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1. Introduction
1.1 Stochastic log-gases in R

e For N ¢ N:={1,2,...}, consider a system of interacting Brownian motions
on R, X(t) = (X(t),...,Xn(t)) € SV, SCR, t >0, following the SDEs,

dX;(t) = VrdB;(t) + F;(X (t))dt, t>0, 1<i<N,

where {B;(t) : t > 0})Y, are mutually independent one-dimensional standard

Brownian motions, and x > 0. (Note that \/xB(t) ) B(kt),t > 0.)



e Example 1: Dyson model with parameter 5 > 0. Set S = R.

Consider the case that

JFi
A time change of the obtained SDEs (xt — ¢, X (t/r) — X (1)) gives

dt 8
20, 1<i<N with §=-—.

dXi(t) = dBi(t) + § 2 Xi(t) — X;(t)

J7

The Dyson model generates the dynamical extensions of the eigenvalue
statistics in Gaussian random-matrix ensembles.




e Example 2: Bru—Wishart process with parameters (3,7). Set S = R>.

Consider the case that

4 4 4
Fixz)= ) ( + )+—&, 1<i<N, acR.

1<G<N, N7 J Pt
JF#i

A time change of the obtained SDEs (xt — t, X (t/x) — X (t)) gives

Blv+1)—1 ( 1 1 )
+ 5 + dt,
X.(0) 2 \xo—x0 T ToEe
l J# i
. . 8 K
t>0, 1<i1<N with g=-—, V:Od—l—|-§.
K

dX;(t) =dB;(t) +

(NN

The Bru—Wishart process generates the dynamical extensions of the singular-
value/eigenvalue statistics in chiral-Gaussian/Laguerre random-matrix en-
sembles.




Stochastic Log-Gases in R
(=Stochastic 2D Coulomb Gases Confined in R)

Stochastic processes in R

1,(1) = aB, (1) - ;228

dt, t>0, 1<i<N,
x=X(t)

driven by logarithmic potentials,

r—ﬁ Z log(z; —x;), for the Dyson model in R,

O(x) := < —3 Z [log(:vj —x;) +log(x; + ;)| — {8 +1)— 1}2109537%

for the Bru—Wishart process in R>.



1.2 Loewner equation for multi-slit

e Denote the upper half of complex plane by H = {z € C: Im z > 0}.

e A multi-slit Ufil 7; 1s defined as a union of non-colliding and non-self-
intersecting curves 1n H anchored at N distinct and ordered points on R.

N
e For each time t € (0,00), HY :=H \ U n;(0,t] is a simply connected domain in
i=1
C and then by the Riemann mapping theorem there exists a unique analytic
function gy» such that
guy : conformal map H; — H,
satisfying the hydrodynamic normalization condition

heap(U,L, 7:(0, 1)) +0(]2]7%)

2 7 72 2

/,
UL (0) Ty0) - - - Up0) U, (1) U - Udn 7

as z — oQ.




Theorem 1.1 (RS17) For N € N, let Ufil n; be a multi-slit in H such that
heap(U, 7(0,1]) = 2t,¢ € (0,00). Then there exists a set of weight functions
\i(t).t > 0,1 <i < N satisfying S, A\i(t) = 1.t > 0 and an N-variate contin-
uous driving function U(t) = (Uy(t),...,Ux(t)) € RY,t € (0,00) such that the
solution ¢, of the differential equation

dgt

Mz

i=1 gt )

gives g; = gy, t € (0,00).

o Ui(t) =lim._0q(n(t) +2) < ni(t) =lim.0q, "(Ui(t) +2), 1 <i <N, te(0,00).
e Roth and Schleissinger called this the Loewner equation for multi-slit.

[RS17] D. Roth, S. Schleissinger : The Schramm-Loewner equation for
multiple slits, J. Anal. Math. 131, 73-99 (2017).




The Loewner equation for the multi-slit given for D = H can be mapped to
other simply connected domains D C C by conformal transformations.

