Gaussian Free Fields with Boundary Points, Multiple SLEs, and Log-Gases arXiv: math.PR/1903.09925v2 Makoto KATORI (Chuo Univ., Tokyo) joint work with Shinji KOSHIDA (Chuo Univ.) The 12th Mathematical Society of Japan, Seasonal Institute (MSJ-SI) **Stochastic Analysis, Random Fields and Integrable Probability** Kyushu University, Fukuoka 1 August 2019

1

<u>Plan</u>

- **1. Introduction**
 - **1.1 Stochastic log-gases in R**
 - **1.2 Loewner equation for multi-slit**
 - **1.3 Multiple Schramm-Leowner evolution (SLE)**
 - 1.4 Gaussian free field (GFF)
 - **1.5 Imaginary surface**
- 2. Imaginary Surface with Boundary Points (IS-BPs)
- **3. Two Ways of Sampling IS-BPs**
- 4. Main Theorems (Theorems 4.1 and 4.2)
- 5. Proof of Theorem 4.1
- 6. Concluding Remarks

Introduction Stochastic log-gases in R

• For $N \in \mathbb{N} := \{1, 2, ...\}$, consider a system of interacting Brownian motions on \mathbb{R} , $\mathbf{X}(t) = (X_1(t), ..., X_N(t)) \in S^N$, $S \subset \mathbb{R}$, $t \ge 0$, following the SDEs,

 $dX_i(t) = \sqrt{\kappa} dB_i(t) + F_i(\boldsymbol{X}(t))dt, \quad t \ge 0, \quad 1 \le i \le N,$

where $\{B_i(t) : t \ge 0\}_{i=1}^N$ are mutually independent one-dimensional standard Brownian motions, and $\kappa > 0$. (Note that $\sqrt{\kappa}B(t) \stackrel{(\text{law})}{=} B(\kappa t), t \ge 0$.)

• Example 1: Dyson model with parameter $\beta > 0$. Set $S = \mathbb{R}$.

Consider the case that

$$F_i(\boldsymbol{x}) = \sum_{\substack{1 \le j \le N, \\ j \ne i}} \frac{4}{x_i - x_j}, \quad 1 \le i \le N.$$

A time change of the obtained SDEs ($\kappa t \rightarrow t$, $X(t/\kappa) \rightarrow X(t)$) gives

$$dX_i(t) = dB_i(t) + \frac{\beta}{2} \sum_{\substack{1 \le j \le N, \\ j \ne i}} \frac{dt}{X_i(t) - X_j(t)}, \quad t \ge 0, \quad 1 \le i \le N \quad \text{with} \quad \beta = \frac{8}{\kappa}.$$

The Dyson model generates the dynamical extensions of the eigenvalue statistics in Gaussian random-matrix ensembles.

• Example 2: Bru–Wishart process with parameters (β, ν) . Set $S = \mathbb{R}_{\geq 0}$.

Consider the case that

$$F_i(\boldsymbol{x}) = \sum_{\substack{1 \le j \le N, \\ j \ne i}} \left(\frac{4}{x_i - x_j} + \frac{4}{x_i + x_j} \right) + \frac{4\alpha}{x_i}, \quad 1 \le i \le N, \quad \alpha \in \mathbb{R}.$$

A time change of the obtained SDEs ($\kappa t \to t$, $X(t/\kappa) \to X(t)$) gives

$$\begin{split} dX_i(t) = & dB_i(t) + \frac{1}{2} \left[\frac{\beta(\nu+1) - 1}{X_i(t)} + \beta \sum_{\substack{1 \le j \le N, \\ j \ne i}} \left(\frac{1}{X_i(t) - X_j(t)} + \frac{1}{X_i(t) + X_j(t)} \right) \right] dt, \\ t \ge 0, \quad 1 \le i \le N \quad \text{with} \quad \beta = \frac{8}{\kappa}, \quad \nu = \alpha - 1 + \frac{\kappa}{8}. \end{split}$$

The Bru–Wishart process generates the dynamical extensions of the singularvalue/eigenvalue statistics in chiral-Gaussian/Laguerre random-matrix ensembles.

Stochastic Log-Gases in \mathbb{R} (=Stochastic 2D Coulomb Gases Confined in \mathbb{R})

Stochastic processes in $\mathbb R$

$$dX_i(t) = dB_i(t) - \frac{1}{2} \frac{\partial \Phi(\mathbf{x})}{\partial x_i} \Big|_{\mathbf{x} = \mathbf{X}(t)} dt, \quad t \ge 0, \quad 1 \le i \le N,$$

driven by logarithmic potentials,

$$\Phi(\mathbf{x}) := \begin{cases} -\beta \sum_{1 \le i < j \le N} \log(x_j - x_i), & \text{for the Dyson model in } \mathbb{R}, \\ -\beta \sum_{1 \le i < j \le N} \left[\log(x_j - x_i) + \log(x_j + x_i) \right] - \{\beta(\nu + 1) - 1\} \sum_{i=1}^N \log x_i \\ & \text{for the Bru-Wishart process in } \mathbb{R}_{\ge 0}. \end{cases}$$

1.2 Loewner equation for multi-slit

- Denote the upper half of complex plane by $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im} z > 0\}.$
- A multi-slit $\bigcup_{i=1}^{N} \eta_i$ is defined as a union of non-colliding and non-selfintersecting curves in \mathbb{H} anchored at N distinct and ordered points on \mathbb{R} .
- For each time $t \in (0, \infty)$, $\mathbb{H}_t^{\eta} := \mathbb{H} \setminus \bigcup_{i=1}^{N} \eta_i(0, t]$ is a simply connected domain in \mathbb{C} and then by the Riemann mapping theorem there exists a unique analytic function $g_{\mathbb{H}_t^{\eta}}$ such that

 $g_{\mathbb{H}^{\eta}_{t}}$: conformal map $\mathbb{H}^{\eta}_{t} \to \mathbb{H}$, satisfying the hydrodynamic normalization condition

Theorem 1.1 (RS17) For $N \in \mathbb{N}$, let $\bigcup_{i=1}^{N} \eta_i$ be a multi-slit in \mathbb{H} such that $hcap(\bigcup_{i=1}^{N} \eta(0,t]) = 2t, t \in (0,\infty)$. Then there exists a set of weight functions $\lambda_i(t), t \ge 0, 1 \le i \le N$ satisfying $\sum_{i=1}^{N} \lambda_i(t) = 1, t \ge 0$ and an *N*-variate continuous driving function $U(t) = (U_1(t), \ldots, U_N(t)) \in \mathbb{R}^N, t \in (0,\infty)$ such that the solution g_t of the differential equation

$$\frac{dg_t(z)}{dt} = \sum_{i=1}^N \frac{2\lambda_i(t)}{g_t(z) - U_i(t)}, \quad t \ge 0, \quad g_0(z) = z,$$

gives $g_t = g_{\mathbb{H}^{\eta}_t}, t \in (0, \infty)$.

