
corresponding point z on ∂DA which is the midpoint of
the edge.

I Define θz ∈ [0, π) by f(z) = e2iθz

I The conformal radius of A (with respect to the origin) is
defined to be

rA(0) = |f ′(0)|−1.

It is comparable to dist(0, ∂A) (Koebe 1/4-theorem)
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Theorem (Beneš-L-Viklund)
There exists ĉ, u > 0 such that if A is a finite simply
connected subset of Z2 and z, w ∈ ∂eA, then the probability
that loop-erased random walk from z to w in A goes through
the origin is

ĉ r
−3/4
A

[
sin3 |θz − θw|+O(r−uA )

]
.

I The constant ĉ is lattice dependent and the proof does
not determine it. We could give a value of u that works
but we do not know the optimum value.

I The exponents 3/4 and 3 are universal.
I The estimate is uniform over all A with no smoothness

assumptions on ∂A (this is important for application).
I A weaker version was proved by Kenyon (2000) and the

proof uses an important idea from his paper.
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I Let HA(0, z) be the Poisson kernel.
I H∂A(z, w) the boundary Poisson kernel. This is also the

total mass of the loop-erased measure.
I (Kozdron-L):

H∂A(z, w) = c′HA(0, z)HA(0, w)
sin2(θz − θw) [1 +O(r−uA )].

I We prove that the p̂A measure of paths from z to w that
go through the origin is asymptotic to∑

η:z→w, 0∈η
p̂A(η) ∼

c∗HA(0, z)HA(0, w) sin |θz − θw| r−3/4
A .
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Fomin’s identity (two path case)

I Let A be a bounded set and z1, w1, z2, w2 distinct points
on ∂A. Let

Ĥq
A(z1↔w1, z2↔w2) =

∑
ω1,ω2

q(ω1) q(ω2),

where the sum is over all paths ωj : zj → wj in A such
that

ω2 ∩ LE(ω1) = ∅.
I

Ĥq
A(z1↔w1, z2↔w2) =

∑
η=(η1,η2)

q(η1) q(η2) F q
η (A).

where the sum is over all nonintersecting pairs of SAWs
η = (η1, η2) with ηj : zj → wj.
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Theorem (Fomin)

Ĥq
A(z1↔w1, z2↔w2)− Ĥq

A(z1↔w2, z2↔w1)

= Hq
A(z1, w1)Hq

A(z2, w2)−Hq
A(z1, w2)Hq

A(z2, w1).

I Gives LERW quantities in terms of random walk
quantities

I Generalization of Karlin-MacGregor formula for Markov
chains.

I There is an n-path version giving a determinantal identity.
I If A is simply connected then at most one term on the

left-hand side is nonzero.

55 / 106



I Consider a slightly different quantity

ΛA(z, w) = ΛA,+(z, w) + ΛA,−(z, w) =
∑

η:z→w, 01∈η

p̂A(η)

where the sum is over all paths whose loop-erasure uses
the edge ~01 or its reversal ~10.

I

ΛA,+(z, w) = 1
4 F01(A) ĤA′(z↔0, w↔1),

ΛA,−(z, w) = 1
4 F01(A) ĤA′(z↔1, w↔0),

where A′ = A \ {0, 1}.
I Fomin’s identity gives an expression for the difference of

the right-hand side in terms of Poisson kernels.
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Negative weights (zipper)

I Take a path (zipper) on the dual lattice starting at 1
2 −

i
2

going to the right.
I Let q be the measure that equals p except if an edge

crosses the zipper

q(n, n− i) = −p(n, n− i) = −1
4 , n > 0.

Λq
A(z, w) = Λq

A,+(z, w) + Λq
A,−(z, w) =

∑
η:z→w, 01∈η

q̂A(η)

Λq
A,+(z, w) = 1

4 F
q
01(A) Ĥq

A′(z↔0, w↔1),

Λq
A,−(z, w) = 1

4 F
q
01(A) Ĥq

A′(z↔1, w↔0),

where A′ = A \ {0, 1}.
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I Fomin’s identity gives∑
η:z→w, ~01∈η

q̂A(η) −
∑

η:z→w, ~10∈η

q̂A(η) =

1
4 F

q
01 [Hq

A′(z, 0)Hq
A′(w, 1)−Hq

A′(z, 1)Hq
A′(w, 0)] .