Here we consider a conformal transformation ¢(z) = /2 : H — O, where O
denotes the first orthant in C; O :={z € C: Rez > 0,Im 2z > 0}.

We set  g;(z \/gt ,t>0,2€ O with a function of time ¢(t),t > 0.
Then we can see that the Loewner equation for the multi-slit is transfered
to the following form, g,(z) = 2z € O,

d@; < i(t) 20i(1) 27 (t)
_Z( ﬁ()+/\()+ﬁi@))+§t(z)’ =0

=1 gt %

The solution of this equation gives the uniformization map to O;

= goy : conformal map Qr = @\ Z n;(0,t] — Q.

]
g

%é g® n /
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1.3 Multiple Schramm-Leowner evolution
(multiple SLE)

e For simplicity, we assume the uniform weight \;(t) = 1/N,t > 0,1 <i < N
in Theorem 1.1. Then by a simple time change t/N — t associated with a
change of notation, gn; — ¢;, the Loewner equation for the multi-slit in H is

written as
N

dgi(2) 2 B
dt ; a(z) — X;(t) go(z) =z t=0.

Then we ask what is the suitable family of driving stochastic processes of
N particles on R, X(t) = (Xy(t),..., Xn(1)),t >0 7

10



The Loewner equation for the multi-slit in H is written as

d N

1=1

What is the suitable family of driving stochastic processes of N particles
on R, X (t) = (X(t),...,Xn()),t>07

As Schramm (2000) argued for his original SLE, conformal invariance im-
plies that the driving process X(¢),f > 0 should be a continuous Markov
process which has in a particular parameterization independent increments.

Moreover, Bauer, Bernard, and Kytola (2005) and Graham (2007) showed
that X;(¢),t > 0,1 <i < N are semi-martingales and the quadratic variations
should be given by (dX,;.dX;); = kd;dt,t >0, 1 <i,7 <N with x> 0.

Then we can assume that the system of SDEs for X (¢),¢ > 0 is in the form,

dX;(t) = VrdB;(t) + F;(X(t))dt, t>0, 1<i<N,

where B;(t),t > 0,1 < i < N are independent one-dimensional standard
Brownian motions, x > 0, and {F;(x)}, are suitable functions of = =
(21, ...,2n) which do not explicitly depend on t.

11



e In the orthant system, we put /):@(t) =7/(2N), t > 0,7 €[0,1,1 <7 < N and
de(t)/dt = 4,t > 0, and perform a time change at/(2N) — t associated with a
change of notation gsx;/; — ¢;. Then the Loewner equation for the multi-slit
1s written in this system in the form,

dg:(z) _ . 2 2 45 s
& ;(:@(z))?iuﬁﬁt(z)ﬁi(t)) Yo BT 20

where 0 := N(1 —7)/7 > 0. We assume that the system of SDEs for X\(t) =
(X1(t),...,Xn(t)),t >0 1s in the same form,

dX:(t) = VrdB;(1) + F,(X (1)dt, t>0. 1<i<N,

where the range of f(t),t > ( shall be in (Rx)".

12



1.4 Gaussian free field (GFF)

First we define a functional of positive type.

Definition 1.2 Let V be a finite or infinite dimensional vector space. A
function v : V — C is said to be a functional of positive type if for arbitrary

NeN, &,....&neV,and z1,..., 2y € C, we have » > (&, — &n)2Zm = 0.

n=1m=1

For x,y € RY, the standard inner product is denoted by (z,y) and we write
|z|| ;== \/(z, ). Let BY be the family of Borel sets in R". Then the following
is known as the Bochner theorem.

Theorem 1.3 (Bochner theorem) Let ¢ : RY — C be a continuous functional
of positive type such that ¢/(0) = 1. Then there exists a unique probability
measure P on (RY, BY) such that

ViE)= [ eV 'e®P(de) for € e RV
RN

13




e If we consider the case that the functional of positive type 1(§) is especially
given by
V(E) =e €IF2 ¢ eRY,

then the probability measure P given by the Bochner theorem is the finite-
dimensional standard Gaussian measure,

1
(27)N/2

P(dx) = e IXF20x x e RV,

e Hence we can say that the finite-dimensional standard Gaussian measure P
is determined by the characteristic function V(&) as

U(E) = [ eVTHEIP(dx)
RN

= IEIF2 for ¢ eRV.