- $U_i(t) = \lim_{z \to 0} g_t(\eta(t) + z) \iff \eta_i(t) = \lim_{z \to 0} g_t^{-1}(U_i(t) + z), \ 1 \le i \le N, \ t \in (0, \infty).$
- Roth and Schleissinger called this the Loewner equation for multi-slit.
 [RS17] D. Roth, S. Schleissinger : The Schramm-Loewner equation for multiple slits, J. Anal. Math. 131, 73–99 (2017).

- The Loewner equation for the multi-slit given for $D = \mathbb{H}$ can be mapped to other simply connected domains $D \subsetneq \mathbb{C}$ by conformal transformations.
- Here we consider a conformal transformation $\varphi(z) = \sqrt{z} : \mathbb{H} \to \mathbb{O}$, where \mathbb{O} denotes the first orthant in \mathbb{C} ; $\mathbb{O} := \{z \in \mathbb{C} : \operatorname{Re} z > 0, \operatorname{Im} z > 0\}$.
- We set $\widehat{g}_t(z) = \sqrt{g_t(z^2) + c(t)}, t \ge 0, z \in \mathbb{O}$ with a function of time $c(t), t \ge 0$. Then we can see that the Loewner equation for the multi-slit is transferred to the following form, $\widehat{g}_0(z) = z \in \mathbb{O}$,

$$\frac{d\widehat{g}_t(z)}{dt} = \sum_{i=1}^N \left(\frac{2\widehat{\lambda}_i(t)}{\widehat{g}_t(z) - \widehat{U}_i(t)} + \frac{2\widehat{\lambda}_i(t)}{\widehat{g}_t(z) + \widehat{U}_i(t)} \right) + \frac{2\widehat{\lambda}_0(t)}{\widehat{g}_t(z)}, \quad t \ge 0,$$

• The solution of this equation gives the uniformization map to \mathbb{O} ;

$$\widehat{g}_t = g_{\mathbb{O}_t^{\eta}} :$$
conformal map $\mathbb{O}_t^{\eta} := \mathbb{O} \setminus \sum_{i=1}^{N} \eta_i(0, t] \to \mathbb{O}.$

1.3 Multiple Schramm-Leowner evolution (multiple SLE)

• For simplicity, we assume the uniform weight $\lambda_i(t) \equiv 1/N, t \geq 0, 1 \leq i \leq N$ in Theorem 1.1. Then by a simple time change $t/N \to t$ associated with a change of notation, $g_{Nt} \to g_t$, the Loewner equation for the multi-slit in \mathbb{H} is written as

$$\frac{dg_t(z)}{dt} = \sum_{i=1}^N \frac{2}{g_t(z) - X_i(t)}, \quad g_0(z) = z, \quad t \ge 0.$$

Then we ask what is the suitable family of driving stochastic processes of N particles on \mathbb{R} , $\mathbf{X}(t) = (X_1(t), \ldots, X_N(t)), t \ge 0$?

The Loewner equation for the multi-slit in \mathbb{H} is written as

$$\frac{dg_t(z)}{dt} = \sum_{i=1}^N \frac{2}{g_t(z) - X_i(t)}, \quad g_0(z) = z, \quad t \ge 0.$$

What is the suitable family of driving stochastic processes of N particles on \mathbb{R} , $\mathbf{X}(t) = (X_1(t), \dots, X_N(t)), t \ge 0$?

- As Schramm (2000) argued for his original SLE, conformal invariance implies that the driving process $X(t), t \ge 0$ should be a continuous Markov process which has in a particular parameterization independent increments.
- Moreover, Bauer, Bernard, and Kytölä (2005) and Graham (2007) showed that $X_i(t), t \ge 0, 1 \le i \le N$ are semi-martingales and the quadratic variations should be given by $\langle dX_i, dX_j \rangle_t = \kappa \delta_{ij} dt, t \ge 0, 1 \le i, j \le N$ with $\kappa > 0$.
- Then we can assume that the system of SDEs for $X(t), t \ge 0$ is in the form,

$$dX_i(t) = \sqrt{\kappa} dB_i(t) + F_i(\boldsymbol{X}(t))dt, \quad t \ge 0, \quad 1 \le i \le N,$$

where $B_i(t), t \ge 0, 1 \le i \le N$ are independent one-dimensional standard Brownian motions, $\kappa > 0$, and $\{F_i(\boldsymbol{x})\}_{i=1}^N$ are suitable functions of $\boldsymbol{x} = (x_1, \ldots, x_N)$ which do not explicitly depend on t. • In the orthant system, we put $\widehat{\lambda}_i(t) \equiv \tau/(2N), t \ge 0, \tau \in [0,1], 1 \le i \le N$ and $dc(t)/dt = 4, t \ge 0$, and perform a time change $\alpha t/(2N) \to t$ associated with a change of notation $\widehat{g}_{2Nt/\tau} \to \widehat{g}_t$. Then the Loewner equation for the multi-slit is written in this system in the form,

$$\frac{d\widehat{g}_t(z)}{dt} = \sum_{i=1}^N \left(\frac{2}{\widehat{g}_t(z) - \widehat{X}_i(t)} + \frac{2}{\widehat{g}_t(z) + \widehat{X}_i(t)} \right) + \frac{4\delta}{\widehat{g}_t}, \quad \widehat{g}_0(z) = z, \quad t \ge 0,$$

where $\delta := N(1-\tau)/\tau \ge 0$. We assume that the system of SDEs for $\widehat{X}(t) = (\widehat{X}_1(t), \ldots, \widehat{X}_N(t)), t \ge 0$ is in the same form,

$$d\widehat{X}_i(t) = \sqrt{\kappa} dB_i(t) + \widehat{F}_i(\widehat{X}(t))dt, \quad t \ge 0, \quad 1 \le i \le N,$$

where the range of $\widehat{\mathbf{X}}(t), t \geq 0$ shall be in $(\mathbb{R}_{\geq 0})^N$.

1.4 Gaussian free field (GFF)

• First we define a functional of positive type.

Definition 1.2 Let \mathcal{V} be a finite or infinite dimensional vector space. A function $\psi : \mathcal{V} \to \mathbb{C}$ is said to be a functional of positive type if for arbitrary $N \in \mathbb{N}, \xi_1, \ldots, \xi_N \in \mathcal{V}, \text{ and } z_1, \ldots, z_N \in \mathbb{C}, \text{ we have } \sum_{n=1}^N \sum_{m=1}^N \psi(\xi_n - \xi_m) z_n \overline{z_m} \ge 0.$

• For $x, y \in \mathbb{R}^N$, the standard inner product is denoted by (x, y) and we write $||x|| := \sqrt{(x, x)}$. Let \mathcal{B}^N be the family of Borel sets in \mathbb{R}^N . Then the following is known as the Bochner theorem.