I

q̂A(η) = q(η)F q
η (A).

I Two topological facts: first, (with appropriate order of
z, w):

qA(η) =
{
pA(η), ~01 ∈ η
−pA(η), ~10 ∈ η. .
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I Second, if ` is a loop then q(`) = ± p(`) where the sign is
negative iff ` has odd winding number about 1

2 −
i
2 . Any

loop with odd winding number intersects every SAW from
z to w in A using 01.

I Therefore,

Fη(A) = F q
η (A) exp {2m(OA)} ,

where OA is the set of loops in A with odd winding
number about 1

2 −
i
2 .
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Main combinatorial Identity

ΛA(z, w) =
∑

η:z→w, ~01∈η

p̂A(η) +
∑

η:z→w, ~10∈η

p̂A(η)

= exp {2m(OA)}
 ∑
η:z→w, ~01∈η

q̂A(η) −
∑

η:z→w, ~10∈η

q̂A(η)


= F q
01(A)

4 e2m(OA)×

[Hq
A′(z, 0)Hq

A′(w, 1)−Hq
A′(z, 1)Hq

A′(w, 0)].

I Here, A′ = A \ {0, 1} and OA is the set of loops in A
with odd winding number about 1−i

2 .
I m = mp is the usual random walk loop measure.
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The proof then boils down to three estimates:
I

F q
0,1(A) = c1 +O(r−uA ).

I

m(OA) = log rA
8 + c2 +O(r−uA ).

e2m(OA) = c3 r
1/4
A

[
1 +O(r−uA )

]
.

I

Hq
A′(z, 0)Hq

A′(w, 1)−Hq
A′(z, 1)Hq

A′(w, 0) =

c4 r
−1
A HA(0, z)HA(0, w)

[
| sin(θz − θw)|+O(r−uA )

]
.

I The first one is easiest (although takes some argument).
I The others strongly use conformal invariance of Brownian

motion.
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Loops with odd winding number

I First consider An = Cn = {|z| < en}. Let On = OAn .
I On \On−1 is the set of loops in Cn of odd winding

number that are not contained in Cn−1. Macroscopic
loops.

I Consider Brownian loops in Cn of odd winding number
about the origin that do not lie in Cn−1. The measure is
independent of n (conformal invariance) and a calculation
shows the value is 1/8.

I Using coupling with random walk measure, show

m(On)−m(On−1) = m(On \On−1) = 1
8 +O(e−un).
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I

m(On) = n

8 + c2 +O(e−un).

I For more general A with en ≤ rA ≤ en+1 first
approximate by Cn−4 and then attach the last piece. Uses
strongly conformal invariance of Brownian measure.
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I

Hq
A′(0, z) = HA′(0, z)E[(−1)J ],

where the expectation is with respect to an h-process
from 0 to z in A′ and J is the number of times the
process crosses the zipper.

I Example: A = {x+ iy : |x|, |y| < n}, z = −n,w = n.
Hq
A′(0, z) is the measure of paths starting at 0, leaving A

at z, and not returning to the positive axis.
I Paths that return to the postive axis “from above” cancel

with those that return “from below”.
I Hq

A′(0, z) ∼ c n−1/2.

I Combine this discrete cancellation with macroscropic
comparisons to Brownian motion.

64 / 106



Part 5
Continuous limit: Schramm-Loewner evolution (SLE)

I Family of probability measures {µD(z, w)} on simple
curves γ : (0, tγ)→ D from z to w in D.

I Supported on curves of fractal dimension 5
4 = 2− 3

4 . .
I Suppose f : D → f(D) is a conformal transformation.