14



e Let D C C be a simply connected domain, which is bounded We consider
the L* space on D with the inner product, (f,g) := [, f(2)g(2)du(z), f,q €
L*(D), where du(z) = dzdz.

e Let A be the Dirichlet Laplacian acting on L?(D). Then —A has positive
discrete eigenvalues so that

—Ae, = \6,. €, € LQ(D), n € N.
We assume that the eigenvalues are labeled in a non-decreasing order;
0< A <A <

The system of eigenvalue functions {e,},cy forms a CONS of L*(D).

15



e We write C;°(D) for the space of real smooth functions on D with a compact

support. For two functions f,g € C®(D), their Dirichlet inner product is
defined as

F9)v = 5= [ (TNE)- (Tg)Edu(o)

The Hilbert space completion of Ci°(D) with respect to the Dirichlet inner
product will be denoted by W (D). We write ||f||v = /(f, f)v. f € W(D).

/2
o If we set u, = )\—W en,n € N, then by integration by parts, we have

1 .
(Un; Un)v - _(un: (_A)um) - ()nm: n,mec N.
27

Therefore {u, },cny forms a CONS of W(D).

16



o Let ﬁ(D) be the space of formal infinite series in {u, },en.

e For two formal series f = ) . foln, ¢ = D, cnGnlln € ﬁ(D) such that
Y nen | fngn| < 00, we define their pairing as (f,g)y =D, cn fnGn-

(In case when f,g € W (D), their pairing of course coincides with the Dirich-
let inner product.)

e For any a € R, the operator (—A)” acts on ﬁ(D) as

(_A)a Z fnun = Z )\gfnun; (fn)nEN S RN-

neN nelN

17



e Using this fact, we define H, := (—A)*W (D), a € R, each of which is a Hilbert
space with inner product

(f? g)a = ((_A)_af7 (_A)_QQ)V7 f?g S HQ(D)
We write || ||, := v/ {-, )a,a € R.

e We can prove that

— Ho(D) C Hy(D) for a < b,
— the dual Hilbert space of H,(D) is given by H_,(D).

Example When a =1/2, we have

(fr9)12 = ((—A)_lmf? (—A)_WQ)V = %(f; g).  f.g€HipD).

Therefore Hq2(D) ~ L*(D).

Remark Since H;,(D) = L*(D) as shown in above, the members of H,(D)
with a > 1/2 cannot be functions, but are distributions.

18



e Define £(D) := Ua>1/2 H.(D). Then its dual Hilbert space is identified with
E(D)* = Nyer1/o Ha(D) and

E(D) cW(D) cC (D)

is established. Here (£(D)*,W(D),&E(D)) is called a Gel’fand triple. We set
Yemy =0 flv: f€ED)}).

e On such a setting, the following is obtained. This theorem is the extension
of the Bochner theorem (Theorem 1.3) and is called the BochnerMinlos
theorem.

Theorem 1.4 [Bochner—Minlos theorem| Let ¢ be a continuous function
of positive type on W (D) such that ¢/(0) = 1. Then there exists a unique
probability measure P on (£(D), X¢(p)) such that

W(f) = eVTIDYP(dh)  for f e E(D)*.
E(D)

See, for instance,
[Hida80] T. Hida : Brownian Motion, Application of Mathematics, vol.11,
Springer, (1980), Heidelberg.

[Asail0] A. Asai: Functional Integral Methods in Quantum Mathematical
Physics, (in Japanese), Kyoritu-Shuppan, (2010), Tokyo. 19



Under certain conditions for ¢, the domain of test functions f can be ex-
tended from E£(D)* to W(D).