Theorem 1.3 (Bochner theorem) Let $\psi : \mathbb{R}^N \to \mathbb{C}$ be a continuous functional of positive type such that $\psi(0) = 1$. Then there exists a unique probability measure P on $(\mathbb{R}^N, \mathcal{B}^N)$ such that

$$\psi(\boldsymbol{\xi}) = \int_{\mathbb{R}^N} e^{\sqrt{-1}(\boldsymbol{\xi}, \boldsymbol{x})} \mathrm{P}(d\boldsymbol{x}) \quad \text{for} \quad \boldsymbol{\xi} \in \mathbb{R}^N.$$

• If we consider the case that the functional of positive type $\psi(\pmb{\xi})$ is especially given by

$$\Psi(\boldsymbol{\xi}) := e^{-||\boldsymbol{\xi}||^2/2}, \quad \boldsymbol{\xi} \in \mathbb{R}^N,$$

then the probability measure P given by the Bochner theorem is the finitedimensional standard Gaussian measure,

$$\mathbf{P}(d\mathbf{x}) = \frac{1}{(2\pi)^{N/2}} e^{-||\mathbf{x}||^2/2} d\mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^N.$$

• Hence we can say that the finite-dimensional standard Gaussian measure P is determined by the characteristic function $\Psi(\boldsymbol{\xi})$ as

$$\Psi(\boldsymbol{\xi}) = \int_{\mathbb{R}^N} e^{\sqrt{-1}(\boldsymbol{\xi}, \mathbf{x})} \mathbf{P}(d\mathbf{x})$$
$$= e^{-||\boldsymbol{\xi}||^2/2} \quad \text{for} \quad \boldsymbol{\xi} \in \mathbb{R}^N$$

- Let $D \subsetneq \mathbb{C}$ be a simply connected domain, which is bounded. We consider the L^2 space on D with the inner product, $(f,g) := \int_D f(z)g(z)d\mu(z), f,g \in L^2(D)$, where $d\mu(z) = dzd\overline{z}$.
- Let Δ be the Dirichlet Laplacian acting on $L^2(D)$. Then $-\Delta$ has positive discrete eigenvalues so that

$$-\Delta e_n = \lambda_n e_n, \quad e_n \in L^2(D), \quad n \in \mathbb{N}.$$

We assume that the eigenvalues are labeled in a non-decreasing order;

 $0 < \lambda_1 \leq \lambda_2 \leq \cdots$.

The system of eigenvalue functions $\{e_n\}_{n\in\mathbb{N}}$ forms a CONS of $L^2(D)$.

• We write $C_0^{\infty}(D)$ for the space of real smooth functions on D with a compact support. For two functions $f, g \in C_0^{\infty}(D)$, their Dirichlet inner product is defined as

$$(f,g)_{\nabla} := \frac{1}{2\pi} \int_D (\nabla f)(z) \cdot (\nabla g)(z) d\mu(z).$$

The Hilbert space completion of $C_0^{\infty}(D)$ with respect to the Dirichlet inner product will be denoted by W(D). We write $||f||_{\nabla} = \sqrt{(f, f)_{\nabla}}, f \in W(D)$.

• If we set $u_n = \sqrt{\frac{2\pi}{\lambda_n}} e_n, n \in \mathbb{N}$, then by integration by parts, we have

$$(u_n, u_n)_{\nabla} = \frac{1}{2\pi} (u_n, (-\Delta)u_m) = \delta_{nm}, \quad n, m \in \mathbb{N}.$$

Therefore $\{u_n\}_{n\in\mathbb{N}}$ forms a CONS of W(D).

- Let $\widehat{\mathcal{H}}(D)$ be the space of formal infinite series in $\{u_n\}_{n\in\mathbb{N}}$.
- For two formal series f = ∑_{n∈ℕ} f_nu_n, g = ∑_{n∈ℕ} g_nu_n ∈ Ĥ(D) such that ∑_{n∈ℕ} |f_ng_n| < ∞, we define their pairing as (f, g)_∇ := ∑_{n∈ℕ} f_ng_n.
 (In case when f, g ∈ W(D), their pairing of course coincides with the Dirichlet inner product.)
- For any $a \in \mathbb{R}$, the operator $(-\Delta)^a$ acts on $\widehat{\mathcal{H}}(D)$ as

$$(-\Delta)^a \sum_{n \in \mathbb{N}} f_n u_n := \sum_{n \in \mathbb{N}} \lambda_n^a f_n u_n, \quad (f_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}.$$

• Using this fact, we define $\mathcal{H}_a := (-\Delta)^a W(D)$, $a \in \mathbb{R}$, each of which is a Hilbert space with inner product

$$\langle f, g \rangle_a := ((-\Delta)^{-a} f, (-\Delta)^{-a} g)_{\nabla}, \quad f, g \in \mathcal{H}_a(D).$$

We write $|| \cdot ||_a := \sqrt{\langle \cdot, \cdot \rangle_a}, a \in \mathbb{R}$.

• We can prove that

 $- \mathcal{H}_a(D) \subset \mathcal{H}_b(D) \text{ for } a < b,$

– the dual Hilbert space of $\mathcal{H}_a(D)$ is given by $\mathcal{H}_{-a}(D)$.

Example When a = 1/2, we have

$$\langle f,g \rangle_{1/2} = \left((-\Delta)^{-1/2} f, (-\Delta)^{-1/2} g \right)_{\nabla} = \frac{1}{2\pi} (f,g), \quad f,g \in \mathcal{H}_{1/2}(D).$$

Therefore $\mathcal{H}_{1/2}(D) \simeq L^2(D)$.

<u>Remark</u> Since $\mathcal{H}_{1/2}(D) = L^2(D)$ as shown in above, the members of $\mathcal{H}_a(D)$ with a > 1/2 cannot be functions, but are distributions.

• Define $\mathcal{E}(D) := \bigcup_{a>1/2} \mathcal{H}_a(D)$. Then its dual Hilbert space is identified with $\mathcal{E}(D)^* := \bigcap_{a<-1/2} \mathcal{H}_a(D)$ and

$$\mathcal{E}(D)^* \subset W(D) \subset \mathcal{E}(D)$$

is established. Here $(\mathcal{E}(D)^*, W(D), \mathcal{E}(D))$ is called a Gel'fand triple. We set $\Sigma_{\mathcal{E}(D)} = \sigma(\{(\cdot, f)_{\nabla} : f \in \mathcal{E}(D)^*\}).$

• On such a setting, the following is obtained. This theorem is the extension of the Bochner theorem (Theorem 1.3) and is called the Bochner-Minlos theorem.

Theorem 1.4 [Bochner–Minlos theorem] Let ψ be a continuous function of positive type on W(D) such that $\psi(0) = 1$. Then there exists a unique probability measure P on $(\mathcal{E}(D), \Sigma_{\mathcal{E}(D)})$ such that

$$\psi(f) = \int_{\mathcal{E}(D)} e^{\sqrt{-1}(h,f)\nabla} \mathbf{P}(dh) \quad \text{for } f \in \mathcal{E}(D)^*.$$

See, for instance,

[Hida80] T. Hida : Brownian Motion, Application of Mathematics, vol.11, Springer, (1980), Heidelberg.