Define f ◦ γ to be the image of γ parametrized so that
the time to traverse f(γ[r, s]) is∫ s

r
|f ′(γ(t))|5/4 dt.
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I Conformal invariance:

f ◦ µD(z, w) = µf(D)(f(z), f(w)).

I Here f ◦ µ is the pull-back

f ◦ µ (V ) = µ{γ : f ◦ γ ∈ V }.
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I Domain Markov property: in the probability measure
µD(z, w), suppose that an initial segment γ[0, t] is
observed. Then the distribution of the remainder of the
path is

µD\γ[0,t](γ(t), w).

Figure: Domain Markov property (M. Jahangoshahi)
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Theorem (Schramm, ...)
There is a unique family of measures satisfying the above
properties, the (chordal) Schramm-Loewner evolution with
parameter 2 (SLE2) with natural parametrization.

I SLEκ exists for other values of κ but the curves have
different fractal dimension.

I Schramm only considered simply connected domains. In
general, extending to multiply connected is difficult but
κ = 2 is special where it is more straightforward.
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Definition of SLE2

I gt : H \ γ(0, t]→ H

Ut

g
t(t)

0

γ

I Reparametrize (by capacity) and then gt satisfies

∂tgt(z) = 1
gt(z)− Ut

, g0(z) = z.

where Ut is a standard Brownian motion.
I Extend to simply connected domains by conformal

invariance. For other domains use the (generalized)
restriction property.
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(Generalized) restriction property

I If D ⊂ D′, the Radon-Nikodym derivative

dµD(z, w)
dµD′(z, w) (γ)

is proportional to e−L where L is the measure of loops in
D′ that intersect both γ and D′ \D. (Conformally
invariant)
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SLE Green’s function

I Suppose D is a simply connected domain containing the
origin and γ : z → w is an SLE2 path.

I There exists c∗ such that

P{dist(0, γ) ≤ r} ∼ c∗ r
3/4 sin3 |θz − θw|, r ↓ 0.

I More generally for SLEκ with κ < 8,

P{dist(0, γ) ≤ r} ∼ c∗(κ) r1−κ8 sin 8
κ
−1 |θz − θw|, r ↓ 0.
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Parametrization

I The SLE path is parametrized by (half-plane) capacity
so that

gt(z) = z + 1
z

+O(|z|−2), z →∞.

This is singular with respect to the “natural
parametrization”.

I How does one parametrize a (5/4)-dimensional fractal
curve?

I Hausdorff (5/4)-measure is zero.
I Hausdorff measure with “gauge function” might be

possible but too difficult for SLE paths.
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Minkowski content

I Let γt = γ[0, t].
I (L-Rezaei) With probability one,

Cont5/4(γt) = lim
r↓0

r−3/4Area({z : dist(z, γt) ≤ r})

exists, is continuous and strictly increasing in t.
I Natural parametrization: Cont5/4(γt) = t.

I Chordal SLE with the natural parametrization is the
measure on curves with properties described before.
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Convergence result (L - Viklund)

I D a bounded, analytic domain containing the origin with
distinct boundary points a, b.

I For each N , let A be the connected component
containing the origin of all z ∈ Z2 such that Sz ⊂ N ·D.
where Sz is the closed square centered at z of side length
1.

I Let aN , bN ∈ ∂eAN with aN/N → a, bN/N → b.
I Let µN be the probability measure on paths obtained as

follows:
I Take LERW from aN to bN in AN . Write such a path as

η = [a−, a+, η2, . . . , ηk−1, b+, b−].
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I Scale the path η by scaling space by N−1 and time by
cN−5/4. Use linear interpolation to make this a
continuous path. This defines the probability measure µN .

I Define a metric ρ(γ1, γ2) on paths γj : [sj, tj]→ C,

inf
{

sup
s1≤t≤t1

|α(t)− t|+ sup
s1≤t≤t1

|γ2(α(t))− γ1(t)|
}
.

where the infimum is over all increasing homeomorphisms
α : [s1, t1]→ [s2, t2].