We can verify that the functional W(f) := e~I115/2 satisfies the conditions.
Then the following is established with a probability measure P on (£(D). X¢(p)),

U(f) = /S . VTNV P(dh) = e WIS/2 for e W(D).

We define the Gaussian free field (GFF) with the Dirichlet boundary con-
dition H € £(D) by an isotopy

H:W(D)— L*(&(D),P), such that W(D)> f~ (M, f)v € L*(£(D).P).

The following linearlity holds,

(H,af +bg)v =a(H, f)v +0(H,g)y for a,beR, f geW(D).

20



e Assume that D, D’ C C are simply connected domains and let

¢ : conformal transformation D’ — D.

Lemma 1.5 The Dirichlet inner product is conformal invariant, that is,

!

/D (V1)(2) - (Vo) (2)du(z) = ] (V(fod))(2)- (V(god)(2)du(z) for f.g e C(D)

e From the above lemma, we see that
" W(D) — W(D") such that W(D)> f— fope W(D')
1S an 1somorphism.

e This allows one to consider GFF on an unbounded domain.

21




Namely, if D’ is bounded, we already have a family {(H, f)v : f € W(D')} of
random variables. Then, even if D i1s unbounded, we can define a family

{(0:H, f)v: feW(D)} by
(0.H, f)v = (H,0" f)v. [feW(D)

so as to have the following covariance structure,
E| (¢t [)v(ouH, Q)V} = (o). 0%g)v = ([.9)v for f,g e W(D).

Relying on the following formal computation

(0.H.f)o = (H.0" N = 5= | (VH)()- (TF 0 0)(2)dut:)
= 5= [ (VH o00™)()- (VN)du(

we understand the equality ¢.H = H o ¢!,

22



On the Green’s funciton

We have constructed a family {(H, f)v : f € W(D)} of random variables
whose covariance structure is given by

E|(H. f)v(H.9)v| = (f.9)v for f.g€ W(D).

By a formal integration by parts, we see that

(H7f)V:_

5= | (VI / H(: ()dp(z) = ——(H.(—=A) ).

Motivated by this observation, we define
(H.f)=2r(H,(=A)"'f)y for € D((—=A)7").
where D((—A)™!) denotes the domain of (—A)~! in W (D).

The action of (—A)~! is expressed as an integral operator and the integral
kernel is known as the Green’s function Gp(z,w).

1

%fDGD(z;wmw)du(w)? ac.z€D, feD((=A)™).

(=A)7f)(2) =
23



e Hence the covariance of (H. f) and (H, g) with f,g € D((—=A)™!) is written as

E|(H, f)(H,g)] = f(2)Gp (2, w)glw)dp(z)dp(w).

DxD

e When we symbolically write

(#.0) = [ B[, [eDi=a)"),
the covariance structure can be understood as

ElH(2), Hw)| = Gp(z,w), z,weD, n#uw.

Example When D is the upper half plane H,

Gu(z,w) = log S

—log|z —w|+loglz —w|, z,weH z#w.

Z —w

24



1.5 Imaginary surface (IS)

e Now we define an equivalent class of pairs (D, H) of simply connected do-
mains D C C and distribution-valued random field Hp on D (e.g., GFF)
induced by the conformal equivalence.

2 v

2
A y-imaginary surface is a collection of pairs (D, Hp) subject to the condition
that, for all simply connected domains Dy, D C C and conformal map

Y . Dy — Dy, the following equality holds,

Definition 1.6 (Imaginary surface (IS)) Let v € (0,2] and put y =

Hp, = Hp, ot — yargd' in P.

where ¢/(2) = diy(2)/dz.

e See for more detalils,
[MS16] J. Miller, S. Sheffield : Imaginary geometry I : Interacting SLEs,
Probab.Theory Relat.Fields 164, 553-705 (2016).

[Shel6] S. Sheffield : Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Ann. Probab. 44, 3474-3545 (2016).

25



2. Imaginary Surface with Boundary Points (I1S-BPs)

e Here we consider the two cases D =H or D = Q.

e Consider the Weyl chambers.