[Asai10] A. Asai: Functional Integral Methods in Quantum Mathematical Physics, (in Japanese), Kyoritu-Shuppan, (2010), Tokyo. 19

- Under certain conditions for ψ , the domain of test functions f can be extended from $\mathcal{E}(D)^*$ to W(D).
- We can verify that the functional $\Psi(f) := e^{-||f||_{\nabla}^2/2}$ satisfies the conditions. Then the following is established with a probability measure \mathbb{P} on $(\mathcal{E}(D), \Sigma_{\mathcal{E}(D)})$,

$$\Psi(f) = \int_{\mathcal{E}(D)} e^{\sqrt{-1}(h,f)\nabla} \mathbb{P}(dh) = e^{-||f||_{\nabla}^2/2} \quad \text{for } f \in W(D).$$

• We define the Gaussian free field (GFF) with the Dirichlet boundary condition $H \in \mathcal{E}(D)$ by an isotopy

 $H: W(D) \to L^2(\mathcal{E}(D), \mathbb{P}), \text{ such that } W(D) \ni f \mapsto (H, f)_{\nabla} \in L^2(\mathcal{E}(D), \mathbb{P}).$

• The following linearlity holds,

$$(H, af + bg)_{\nabla} = a(H, f)_{\nabla} + b(H, g)_{\nabla} \quad \text{for} \quad a, b \in \mathbb{R}, \quad f, g \in W(D).$$

• Assume that $D, D' \subsetneq \mathbb{C}$ are simply connected domains and let

 ϕ : conformal transformation $D' \to D$.

Lemma 1.5 The Dirichlet inner product is conformal invariant, that is, $\int_{D} (\nabla f)(z) \cdot (\nabla g)(z) d\mu(z) = \int_{D'} (\nabla (f \circ \phi))(z) \cdot (\nabla (g \circ \phi))(z) d\mu(z) \quad \text{for } f, g \in \mathcal{C}_{0}^{\infty}(D).$

• From the above lemma, we see that

$$\phi^*: W(D) \to W(D')$$
 such that $W(D) \ni f \mapsto f \circ \phi \in W(D')$

is an isomorphism.

• This allows one to consider GFF on an unbounded domain.

Namely, if D' is bounded, we already have a family {(H, f)_∇ : f ∈ W(D')} of random variables. Then, even if D is unbounded, we can define a family {(φ_{*}H, f)_∇ : f ∈ W(D)} by

$$(\phi_*H, f)_{\nabla} := (H, \phi^*f)_{\nabla}, \quad f \in W(D)$$

so as to have the following covariance structure,

$$\mathbb{E}\Big[(\phi_*H, f)_{\nabla}(\phi_*H, g)_{\nabla}\Big] = (\phi^*f, \phi^*g)_{\nabla} = (f, g)_{\nabla} \quad \text{for } f, g \in W(D).$$

• Relying on the following formal computation

$$\begin{aligned} (\phi_*H, f)_{\nabla} &= (H, \phi^*f)_{\nabla} = \frac{1}{2\pi} \int_{D'} (\nabla H)(z) \cdot (\nabla f \circ \phi)(z) d\mu(z) \\ &= \frac{1}{2\pi} \int_D (\nabla H \circ \phi^{-1})(z) \cdot (\nabla f)(z) d\mu(z) \end{aligned}$$

we understand the equality $\phi_* H = H \circ \phi^{-1}$.

On the Green's funciton

• We have constructed a family $\{(H, f)_{\nabla} : f \in W(D)\}$ of random variables whose covariance structure is given by

$$\mathbb{E}\Big[(H,f)_{\nabla}(H,g)_{\nabla}\Big] = (f,g)_{\nabla} \quad \text{for } f,g \in W(D).$$

• By a formal integration by parts, we see that

$$(H,f)_{\nabla} = \frac{1}{2\pi} \int_{D} (\nabla H)(z) \cdot (\nabla f)(z) d\mu(z) = \frac{1}{2\pi} \int_{D} H(z)(-\Delta f)(z) d\mu(z) = \frac{1}{2\pi} (H,(-\Delta)f)(z) d\mu(z) = \frac{$$

Motivated by this observation, we define

$$(H, f) := 2\pi (H, (-\Delta)^{-1} f)_{\nabla} \text{ for } \in \mathsf{D}((-\Delta)^{-1}),$$

where $D((-\Delta)^{-1})$ denotes the domain of $(-\Delta)^{-1}$ in W(D).

• The action of $(-\Delta)^{-1}$ is expressed as an integral operator and the integral kernel is known as the Green's function $G_D(z, w)$.

$$((-\Delta)^{-1}f)(z) = \frac{1}{2\pi} \int_D G_D(z, w) f(w) d\mu(w), \quad \text{a.e.} \ z \in D, \quad f \in \mathsf{D}((-\Delta)^{-1}).$$

• Hence the covariance of (H, f) and (H, g) with $f, g \in D((-\Delta)^{-1})$ is written as

$$\mathbb{E}[(H,f)(H,g)] = \int_{D \times D} f(z)G_D(z,w)g(w)d\mu(z)d\mu(w).$$

• When we symbolically write

$$(H,f) = \int_D H(z)f(z)d\mu(z), \quad f \in \mathsf{D}((-\Delta)^{-1}),$$

the covariance structure can be understood as

$$\mathbb{E}[H(z), H(w)] = G_D(z, w), \quad z, w \in D, \quad n \neq w.$$

Example When D is the upper half plane \mathbb{H} ,

$$G_{\mathbb{H}}(z,w) = \log \left| \frac{z - \overline{w}}{z - w} \right| = -\log |z - w| + \log |z - \overline{w}|, \quad z, w \in \mathbb{H}, \quad z \neq w.$$

1.5 Imaginary surface (IS)

• Now we define an equivalent class of pairs (D, H) of simply connected domains $D \subsetneq \mathbb{C}$ and distribution-valued random field H_D on D (e.g., GFF) induced by the conformal equivalence.

Definition 1.6 (Imaginary surface (IS)) Let $\gamma \in (0, 2]$ and put $\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$. A χ -imaginary surface is a collection of pairs (D, H_D) subject to the condition that, for all simply connected domains $D_1, D_2 \subsetneq \mathbb{C}$ and conformal map $\psi : D_1 \to D_2$, the following equality holds,

$$H_{D_1} = H_{D_2} \circ \psi - \chi \arg \psi' \quad \text{in } \mathbb{P}.$$

where $\psi'(z) := d\psi(z)/dz$.

• See for more details, [MS16] J. Miller, S. Sheffield : Imaginary geometry I : Interacting SLEs, Probab.Theory Relat.Fields <u>164</u>, 553–705 (2016).

[She16] S. Sheffield : Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. <u>44</u>, 3474–3545 (2016).