I Let p denote the corresponding Prokhorov metric.
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Theorem (L-Viklund)
As n→∞,

µN → µ

in the Prokhorov metric.

I Convergence for curves modulo parametrization (and in
capacity parametrization) was proved by
L-Schramm-Werner.

I The new part is the convergence in the natural
parametrization.
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Part 6
Two-sided loop-erased random walk

I The infinite two-sided loop-erased random walk (two-sided
LERW) is the limit measure of the “middle” of a LERW.

I Probability measure on pairs of nonintersecting infinite
self-avoiding starting at the origin.

I Straightforward to construct if d ≥ 5.
I This construction can be adapted for d = 4 using results

of L-Sun-Wu. It will not work for d = 2, 3.
I New result constructs the process for d = 2 and d = 3.
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Constructing two-sided LERW for d ≥ 4

I Start with independent simple random walks starting at
the origin S,X.

I Erase loops from S giving the (one-sided) LERW Ŝ[0,∞).
Reverse time so that it goes from time −∞ to 0.

I Tilt the measure on Ŝ by Z̃ := Z/E[Z], where

Z = P{X[1,∞) ∩ Ŝ[0,∞) = ∅ | Ŝ}, d ≥ 5,

Z = lim
n→∞

n1/3 P{X[1, Tn] ∩ Ŝ[0,∞) = ∅ | Ŝ}, d = 4.

I If d ≥ 5, Z̃ is bounded. If d = 4, it is not bounded but
has all moments.
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I Given Ŝ, choose X as random walk conditioned to avoid
Ŝ[0,∞). For d = 4, one does an h-process with harmonic
function

Zx = lim
n→∞

n1/3 Px{X[1, Tn] ∩ Ŝ[0,∞) = ∅}.

I Erase loops from X to give the “future” of the two-sided
LERW.

I Uses reversibility of (the distribution of) LERW.
I If d < 4, the marginal distribution of one path is not

absolutely continuous with respect to one-sided measure
so this does not work.
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Notation

I Cn = {z ∈ Zd : |z| < en}.
I Wn is the set of SAWs η starting at the origin, ending in
∂Cn and otherwise in Cn.

I An is the set of ordered pairs η = (η1, η2) ∈ W2
n such

that
η1 ∩ η2 = {0}.

I An(a, b) is the set of such η such that η1 ends at a and
η2 ends at b.

I By considering (η1)R ⊕ η2, we see there is a natural
bijection between An(a, b) and the set of SAWs from a to
b in Cn that go through the origin.
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I Similarly, we can define An(a, b;A) for SAWs from a to b
in A.

I The loop-erased measure on An(a, b;A) is the measure

p̂A(η) = p(η)Fη(A) = (2d)−|η| Fη(A).

Can normalize to make it a probability measure. Same
probability measure if we use

p̂A(η) = p(η)Fη(Â) = (2d)−|η| Fη(Â), Â = A \ {0}.

I If Ck ⊂ A, then this measure induces a probability
measure PA,a→b,k on Ak.
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Theorem
For each k, there exists a probability measure p̂k on Ak such
that if k < n, Cn ⊂ A, a, b ∈ ∂eA with A(a, b;A) nonempty,
then for all η ∈ Ak,

PA,a→b,k(η) = p̂k(η)
[
1 +O(eu(k−n))

]
.

More precisely, there exist c, u such that for all such k,A, a, b
and all η ∈ Ak,∣∣∣∣∣log

[
PA,a→b,k(η)
p̂k(η)

]∣∣∣∣∣ ≤ c eu(k−n).

I The measures p̂k are easily seen to be consistent and this
gives the two-sided LERW.
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Slightly different setup

I Let η1, η2 be independent infinite LERW stopped when
then reach ∂Cn. This gives a measure µn × µn on W2

n.

µn(η) = (2d)−|η| Fη(Ẑd) Esη(z),
where z is the endpoint of η.