Wr(S)={x=(21,...,an) €S 10y <---<ay}., S=Ror S =R

e Let a = (a....,an) € RV,

e We consider the following complex-valued logarithmic potentials,

N
Oy (z;{x, 00}, a) = ZO‘@' log(z —x;), zeH, e Wy(R),
i=1

N

Po(z;{x, 0}, a) = Z% [log(z — ;) +log(z+ ;)| +aplogz, 2 €0, x € Wy (R>).
i=1

Here {x. o0} = {x1,...,xn,0}. We see that ~ is also a singular point of
(I)D(' ; {ZL’,OO},(I)-

e Note that each «; seems to be a 2D Coulomb charge of the particle at the
boundary points x; € 0D, 1 <i < N.

26



e Now we take the imaginary part of ®p to define real-valued fields ¢p on D;

om(zi1z, 00}, @) = Im Pp(2: x, @)

N
= - aarg(z—x;), z€H  xeWy(R),
=1

vo(z:{x, 00}, a) := Im P (z; @, o)

N
- — {Z O {arg (z — J/l) + arg (z + :Ll)} + parg z} :

1=1

€0, xeWy(Rso).

I o A A A A
xl x2 e o o xN

@) (o) (0y) 27



e We introduce new distribution-valued random fields by

Hﬂl{ﬁm:m}?a L= HH + @H( aE a)?
HEPM := Ho + ¢o( s, ),

where Hy and Hgp denotes the GFFs with the Dirichlet boundary conditions
in D =H and D = O, respectively.

e Moreover, we consider the situation such that the boundary points are
random variables X = (Xq,..., Xy) € Wy(9).

28



The probability law of GFF Hp (resp. X € dD) is denoted by P (resp. P).

We consider an equivalent class of the triplets, (D, Hf){’a, X)), induced by the
conformal equivalence.

Definition 2.1 (Imaginary surface with boundary points (IS-BPs)) Let v €
(0,2], € RY, and put y = . %

A y-imaginary surface with (/N + 1)-boundary points is a collection of triplet
(D, H»™, X ) subject to the condition that,

for all simply connected domains D¢, D, C C and conformal map ¢ : Dy — D»,
the following equalities holds in probability law P P,

law
Hp, "= Hp, 01) — yarg .

Xp, = (Xpy1o- o Xpon) =0 (X p,) = (0 (Xpya)s o 0 (Xpyn).

where ¢/(2) == diy(z)/dz.

29




Remark

— We can construct a GFF with the free boundary condition on a simply
connected domain D C C, which is denoted by Hp.

— For H p, we consider the real part of ®p, and define
E’}_{):E,OO},Q = }N[D + (ED( " {:Ba OO}? a):

where, for D = H and O,

5}1&1(2;{%00}:&): a;log |z — x|, z € H, ® € Wy (R),
):

ooz {z, oo}, a Ozi[log 2 — x| +log |z —I—xi]} +aplog|z], 2 € O, £ € Wy (Rxy).

1

7

— The equivalence class of triplets (D, ﬁ[ﬁ’a, X)), induced by the conformal
equivalence is called quantum surface with boundary points.

[KK19+4] M. K., S. Koshida : Conformal welding problem, flow line
problem, and multiple Schramm-Loewner evolution, arXiv:imath/PR:1903.09925

30



3. Two Ways of Sampling IS-BPs

Setting
e Let 0 <7 < o0 and consider a time duration t € [0,77.

e Give an initial configuration of BPs, X (0) =x = (21,...,2n5) € Wx(S), S=R
or Rzo.

e We consider the situation such that BPs evolve in time as a system of
interacting Brownian motions

X(t):(Xl(t)??XN(t)) EWN(S)? t >0 with S =R or Rz()?
which solves the SDEs in the form,
dX;(t) = V/rdB;(t) + Fi{(X (t))dt, t>0, 1<i<N.

