Cardy embedding of random planar maps

Nina Holden
ETH Zürich, Institute for Theoretical Studies

Collaboration with Xin Sun. Based on our joint works with Bernardi, Garban, Gwynne, Lawler, Li, and Sepúlveda.

August 1, 2019

Two random surfaces

random planar map (RPM) Liouville quantum gravity (LQG)

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation is a planar map where all faces have three edges.

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation is a planar map where all faces have three edges.
- Given $n \in \mathbb{N}$ let M be a uniformly chosen triangulation with n vertices.

Planar maps

- A planar map M is a finite connected graph drawn in the sphere, viewed up to continuous deformations.
- A triangulation is a planar map where all faces have three edges.
- Given $n \in \mathbb{N}$ let M be a uniformly chosen triangulation with n vertices.
- Enumeration results by Tutte and Mullin in 60's.

The Gaussian free field (GFF)

- Hamiltonian $H(f)$ quantifies how much f deviates from being harmonic

$$
H(f)=\frac{1}{2} \sum_{x \sim y}(f(x)-f(y))^{2}, \quad f: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}
$$

The Gaussian free field (GFF)

- Hamiltonian $H(f)$ quantifies how much f deviates from being harmonic

$$
H(f)=\frac{1}{2} \sum_{x \sim y}(f(x)-f(y))^{2}, \quad f: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}
$$

- Discrete Gaussian free field (GFF) $h_{n}: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}$ is a random function with $\left.h_{n}\right|_{\partial[0,1]^{2}}=0$ and probability density rel. to Lebesgue measure proportional to

$$
\exp \left(-H\left(h_{n}\right)\right)
$$

The Gaussian free field (GFF)

- Hamiltonian $H(f)$ quantifies how much f deviates from being harmonic

$$
H(f)=\frac{1}{2} \sum_{x \sim y}(f(x)-f(y))^{2}, \quad f: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}
$$

- Discrete Gaussian free field (GFF) $h_{n}: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}$ is a random function with $\left.h_{n}\right|_{\partial[0,1]^{2}}=0$ and probability density rel. to Lebesgue measure proportional to

$$
\exp \left(-H\left(h_{n}\right)\right)
$$

- $h_{n}(z) \sim \mathcal{N}\left(0, \frac{2}{\pi} \log n+O(1)\right)$ and $\operatorname{Cov}\left(h_{n}(z), h_{n}(w)\right)=-\frac{2}{\pi} \log |z-w|+O(1)$.

The Gaussian free field (GFF)

- Hamiltonian $H(f)$ quantifies how much f deviates from being harmonic

$$
H(f)=\frac{1}{2} \sum_{x \sim y}(f(x)-f(y))^{2}, \quad f: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}
$$

- Discrete Gaussian free field (GFF) $h_{n}: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}$ is a random function with $\left.h_{n}\right|_{\partial[0,1]^{2}}=0$ and probability density rel. to Lebesgue measure proportional to

$$
\exp \left(-H\left(h_{n}\right)\right)
$$

- $h_{n}(z) \sim \mathcal{N}\left(0, \frac{2}{\pi} \log n+O(1)\right)$ and $\operatorname{Cov}\left(h_{n}(z), h_{n}(w)\right)=-\frac{2}{\pi} \log |z-w|+O(1)$.
- The Gaussian free field h is the limit of h_{n} when $n \rightarrow \infty$.

The Gaussian free field (GFF)

- Hamiltonian $H(f)$ quantifies how much f deviates from being harmonic

$$
H(f)=\frac{1}{2} \sum_{x \sim y}(f(x)-f(y))^{2}, \quad f: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}
$$