I Note This is not the same as ”stop a simple random walk
when it reaches ∂Cn and then erase loops” which would
give measure

(2d)−|η| Fη(Cn).
I Given ηj, the remainder of the infinite LERW walk is

obtained by:
I Take simple random walk starting at the end of ηj

conditioned to never return to ηj
I Erase loops.
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Tilted measure νn

I Obtain νn by tilting µn × µn by

1{η ∈ An} exp {−Ln(η)} ,

where Ln = Ln(η) is the loop measure of loops in Ĉn
that intersect both η1 and η2.

I This is to compensate for “double counting” of loop
terms.

I If d = 2, restrict to loops that do not disconnect 0 from
∂Cn (any disconnecting loop intersects all η1, η2 and
hence does not contribute to the probability measure).

I If Cn+1 ⊂ A, then

PA,a→b,n � ν#
n .
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SLE analogue
(L- Kozdron, Lind, Werness, Jahangoshahi, Healey,...)

I Natural measure on multiple SLEκ paths κ ≤ 4 can be
obtained from starting with k independent SLEκ paths
γ = (γ1, . . . , γk) and tilting by

Y (γ) = I exp

c
2

k∑
j=2

Lj

 , c = (3κ− 8)(6− κ)
2κ ,

where Lj is the Brownian loop measure of loops that hit
at least j of the paths and I is the indicator that the
paths are disjoint.

I The case k = 2 is sometimes called two-sided radial
SLEκ. The scaling limit of two-sided LERW in Z2 is
two-sided SLE2.
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Coupling

I Let γ ∈ Ak and ν#
n (· | γ) the conditional distribution

given that the initial configuration is γ.
I Challenge: Couple ν#

n and ν#
n (· | γ) so that, except for

an event of probability O(e−u(n−k)), the paths agree from
their first visit to Ck+(n−k)/2 onward.

I Given this,

νn+1(An+1)
νn(An) = νn+1(An+1; γ)

νn(An; γ)
[
1 +O(e−u(n−k))

]
νn+1(An+1; γ)
νn+1(An+1) = νn(An; γ)

νn(An)
[
1 +O(e−u(n−k))

]
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I Fix (large) n and γk, γ̃k ∈ Ak with k < n.
I Couple Markov chains γk,γk+1, . . . ,γn and

γ̃k, γ̃k+1, . . . , γ̃n so they have the distribution of the
beginning of the paths under ν#

n .
I Write γj =r γ̃j if the paths agree from their first visit to
∂Cj−r to ∂Cj.

I Suppose we can show the following:
I For every j <∞ can find ρj > 0 such that given any

(γk, γ̃k) we can couple so that with probability at least
ρj , γk+j =j−2 γ̃k+j .

I If γk =j γ̃k, then we can couple the next step such that,
except perhaps on an event of probability O(e−βj),

γk+1 =j+1 γ̃k+1.
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I Then there exists c, u such that for any γk, γ̃k,

P{γn =(n−k)/2 γ̃n} ≥ 1− ce−u(n−k).

I Does not give a good estimate on u.
I Same basic strategy used for other problems, e..g, the

measure of Brownian motion “at a random cut point”.
I The hard work is showing that the conditions on previous

slide hold.
I We discuss some of the ingredients of the proof.
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“Obvious” fact about simple random walk

I Let η ∈ Wn and S a simple random walk starting at z,
the endpoint of η.

I Let τ = τr = min{j : |Sj − z] ≥ r}
I Lemma: there exists uniform ρ > 0 such that

P{|Sτ | ≥ en + r

3 | S[1, τ ] ∩ η = ∅} ≥ ρ.

I If there were no conditioning this would follow from
central limit theorem. Conditioning should only increase
the probability so it is“obvious”.

I Important to know that there exists ρ that works for all
n, η, r.

I Various versions have been proved by L, Masson, Shiraishi
I Brownian motion version is easier — then careful

approximation of BM by random walk.
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I Corollary: the probability that simple random walk
starting at z conditioned to avoid η enters Cn−k is less
than c e−k.