Here B;(t),t > 0.1 <i < N are independent one-dimensional standard Brow-
nian motions.

31



Sampling A

e Sample a GFF : Hp.

e Then obtain an instance of IS-BPs,

Hi[)w’oo}’a = Hp + ng(-; T, (I)

32




Sampling B

e Sample a GFF : Hp.

e Sample a time-evolution of BPs on S(=R or R) starting from given x :
X(t)=(Xu(t),....Xn(t) e Wx(5), te€|0,T], X(0)==wx.

N
e Generate multiple slits Un@')(o, T] by the multiple SLE gps.t € [0,7], which
i=1
is driven by X (t),t € [0, T].
e Iirase the multiple slits by the conformal map gpy.

e Then obtain an instance

X(T),o}a X (T),0o},x
gpy * Hp' 0ohe = HpX 0 g0 — yarg gl

= Hpoygpy + @D(QD;(')Q X(T1), a)— Xal‘gg}_);.

33




Sampling B

e Sample a GFF : Hp.

e Sample a time-evolution of BPs on S(=R or R) starting from given x :
X(t)=(Xu(t),....Xn(t) e Wx(5), te€|0,T], X(0)==wx.

N
e Generate multiple slits Un@')(o, T] by the multiple SLE gps.t € [0,7], which

i=1
is driven by X (t),t € [0, T].

e Iirase the multiple slits by the conformal map gpy.

e Then obtain an instance Coupling GFF and multiple SLE

X(T),o}a X (T),0o},x
gpy * Hp' 0ohe = HpX b0 gy — yarg gl

= Hpoygpy + @D(QD{,A(')Q X(T1), a)— Xal’gg}_);.

34




Sampling A

X X, Xy
Sampling B gu
® ® ®
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Sampling B

Sampling A

Sampling B gu
® ® ®

e Note that at each time 7" € [0, >0),

7 X(T),00}.cx X (T),00},ax
(D, Hi % 0 gy = xarg gy X (1)~ (D HE S0 X)) o



4. Main Theorems

Theorem 4.1 The above two ways of sampling give the same result
in probability law P x P, that is,

(law)

Hiwohe T2 Ju, *

HHEIX(T),OO},Q?

if the following three conditions are satisfied,

(1) ’{’:723
2 %
(11) (051, ,OdN) — (—7. ,—)
v v)’
Ny
FO(g) = ' —1.....N
(iii) () in_$j7 i=1,...,N,
7=1
ji

ie., X(1)=(Xi(t),...,Xn(t) € Wy(R),t > 0, is a time change of
the Dyson model with parameter =

x| oo

37




Sampling A Sampling B

gu

@
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Theorem 4.1 The above two ways of sampling give the same result
in probability law P x P, that is,

x,00},a (law) X(1T),0c0},ax
gleshe (20 o XD be

if the following three conditions are satisfied,

(i) k=72, Relation between SLE and IS

2 2
(ii) (Qq,...,any) = (;7...7;} Charges at BPs

N
: 4

F9(x) = =1,....N

(i) @)= =L, _.

e System of Driving Process

ie., X(t)=(Xy(t),...,Xn(t) € Wy(R),t >0, is a time change of

the Dyson model with parameter § = —.
K
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Theorem 4.2 The equivalence is established in
the probability law P x P, if the following three conditions are satisfied,

x,00t,a (law) X(1),00},cx
pimche () o X D0)

(iii) F<i>(m)z<x4 L )+4(H5)'€/2, i=1,....N,

S\ + 7 Li
. J#i
ie., X(t) = (Xq(t),..., Xn(t) € Wy(Rso)

Wishart process with parameters [ =

t > 0, is a time change of the Bru-

~»

V= 0.