2. Imaginary Surface with Boundary Points (IS-BPs)

- Here we consider the two cases $D = \mathbb{H}$ or $D = \mathbb{O}$.
- Consider the Weyl chambers.

$$\mathbb{W}_N(S) = \{ \boldsymbol{x} = (x_1, \dots, x_N) \in S^N : x_1 < \dots < x_N \}, \quad S = \mathbb{R} \text{ or } S = \mathbb{R}_{\geq 0}.$$

- Let $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N$.
- We consider the following complex-valued logarithmic potentials,

$$\Phi_{\mathbb{H}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i \log(z - x_i), \quad z \in \mathbb{H}, \ \boldsymbol{x} \in \mathbb{W}_N(\mathbb{R}),$$
$$\Phi_{\mathbb{O}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i \Big[\log(z - x_i) + \log(z + x_i) \Big] + \alpha_0 \log z, \ z \in \mathbb{O}, \ \boldsymbol{x} \in \mathbb{W}_N(\mathbb{R}_{\geq 0}).$$

Here $\{\boldsymbol{x}, \infty\} := \{x_1, \dots, x_N, \infty\}$. We see that ∞ is also a singular point of $\Phi_D(\cdot; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha})$.

• Note that each α_i seems to be a 2D Coulomb charge of the particle at the boundary points $x_i \in \partial D$, $1 \le i \le N$.

• Now we take the imaginary part of $\overline{\Phi_D}$ to define real-valued fields ϕ_D on D;

$$\phi_{\mathbb{H}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) := \operatorname{Im} \overline{\Phi_{\mathbb{H}}(z; \boldsymbol{x}, \boldsymbol{\alpha})}$$

$$= -\sum_{i=1}^{N} \alpha_{i} \operatorname{arg} (z - x_{i}), \quad z \in \mathbb{H}, \quad \boldsymbol{x} \in \mathbb{W}_{N}(\mathbb{R}),$$

$$\phi_{\mathbb{O}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) := \operatorname{Im} \overline{\Phi_{\mathbb{O}}(z; \boldsymbol{x}, \boldsymbol{\alpha})}$$

$$= -\left\{\sum_{i=1}^{N} \alpha_{i} \left[\operatorname{arg} (z - x_{i}) + \operatorname{arg} (z + x_{i}) \right] + \alpha_{0} \operatorname{arg} z \right\},$$

$$z \in \mathbb{O}, \quad \boldsymbol{x} \in \mathbb{W}_{N}(\mathbb{R}_{\geq 0}).$$

27

• We introduce new distribution-valued random fields by

$$H_{\mathbb{H}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} := H_{\mathbb{H}} + \phi_{\mathbb{H}}(\,\cdot\,;\boldsymbol{x},\boldsymbol{\alpha}),$$
$$H_{\mathbb{O}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} := H_{\mathbb{O}} + \phi_{\mathbb{O}}(\,\cdot\,;\boldsymbol{x},\boldsymbol{\alpha}),$$

where $H_{\mathbb{H}}$ and $H_{\mathbb{O}}$ denotes the GFFs with the Dirichlet boundary conditions in $D = \mathbb{H}$ and $D = \mathbb{O}$, respectively.

• Moreover, we consider the situation such that the boundary points are random variables $X = (X_1, \ldots, X_N) \in W_N(S)$.

- The probability law of GFF H_D (resp. $X \in \partial D$) is denoted by \mathbb{P} (resp. P).
- We consider an equivalent class of the triplets, $(D, H_D^{X, \alpha}, X)$, induced by the conformal equivalence.

Definition 2.1 (Imaginary surface with boundary points (IS-BPs)) Let $\gamma \in (0, 2]$, $\alpha \in \mathbb{R}^N$, and put $\chi = \frac{2}{\gamma} - \frac{\gamma}{2}$. A χ -imaginary surface with (N+1)-boundary points is a collection of triplet $(D, H_D^{X,\alpha}, X)$ subject to the condition that, for all simply connected domains $D_1, D_2 \subsetneq \mathbb{C}$ and conformal map $\psi : D_1 \to D_2$, the following equalities holds in probability law $\mathbb{P} \otimes \mathbb{P}$,

$$H_{D_1} \stackrel{\text{(law)}}{=} H_{D_2} \circ \psi - \chi \arg \psi',$$
$$\boldsymbol{X}_{D_1} = (X_{D_1,1}, \dots, X_{D_1,N}) \stackrel{\text{(law)}}{=} \psi^{-1}(\boldsymbol{X}_{D_2}) := (\psi^{-1}(X_{D_2,1}), \dots, \psi^{-1}(X_{D_2,N})).$$
where $\psi'(z) := d\psi(z)/dz$.

Remark

- We can construct a GFF with the free boundary condition on a simply connected domain $D \subsetneq \mathbb{C}$, which is denoted by \widetilde{H}_D .
- For \widetilde{H}_D , we consider the real part of $\overline{\Phi_D}$, and define

$$\widetilde{H}_D^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} := \widetilde{H}_D + \widetilde{\phi}_D(\,\cdot\,;\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}),$$

where, for $D = \mathbb{H}$ and \mathbb{O} ,

$$\widetilde{\phi}_{\mathbb{H}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i \log |z - x_i|, \ z \in \mathbb{H}, \ \boldsymbol{x} \in \mathbb{W}_N(\mathbb{R}),$$
$$\widetilde{\phi}_{\mathbb{O}}(z; \{\boldsymbol{x}, \infty\}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i \Big[\log |z - x_i| + \log |z + x_i| \Big] + \alpha_0 \log |z|, \ z \in \mathbb{O}, \ \boldsymbol{x} \in \mathbb{W}_N(\mathbb{R}_{\geq 0}).$$

- The equivalence class of triplets $(D, \widetilde{H}_D^{X, \alpha}, X)$, induced by the conformal equivalence is called quantum surface with boundary points.

[KK19+] M. K., S. Koshida : Conformal welding problem, flow line problem, and multiple Schramm–Loewner evolution, arXiv:math/PR:1903.09925

3. Two Ways of Sampling IS-BPs

Setting

- Let $0 < T < \infty$ and consider a time duration $t \in [0, T]$.
- Give an initial configuration of BPs, $X(0) = x = (x_1, \dots, x_N) \in W_N(S), S = \mathbb{R}$ or $\mathbb{R}_{\geq 0}$.
- We consider the situation such that **BPs evolve in time** as a system of interacting Brownian motions

$$\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in W_N(S), \quad t \ge 0 \quad \text{with } S = \mathbb{R} \text{ or } \mathbb{R}_{\ge 0},$$

which solves the SDEs in the form,

$$dX_i(t) = \sqrt{\kappa} dB_i(t) + F_i(\boldsymbol{X}(t))dt, \quad t \ge 0, \quad 1 \le i \le N.$$

Here $B_i(t), t \ge 0, 1 \le i \le N$ are independent one-dimensional standard Brownian motions.