I This obviously holds for the loop-erasure as well.
I For d ≥ 3 we use transience of the simple walk: the

probability that a RW starting outside Cn reaches Cn−k is
O(e(d−2)(k−n)).

I For d = 2 we use the Beurling estimate (Kesten). The
probability a random walk starting at Cn reaches Cn−k
and then returns to ∂Cn without intersecting η is
O(ek−n).

I One of the reasons to use “infinite LERW when it reaches
∂Cn” rather than “loop erasure of RW when it reaches
∂Cn” is to use this fact.
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Estimating loop measure

I If d ≥ 3, the loop measure of loops that intersect both
∂Cn and Cn−k is O(e(d−2)(k−n)).

I If d = 2, the loop measure of loops that intersect both
∂Cn and Cn−k and do not disconnect the origin from
∂Cn is O(e(k−n)/2).

I This uses the disconnection exponent for d = 2 RW: the
probability that a RW starting next to the origin reaches
Cn without disconnecting the origin is comparable to
O(e−n/4). (L-Puckette, L-Schramm-Werner)

I For d = 2 focus on nondisconnecting loops. Loops that
disconnect intersect all SAWs and hence do not affect the
normalized probability measure on SAWs weighted by a
loop term.
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Separation lemma

I Let η = (η1, η2) ∈ An.
I Consider all η̃ = (η̃1, η̃2) ∈ An+1 that extend η.
I If we tilt by the loop term e−Ln+1 there is a positive

probability ρ (independent of n, η) that the endpoints of
η̃ are separated.

I First proved for nonintersecting Brownian motions.
I An analogue of (parabolic) boundary Harnack principle —

if one conditions a Brownian motion to stay in a domain
for a while, then the path gets away from the boundary.

I This is a key step in coupling ηn,γn with positive
probability.

I There is also a version for LERW in A from x to y (in
∂A) conditioned to go through the origin.
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Original theorem

I Let A ⊃ Cn+1 and x, y distinct boundary points.
I Consider LERW from x to y in A conditioned so that

paths go through the origin.
I Let λA = λA,x,y be the probability measure obtained by

truncating to paths ∈ An. Consider

Y (η) = dλA
dλn

(η).

I The distribution of Y depends on A, x, y; however
I Y is uniformly bounded.
I If η =k γ, then

Y (η) = Y (γ) +O(e−k/2).
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Part 7
The distribution in Z2 = Z + iZ

(with F. Viklund, C. Beneš)

I The distribution of two-sided LERW for d = 2 is closely
related to potential theory with zipper (signed weights) or
in double covering of Z2.

q(e) = −p(e) = −1
4 , e = {x− i, x}, x > 0,

q(e) = p(e) = 1
4 , other e.

I ∆ denotes the usual random walk Laplacian and ∆q the
corresponding operator for q:

∆qf(z) =
[∑
w

q(z, w) f(w)
]
− f(z).
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Fundamental solutions

I The fundamental solution a(z) of ∆ is the potential
kernel which is a discrete harmonic approximation of
log |z|.

I The fundamental solutions of ∆q are discrete q-harmonic
approximations of real and imaginary parts of

√
z:

I Let S be a simple random walk,

σR = min{j : |Sj| ≥ R},

τ+ = min{j ≥ 0 : Sj ∈ {0, 1, 2, . . .}}.

u(z) = lim
R→∞

R1/2 Pz{σR < τ+}.
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u(z) = 0, z ∈ {0, 1, 2, 3, . . .},

u(x+ iy) = u(x− iy),

∆u(z) = 0, z 6∈ {0, 1, 2, . . .},

∆qu(z) = 0, z 6= 0.

I If f(z) = |z|1/2 sin(θz/2), then∣∣∣∣u(z)− 4
π
f(z)

∣∣∣∣ ≤ c
f(z)
|z|

I Define the “conjugate” function v by

v(−x+ iy) = ±u(x+ iy),

where the sign is chosen to be negative on {Im(z) < 0}.
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v(z) = 0, z ∈ {0,−1,−2,−3, . . .},

v(x+ iy) = −v(x− iy), y > 0,

∆v(z) = 0, z 6∈ {0,−1,−2, . . .},

∆qv(z) = 0, z 6= 0.