Z | oo

40




1s established in

Theorem 4.2 The equivalence Hém’oo}’a (law) Yo, * HéX(T)’OO}’a
the probability law P x P, if the following three conditions are satisfied,

(i) K=", Relation between SLE and IS
(ii) (ap,...,ay) = (%%), ap =y, |Charges at BPs
l 4 4 A(1+6) — k)2
(4) — —
(iii) F (m)z(a?i—xj+xi+:(:j)+ m , i=1,...,N,

e., X(1) = (Xi(),....Xn(t) €

Wishart process with parameters

System of Driving Process

41



5. Proof of Theorem 4.1

e Define
My(2) = g " (g (2)) — xarg g (2)
N
= — ) aarg (gey(2) — Xi(1) — xarg gy (2),  t €[0T,
i=1
and put

I, = Hygo gur +M,, te [O, T}.
e By definition, the equivalence

Hﬂgla:,oo},a (lgv) (T),00},x

gm, * HIEHX

is equal to

7,"Y 7. inPoP.
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Lemma 5.1 The stochastic process M,(z), z € H, t € [0.7] is a local martin-
gale with increment

dB;(t), ze€H, tel0,T],

if the three conditions of Theorem 4.1 are satisfied.

Proof Note that M,(z) is the imaginary part of

N
M;(z) = =} ailog(gmy () — Xi(1) — xlog gigy (). x === 5.
1=1

Then 1t6’s formula gives

My (2) =3 — SV an

K
— gu(2) — Xi(1)

2(a; + )

X0 -%0 |

- ! a0 _
W Srmeesenl EURCCDS

1<j<N,
J#i

i Zf; (g (2) i X, (1))? E(" —4) (0%' - Z) + %/(ff — A/Q)] dt, t<l0,T].

This proves the statement. j 43




Lemma 5.1 The stochastic process M,(z), z € H, t € [0.7] is a local martin-
gale with increment

2
dM:(2) = ;Im 9w (5 = %00 dB;(t), ze€H, tel0,T],

if the three conditions of Theorem 4.1 are satisfied.

Proof Note that M,(z) is the imaginary part of

N
M;(2) = = ailog(guy(2) — Xi(t)) — xlog gin(2), X =
=1

Then Itd’s formula gives

= |
bO |2

three conditions

M) =Y e ']
- ! 0 ) 20t y)
R 2r=Ems vl Rl == el
JFi

i Zf; (gun (2) i Xi())2 E(” —4) (@i B 2) + %(/@ = ’YQ)] dt., tel0,1].

This proves the statement. g 44




e In the following, we assume the three conditions of Theorem 4.1.

e The above lemma implies that, at each point z € H, the stochastic process

{M;(z) : t € [0,7]} can be regarded as a Brownian motion modulo time
change.

e Moreover, the above lemma gives the cross variation between two points
z,w e H as
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Lemma 5.2 Let Gy (2, w) be the Green function of GFF with the Dirichlet
boundary condition in HY, t € [0,7]. Then

dM(2), M(w))r = —dGm (2, w), t€[0,T], z,weH

Proof This can be verified by direct computation. Due to the conformal
invariance of the Green’s function of GFF with the Dirichlet boundary
condition,

Ju (2) — QH?(U))

guy () — QH?(U))

Gy (2,w) = Gulguy (2), gur (w)) = log te0,7], =z weH.

Thus its increment is computed as

, dguy (2) — Ay (w)
QH?(Z) — guy (w) 9gmy (2) = gH (w)

which is the same as —d(M(z), M(w));, 2z, w € H. y 46




Proof of Theorem 4.1
For any function f € C5° € D((—A)™'), we have

d((M? f)? (M7 f))t — _dEt(f)a

where
Ef) = | F2)Gay (2 w) fw)dp(z)dpw).
N
Since the process H} := H \ U n:(0,],t > 0 is decreasing,

i=1
the Dirichlet energy FE,(f) is non-increasing in the time variable ¢ € [0, 7.

This implies that (M,, f), t € [0,7], is a Brownian motion such that we can
regard —F;(f) as time variable.