Sampling A

- Sample a GFF : H_D .
- Then obtain an instance of IS-BPs,

$$H_D^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} := H_D + \phi_D(\cdot;\boldsymbol{x},\boldsymbol{\alpha}).$$

Sampling B

- Sample a GFF : H_D .
- Sample a time-evolution of BPs on $S(=\mathbb{R} \text{ or } \mathbb{R}_{\geq 0})$ starting from given x:

$$\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_N(S), \quad t \in [0, T], \quad \boldsymbol{X}(0) = \boldsymbol{x}$$

- Generate multiple slits $\bigcup_{i=1}^{N} \eta^{(i)}(0,T]$ by the multiple SLE $g_{D_t^{\eta}}, t \in [0,T]$, which is driven by $\mathbf{X}(t), t \in [0,T]$.
- Erase the multiple slits by the conformal map $g_{D^{\eta}_{T}}$.
- Then obtain an instance

$$g_{D_T^{\eta}} * H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}} := H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}} \circ g_{D_T^{\eta}} - \chi \arg g_{D_T^{\eta}}'$$
$$= H_D \circ g_{D_T^{\eta}} + \phi_D(g_{D_T^{\eta}}(\cdot); \boldsymbol{X}(T), \boldsymbol{\alpha}) - \chi \arg g_{D_T^{\eta}}'$$

Sampling B

- Sample a GFF : H_D .
- Sample a time-evolution of BPs on $S(=\mathbb{R} \text{ or } \mathbb{R}_{\geq 0})$ starting from given x:

$$\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_N(S), \quad t \in [0, T], \quad \boldsymbol{X}(0) = \boldsymbol{x}$$

- Generate multiple slits $\bigcup_{i=1}^{N} \eta^{(i)}(0,T]$ by the multiple SLE $g_{D_t^{\eta}}, t \in [0,T]$, which is driven by $\mathbf{X}(t), t \in [0,T]$.
- Erase the multiple slits by the conformal map $g_{D^{\eta}_{T}}$.
- Then obtain an instance $g_{D_T^{\eta}} * H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}} := H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}} \circ g_{D_T^{\eta}} - \chi \arg g'_{D_T^{\eta}}$ $= H_D \circ g_{D_T^{\eta}} + \phi_D(g_{D_T^{\eta}}(\cdot); \boldsymbol{X}(T), \boldsymbol{\alpha}) - \chi \arg g'_{D_T^{\eta}}.$

• Note that at each time $T \in [0, \infty)$,

 $(D_T^{\eta}, H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}} \circ g_{D_T^{\eta}} - \chi \arg g_{D_T^{\eta}}', \boldsymbol{X}(T)) \sim_{\chi} (D, H_D^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}}, \boldsymbol{X}(T)).$ 36

4. Main Theorems

Theorem 4.1 The above two ways of sampling give the same result in probability law $\mathbb{P} \times \mathbb{P}$, that is,

$$H_{\mathbb{H}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{H}_{T}^{\eta}} * H_{\mathbb{H}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}},$$

if the following three conditions are satisfied,

(i)
$$\kappa = \gamma^2$$
,
(ii) $(\alpha_1, \dots, \alpha_N) = \left(\frac{2}{\gamma}, \dots, \frac{2}{\gamma}\right)$,
(iii) $F^{(i)}(\boldsymbol{x}) = \sum_{\substack{j=1\\ j\neq i}}^N \frac{4}{x_i - x_j}, \quad i = 1, \dots, N$,
i.e., $\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_N(\mathbb{R}), t \ge 0$, is a time change of
the Dyson model with parameter $\beta = \frac{8}{\kappa}$.

Theorem 4.1 The above two ways of sampling give the same result in probability law $\mathbb{P} \times \mathbb{P}$, that is,

$$H_{\mathbb{H}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{H}_{T}^{\eta}} * H_{\mathbb{H}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}},$$

if the following three conditions are satisfied,

(i)
$$\kappa = \gamma^2$$
, **Relation between SLE and IS**
(ii) $(\alpha_1, \dots, \alpha_N) = \left(\frac{2}{\gamma}, \dots, \frac{2}{\gamma}\right)$, **Charges at BPs**
(iii) $F^{(i)}(\boldsymbol{x}) = \sum_{\substack{j=1 \ j \neq i}}^{N} \frac{4}{x_i - x_j}, \quad i = 1, \dots, N,$
i.e., $\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_N(\mathbb{R}), t \ge 0$, is a time change of the Dyson model with parameter $\beta = \frac{8}{\kappa}$.

Theorem 4.2 The equivalence $H_{\mathbb{O}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{O}_T^{\eta}} * H_{\mathbb{O}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}}$ is established in the probability law $\mathbb{P} \times \mathbb{P}$, if the following three conditions are satisfied,

(i)
$$\kappa = \gamma^2$$
,
(ii) $(\alpha_1, \dots, \alpha_N) = \left(\frac{2}{\gamma}, \dots, \frac{2}{\gamma}\right), \quad \alpha_0 = \chi$,
(iii) $F^{(i)}(\boldsymbol{x}) = \sum_{\substack{j=1\\j \neq i}}^N \left(\frac{4}{x_i - x_j} + \frac{4}{x_i + x_j}\right) + \frac{4(1 + \delta) - \kappa/2}{x_i}, \quad i = 1, \dots, N$,
i.e., $\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_N(\mathbb{R}_{\geq 0}), t \geq 0$, is a time change of the Bru-
Wishart process with parameters $\beta = \frac{8}{\kappa}, \nu = \delta$.

Theorem 4.2 The equivalence $H_{\mathbb{O}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{O}_{T}^{\eta}} * H_{\mathbb{O}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}}$ is established in the probability law $\mathbb{P} \times \mathbb{P}$, if the following three conditions are satisfied,

(i)
$$\kappa = \gamma^2$$
, **Relation between SLE and IS**
(ii) $(\alpha_1, \dots, \alpha_N) = \left(\frac{2}{\gamma}, \dots, \frac{2}{\gamma}\right), \quad \alpha_0 = \chi,$ **Charges at BPs**
(iii) $F^{(i)}(\boldsymbol{x}) = \sum_{\substack{j=1 \ j \neq i}}^N \left(\frac{4}{x_i - x_j} + \frac{4}{x_i + x_j}\right) + \frac{4(1 + \delta) - \kappa/2}{x_i}, \quad i = 1, \dots, N,$
i.e., $\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t)) \in \mathbb{W}_V(\mathbb{R}_{\geq 0}), t \geq 0$, is a time change of the Bru-
Wishart process with parameters $\beta = \frac{8}{\kappa}, \nu = \delta.$
System of Driving Process

5. Proof of Theorem 4.1

• Define

$$\mathcal{M}_t(z) := \phi_{\mathbb{H}}^{\{\boldsymbol{X}(t),\infty\},\alpha}(g_{\mathbb{H}_t^{\eta}}(z)) - \chi \arg g_{\mathbb{H}_t^{\eta}}'(z)$$
$$= -\sum_{i=1}^N \alpha_i \arg \left(g_{\mathbb{H}_t^{\eta}}(z) - X_i(t)\right) - \chi \arg g_{\mathbb{H}_t^{\eta}}'(z), \quad t \in [0,T],$$

and put

$$\mathcal{I}_t := H_{\mathbb{H}} \circ g_{\mathbb{H}_t^{\eta}} + \mathcal{M}_t, \quad t \in [0, T].$$

• By definition, the equivalence

$$H_{\mathbb{H}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{H}_{T}^{\eta}} * H_{\mathbb{H}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}}$$

is equal to

$$\mathcal{I}_0 \stackrel{(\mathrm{law})}{=} \mathcal{I}_T \quad \text{in } \mathbb{P} \otimes \mathrm{P}.$$

Lemma 5.1 The stochastic process $\mathcal{M}_t(z), z \in \mathbb{H}, t \in [0,T]$ is a local martingale with increment

$$d\mathcal{M}_t(z) = \sum_{i=1}^N \operatorname{Im} \frac{2}{g_{\mathbb{H}_t^\eta}(z) - X_i(t)} dB_i(t), \quad z \in \mathbb{H}, \quad t \in [0, T],$$

if the three conditions of Theorem 4.1 are satisfied.