I If g(z) = |z|1/2 cos(θz/2), then∣∣∣∣v(z)− 4
π
g(z)

∣∣∣∣ ≤ c
|g(z)|
|z|
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I If η is a finite set of vertices containing the origin,

aη(z) = a(z)−
∑
w∈η

HZ2\η(z, w) a(w).

I HZ2\η(z, w) is the Poisson kernel

HZ2\η(z, w) =
∑

ω:z→w
p(ω),

where the sum is over all nearest neighbor paths from z
to w, otherwise in Z2 \ η.

I Then aη satisfies aη ≡ 0 on η and

∆aη(z) = 0, z 6∈ η,

aη(z) ∼ 2
π

log |z|, z →∞.
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I

uη(z) = u(z)−
∑
w∈η

Hq
Z2\η(z, w)u(w).

vη(z) = v(z)−
∑
w∈η

Hq
Z2\η(z, w) v(w).

I Hq
Z2\η(z, w) is the Poisson kernel

Hq
Z2\η(z, w) =

∑
ω:z→w

q(ω),

where the sum is over all nearest neighbor paths from z
to w, otherwise in Z2 \ η.

I Then uη, vη satisfies uη, vη ≡ 0 on η and

∆quη(z) = ∆qvη(z) = 0, z 6∈ η,

uη(z) = u(z) + o(1), vη(z) = v(z) + o(1), z →∞.
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Let η = [η0 = 0, η1 = 1, . . . , ηk] be a SAW starting with [0, 1].
I The probability that the one-sided LERW traverses η is

4−k Fη(Ẑ2) ∆aη(ηk).

I There exists c such that the probability that the two-sided
LERW traverses η is

p̂(η) := c 4−k F q
η (Ẑ2) detMη,

Mη =
[

∆qvη(ηk) ∆quη(0)
∆quη(ηk) ∆qvη(0)

]
.

I Follows from Fomin’s identity using the weight q (as done
in BLV) and being able to take the limit (using the recent
result).
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Example: η = ηk = [0, 1, . . . , k], k ≥ 2

I uη(z) = u(z), vη(z) = v(z − k), ∆quη(k) = 0
I ∆quη(0) = ∆qvη(k) = ∆u(0).
I

p̂(ηk)
p̂(ηk−1) = 1

4 F
q
k (Z2 \ ηk−1) = 1

4 G
q
Z2\ηk−1(k, k).

I In the q-measure loops that hit the negative real axis have
total measure zero since “positive” loops cancel with
“negative” loops. Hence,

Gq
Z2\ηk−1(k, k) = GZ2\{,...,k−2,k−1}(k, k) =

GZ2\{...,−1,0}(1, 1) = 4 (
√

2− 1).
I Therefore, p̂(ηk) = 4−1 (

√
2− 1)k−1 (Also derived by

Kenyon-Wilson)
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Part 8
Three dimensions

(Li and Shiraishi using result of Kozma)

I There exists an α such that the loop-erased walk grows
like nα.

I Moreover, the paths scaled by number of steps (natural
parametrization) converge to a scaling limit.

I α is not known (may never be known) and the nature of
the limit is not known.

102 / 106



Open problem: Laplacian motion in R3

I Can we give a description in the continuum of the scaling
limit of LERW in three dimensions?

I It should be “Brownian motion tilted locally by harmonic
measure”, that is, Laplacian motion.
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I (with C. Beneš, F. Viklund) Scaling limit of the
loop-erased random walk Green’s function, Probab. and
Related Fields 166, 271–319. (2016)

I (with F. Viklund) Convergence of radial loop-erased
random walk in the natural parameterization, preprint.

I The infinite two-sided loop-erased random walk, preprint.
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