Thus (M, ) is normally distributed with mean (M,, f)
and variance —Eyp(f) — (—FEo(f)) = —Ep(f) + Eo(f)-

47



Proof of Theorem 4.1

For any function f € C5° € D((—A)™'), we have

d((M? f)? (Ma f))t — _dEt(f)a

Dirichlet energy
where /

Ei(f) = . f(2) Gy (2, w) f(w)dp(2)dp(w).

N
Since the process H} := H \ U n:(0,],t > 0 is decreasing,
i=1
the Dirichlet energy FE,(f) is non-increasing in the time variable ¢ € [0, 7.

This implies that (M,, f), t € [0,7], is a Brownian motion such that we can
regard —F;(f) as time variable.

Thus (M, ) is normally distributed with mean (M,, f)
and variance —Eyp(f) — (—FEo(f)) = —Ep(f) + Eo(f)-

48



e The random variable (Hy o gy, f) is also normally distributed with mean
zero and variance Ep(f) by the conformal invariance of the GFF.

e Since the random variable (Hyogyy, f) is conditionally independent of (M, f),
their sum

(Zr. f) == (Hm © guy + M, f)
is a normal random variable with mean (M,, ) and variance
(=Er(f) + Eo(f)} + Er(f) = Eo(f)

coinciding with (M, + Hy, f) = (Zy, f) in probability.
e This implies Z, ) Ty as distribution-valued random fields. The proof of
Theorem 4.1 is complete. g
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6. Concluding Remarks

e Theorem 4.1 is a multi-slit extension of the result by Sheffield [Shel6], in
which the GFF is coupled with a single SLE curve (i.e., N =1).

e In the case N = 1, the location of single BP is irrelevant, since a shift
does not change conformal equivalence. For general IS with N BPs, time
evolution of BPs is essential;

dr.oot,a (law) X(T),0ola
plEha ) XD e

[Shel6] S. Sheffield : Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Ann. Probab. 44, 3474-3545 (2016).
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e Sheffield [Shel6] addressed very interesting geometrical problems, which we
call the conformal welding problems and the flow line problems, and solved
these problems by coupling the GFFs with a single SLE curve.

e The present result for the imaginary surface (IS) with (N + 1)-boundary
points (BPs) and the counterpart result for the quantum surface (QS) with
(N + 1)-boundary points (BPs) also solve the N-slit extensions of these
geometrical problems. See [KK19-].

[Shel6] S. Sheffield : Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Ann. Probab. 44, 3474-3545 (2016).

[KK19+] M. K., S. Koshida : Conformal welding problem, flow line prob-
lem, and multiple Schramm—-Loewner evolution, arXiv:math/PR:1903.09925
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As I mentioned at the beginning of the present talk, the Dyson model and
the Bru—Wishart process are dynamical extensions of different ensembles
in random matrix theory.

We have constructed two systems of distribution-valued random fields with
(N +1) BPs in H and O coupled with multiple SLEs driven by these two
processes, respectively.

The obtained two systems are in the same equivalence class induced by the
conformal equivalence, that is, in the same \-IS with (N + 1)-BPs,

X, ol X, 0}«
(H, B )~y (0, HG2H),

We hope that the notion of y-IS (and 7-QS) will provide us a new and
universal view point for the variety of (stochastic) log-gas systems and
random matrix theory as well as for other variants of SLEs.
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e It has been reported that random planar maps converge to SLE-decorated
Liouville quantum gravity (LQG) in several topology (see [GMS17] and
references therein).

e As the chordal SLE describes the scaling limit of a single interface in var-
ious critical lattice models, the multiple SLEs describe scaling limits of
collections of interfaces in critical lattice models with alternating boundary
conditions (see [BPW18] and references therein).

e Here we have discussed y-IS (and v-QS). Discrete counterparts of these
random systems will be studied.

[GMS17] E. Gwynne, J. Miller, S. Sheffield . The Tutte embedding of the
mated-CRT map converges to Liouville quantum gravity, arXiv:1705.11161.

[BPW18] V. Beffara, E. Peltola, H. Wu: On the uniqueness of global mul-
tiple SLE, arXiv:1801.07699.
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Thank you very much
for your attention.

54