<u>Proof</u> Note that $\mathcal{M}_t(z)$ is the imaginary part of $\mathcal{M}_{t}^{*}(z) = -\sum_{i=1}^{N} \alpha_{i} \log(g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)) - \chi \log g'_{\mathbb{H}_{t}^{\eta}}(z), \quad \chi = \frac{2}{\gamma} - \frac{\gamma}{2}.$

Then Itô's formula gives

$$d\mathcal{M}_{t}^{*}(z) = \sum_{i=1}^{N} \frac{\alpha_{i}\sqrt{\kappa}}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} dB_{i}(t) \\ + \sum_{i=1}^{N} \frac{1}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} \left(\alpha_{i}F^{(i)}(\boldsymbol{X}(t)) - \sum_{\substack{1 \le j \le N, \\ j \ne i}} \frac{2(\alpha_{i} + \alpha_{j})}{X_{i}(t) - X_{j}(t)} \right) dt \\ + \sum_{i=1}^{N} \frac{1}{(g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t))^{2}} \left[\frac{1}{2}(\kappa - 4) \left(\alpha_{i} - \frac{2}{\gamma} \right) + \frac{1}{\gamma}(\kappa - \gamma^{2}) \right] dt, \quad t \in [0, T].$$

This proves the statement. \blacksquare

Lemma 5.1 The stochastic process $\mathcal{M}_t(z), z \in \mathbb{H}, t \in [0, T]$ is a local martingale with increment

$$d\mathcal{M}_t(z) = \sum_{i=1}^N \operatorname{Im} \frac{2}{g_{\mathbb{H}_t^\eta}(z) - X_i(t)} dB_i(t), \quad z \in \mathbb{H}, \quad t \in [0, T],$$

if the three conditions of Theorem 4.1 are satisfied.

<u>Proof</u> Note that $\mathcal{M}_t(z)$ is the imaginary part of $\mathcal{M}_t^*(z) = -\sum_{i=1}^N \alpha_i \log(g_{\mathbb{H}_t^{\eta}}(z) - X_i(t)) - \chi \log g'_{\mathbb{H}_t^{\eta}}(z), \quad \chi = \frac{2}{\gamma} - \frac{\gamma}{2}.$ Then Itô's formula gives

$$d\mathcal{M}_{t}^{*}(z) = \sum_{i=1}^{N} \frac{\alpha_{i}\sqrt{\kappa}}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} dB_{i}(t)$$

$$+ \sum_{i=1}^{N} \frac{1}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} \left(\alpha_{i}F^{(i)}(\boldsymbol{X}(t)) - \sum_{\substack{1 \le j \le N, \\ j \ne i}} \frac{2(\alpha_{i} + \alpha_{j})}{X_{i}(t) - X_{j}(t)} \right) dt$$

$$+ \sum_{i=1}^{N} \frac{1}{(g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t))^{2}} \left[\frac{1}{2}(\kappa - 4) \left(\alpha_{i} - \frac{2}{\gamma} \right) + \frac{1}{\gamma}(\kappa - \gamma^{2}) \right] dt, \quad t \in [0, T].$$

This proves the statement. \blacksquare

- In the following, we assume the three conditions of Theorem 4.1.
- The above lemma implies that, at each point $z \in \mathbb{H}$, the stochastic process $\{\mathcal{M}_t(z) : t \in [0,T]\}$ can be regarded as a Brownian motion modulo time change.
- Moreover, the above lemma gives the cross variation between two points $z, w \in \mathbb{H}$ as

$$d\langle \mathcal{M}(z), \mathcal{M}(w) \rangle_t = \sum_{i=1}^N \left(\operatorname{Im} \frac{2}{g_{\mathbb{H}^\eta_t}(z) - X_i(t)} \right) \left(\operatorname{Im} \frac{2}{g_{\mathbb{H}^\eta_t}(w) - X_i(t)} \right) dt, \quad t \in [0, T].$$

Lemma 5.2 Let $G_{\mathbb{H}^{\eta}_{t}}(z, w)$ be the Green function of GFF with the Dirichlet boundary condition in \mathbb{H}^{η}_{t} , $t \in [0, T]$. Then

$$d\langle \mathcal{M}(z), \mathcal{M}(w) \rangle_t = -dG_{\mathbb{H}^\eta_t}(z, w), \quad t \in [0, T], \quad z, w \in \mathbb{H}.$$

<u>Proof</u> This can be verified by direct computation. Due to the conformal invariance of the Green's function of GFF with the Dirichlet boundary condition,

$$G_{\mathbb{H}_{t}^{\eta}}(z,w) = G_{\mathbb{H}}(g_{\mathbb{H}_{t}^{\eta}}(z), g_{\mathbb{H}_{t}^{\eta}}(w)) = \log \left| \frac{g_{\mathbb{H}_{t}^{\eta}}(z) - \overline{g_{\mathbb{H}_{t}^{\eta}}(w)}}{g_{\mathbb{H}_{t}^{\eta}}(z) - g_{\mathbb{H}_{t}^{\eta}}(w)} \right| \quad t \in [0,T], \quad z, w \in \mathbb{H}.$$

Thus its increment is computed as

$$\begin{split} dG_{\mathbb{H}_{t}^{\eta}}(z,w) &= \operatorname{Re} \frac{dg_{\mathbb{H}_{t}^{\eta}}(z) - d\overline{g_{\mathbb{H}_{t}^{\eta}}(w)}}{g_{\mathbb{H}_{t}^{\eta}}(z) - g_{\mathbb{H}_{t}^{\eta}}(w)} - \operatorname{Re} \frac{dg_{\mathbb{H}_{t}^{\eta}}(z) - dg_{\mathbb{H}_{t}^{\eta}}(w)}{g_{\mathbb{H}_{t}^{\eta}}(z) - g_{\mathbb{H}_{t}^{\eta}}(w)} \\ &= -\sum_{i=1}^{N} \operatorname{Re} \frac{2dt}{(g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t))(\overline{g_{\mathbb{H}_{t}^{\eta}}(w)} - X_{i}(t))} + \sum_{i=1}^{N} \operatorname{Re} \frac{2dt}{(g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t))(g_{\mathbb{H}_{t}^{\eta}}(w) - X_{i}(t))} \\ &= \sum_{i=1}^{N} \left(\operatorname{Re} \frac{2\sqrt{-1}}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} \right) \left(\operatorname{Im} \frac{2}{g_{\mathbb{H}_{t}^{\eta}}(w) - X_{i}(t)} \right) dt \\ &= -\sum_{i=1}^{N} \left(\operatorname{Im} \frac{2}{g_{\mathbb{H}_{t}^{\eta}}(z) - X_{i}(t)} \right) \left(\operatorname{Im} \frac{2}{g_{\mathbb{H}_{t}^{\eta}}(w) - X_{i}(t)} \right) dt \end{split}$$

which is the same as $-d\langle \mathcal{M}(z), \mathcal{M}(w) \rangle_t, z, w \in \mathbb{H}$.

Proof of Theorem 4.1

• For any function $f \in \mathcal{C}_0^{\infty} \subset \mathsf{D}((-\Delta)^{-1})$, we have

$$d\langle (\mathcal{M}, f), (\mathcal{M}, f) \rangle_t = -dE_t(f),$$

where

$$E_t(f) = \int_{\mathbb{H}^2} f(z) G_{\mathbb{H}^\eta_t}(z, w) f(w) d\mu(z) d\mu(w).$$

- Since the process $\mathbb{H}_t^{\eta} := \mathbb{H} \setminus \bigcup_{i=1} \eta_i(0, t], t \ge 0$ is decreasing, the Dirichlet energy $E_t(f)$ is non-increasing in the time variable $t \in [0, T]$.
- This implies that $(\mathcal{M}_t, f), t \in [0, T]$, is a Brownian motion such that we can regard $-E_t(f)$ as time variable.
- Thus (\mathcal{M}_T, f) is normally distributed with mean (\mathcal{M}_0, f) and variance $-E_T(f) - (-E_0(f)) = -E_T(f) + E_0(f)$.

Proof of Theorem 4.1

• For any function $f \in \mathcal{C}_0^{\infty} \subset \mathsf{D}((-\Delta)^{-1})$, we have

$$d\langle (\mathcal{M}, f), (\mathcal{M}, f) \rangle_t = -dE_t(f),$$

Dirichlet energy

where

$$E_t(f) = \int_{\mathbb{H}^2} f(z) G_{\mathbb{H}^\eta_t}(z, w) f(w) d\mu(z) d\mu(w).$$

- Since the process $\mathbb{H}_t^{\eta} := \mathbb{H} \setminus \bigcup_{i=1} \eta_i(0, t], t \ge 0$ is decreasing, the Dirichlet energy $E_t(f)$ is non-increasing in the time variable $t \in [0, T]$.
- This implies that $(\mathcal{M}_t, f), t \in [0, T]$, is a Brownian motion such that we can regard $-E_t(f)$ as time variable.
- Thus (\mathcal{M}_T, f) is normally distributed with mean (\mathcal{M}_0, f) and variance $-E_T(f) - (-E_0(f)) = -E_T(f) + E_0(f)$.

- The random variable $(H_{\mathbb{H}} \circ g_{\mathbb{H}_T^{\eta}}, f)$ is also normally distributed with mean zero and variance $E_T(f)$ by the conformal invariance of the GFF.
- Since the random variable $(H_{\mathbb{H}} \circ g_{\mathbb{H}_T^{\eta}}, f)$ is conditionally independent of (\mathcal{M}_T, f) , their sum

$$(\mathcal{I}_T, f) := (H_{\mathbb{H}} \circ g_{\mathbb{H}_T^{\eta}} + \mathcal{M}_T, f)$$

is a normal random variable with mean (\mathcal{M}_0, f) and variance

$$\{-E_T(f) + E_0(f)\} + E_T(f) = E_0(f)$$

coinciding with $(\mathcal{M}_0 + H_{\mathbb{H}}, f) = (\mathcal{I}_0, f)$ in probability.

• This implies $\mathcal{I}_T \stackrel{(\text{law})}{=} \mathcal{I}_0$ as distribution-valued random fields. The proof of Theorem 4.1 is complete.

6. Concluding Remarks

- Theorem 4.1 is a multi-slit extension of the result by Sheffield [She16], in which the GFF is coupled with a single SLE curve (i.e., N = 1).
- In the case N = 1, the location of single BP is irrelevant, since a shift does not change conformal equivalence. For general IS with N BPs, time evolution of BPs is essential;

$$H_{\mathbb{H}}^{\{\boldsymbol{x},\infty\},\boldsymbol{\alpha}} \stackrel{(\text{law})}{=} g_{\mathbb{H}_{T}^{\eta}} * H_{\mathbb{H}}^{\{\boldsymbol{X}(T),\infty\},\boldsymbol{\alpha}}.$$

[She16] S. Sheffield : Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. $\underline{44}$, 3474-3545 (2016).

- Sheffield [She16] addressed very interesting geometrical problems, which we call the conformal welding problems and the flow line problems, and solved these problems by coupling the GFFs with a single SLE curve.
- The present result for the imaginary surface (IS) with (N + 1)-boundary points (BPs) and the counterpart result for the quantum surface (QS) with (N + 1)-boundary points (BPs) also solve the N-slit extensions of these geometrical problems. See [KK19+].

[She16] S. Sheffield : Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab. $\underline{44}$, 3474-3545 (2016).

[KK19+] M. K., S. Koshida : Conformal welding problem, flow line problem, and multiple Schramm–Loewner evolution, arXiv:math/PR:1903.09925

- As I mentioned at the beginning of the present talk, the Dyson model and the Bru–Wishart process are dynamical extensions of different ensembles in random matrix theory.
- We have constructed two systems of distribution-valued random fields with (N+1) BPs in \mathbb{H} and \mathbb{O} coupled with multiple SLEs driven by these two processes, respectively.
- The obtained two systems are in the same equivalence class induced by the conformal equivalence, that is, in the same χ -IS with (N + 1)-BPs,

$$(\mathbb{H}, H_{\mathbb{H}}^{\{\boldsymbol{X}, \infty\}, \boldsymbol{\alpha}}) \sim_{\chi} (\mathbb{O}, H_{\mathbb{O}}^{\{\widehat{\boldsymbol{X}}, \infty\}, \boldsymbol{\alpha}}).$$

• We hope that the notion of χ -IS (and γ -QS) will provide us a new and universal view point for the variety of (stochastic) log-gas systems and random matrix theory as well as for other variants of SLEs.

- It has been reported that random planar maps converge to SLE-decorated Liouville quantum gravity (LQG) in several topology (see [GMS17] and references therein).
- As the chordal SLE describes the scaling limit of a single interface in various critical lattice models, the multiple SLEs describe scaling limits of collections of interfaces in critical lattice models with alternating boundary conditions (see [BPW18] and references therein).
- Here we have discussed χ -IS (and γ -QS). Discrete counterparts of these random systems will be studied.

[GMS17] E. Gwynne, J. Miller, S. Sheffield . The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity, arXiv:1705.11161.

[BPW18] V. Beffara, E. Peltola, H. Wu: On the uniqueness of global multiple SLE, arXiv:1801.07699. Thank you very much for your attention.