- Discrete Gaussian free field (GFF) $h_{n}: \frac{1}{n} \mathbb{Z}^{2} \cap[0,1]^{2} \rightarrow \mathbb{R}$ is a random function with $\left.h_{n}\right|_{\partial[0,1]^{2}}=0$ and probability density rel. to Lebesgue measure proportional to

$$
\exp \left(-H\left(h_{n}\right)\right)
$$

- $h_{n}(z) \sim \mathcal{N}\left(0, \frac{2}{\pi} \log n+O(1)\right)$ and $\operatorname{Cov}\left(h_{n}(z), h_{n}(w)\right)=-\frac{2}{\pi} \log |z-w|+O(1)$.
- The Gaussian free field h is the limit of h_{n} when $n \rightarrow \infty$.
- The GFF is a random distribution (i.e., random generalized function).

$$
n=20, \quad n \text { 三 } n=100
$$

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition does not make literal sense, since h is not a function.

discrete
GFF

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h} d^{2} z$ and metric defined via regularized versions h_{ϵ} of h :

$$
\begin{align*}
& \mu(U)=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^{2} z, \quad U \subset[0,1]^{2} \\
& d(z, w)=\lim _{\epsilon \rightarrow 0} c_{\epsilon} \inf _{P: z \rightarrow w} \int_{P} e^{\gamma h_{\epsilon}(z) / d} d z, \quad z, w \in[0,1]^{2} \tag{2019}
\end{align*}
$$

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h} d^{2} z$ and metric defined via regularized versions h_{ϵ} of h :

$$
\begin{align*}
& \mu(U)=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^{2} z, \quad U \subset[0,1]^{2} \\
& d(z, w)=\lim _{\epsilon \rightarrow 0} c_{\epsilon} \inf _{P: z \rightarrow w} \int_{P} e^{\gamma h_{\epsilon}(z) / d} d z, \quad z, w \in[0,1]^{2} \tag{2019}
\end{align*}
$$

Liouville quantum gravity (LQG)

- If $h:[0,1]^{2} \rightarrow \mathbb{R}$ smooth and $\gamma \in(0,2)$, then $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$ defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field.
- The definition does not make literal sense, since h is not a function.
- Area measure $e^{\gamma h} d^{2} z$ and metric defined via regularized versions h_{ϵ} of h :

$$
\begin{align*}
& \mu(U)=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} \int_{U} e^{\gamma h_{\epsilon}(z)} d^{2} z, \quad U \subset[0,1]^{2} \\
& d(z, w)=\lim _{\epsilon \rightarrow 0} c_{\epsilon} \inf _{P: z \rightarrow w} \int_{P} e^{\gamma h_{\epsilon}(z) / d} d z, \quad z, w \in[0,1]^{2} \tag{2019}
\end{align*}
$$

- The area measure is non-atomic and any open set has positive mass a.s., but the measure is a.s. singular with respect to Lebesgue measure.

LQG
area

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

Conjectural relationship used by physicists to predict/calculate the dimension of random fractals and exponents of statistical physics models.

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

Conjectural relationship used by physicists to predict/calculate the dimension of random fractals and exponents of statistical physics models.

What does it mean for a RPM to converge?

- Metric structure (Le Gall'13, Miermont'13)
- Conformal structure (H.-Sun'19)
- Statistical physics observables (Duplantier-Miller-Sheffield'14, ...)

Conformally embedded RPM converge to $\sqrt{8 / 3}$-LQG

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}\rceil$.

Conformally embedded RPM converge to $\sqrt{8 / 3}$-LQG

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}\rceil$.
- Cardy embedding: uses properties of percolation on the RPM.

Conformally embedded RPM converge to $\sqrt{8 / 3}-\mathrm{LQG}$

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_{n} be renormalized counting measure on the vertices in \mathbb{T}.

Conformally embedded RPM converge to $\sqrt{8 / 3}-\mathrm{LQG}$

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_{n} be renormalized counting measure on the vertices in \mathbb{T}.
- Let d_{n} be a metric (distance function) on \mathbb{T} prop. to graph distances.

Conformally embedded RPM converge to $\sqrt{8 / 3}-\mathrm{LQG}$

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}\rceil$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_{n} be renormalized counting measure on the vertices in \mathbb{T}.
- Let d_{n} be a metric (distance function) on \mathbb{T} prop. to graph distances.
- Let μ be $\sqrt{8 / 3}$-LQG area measure in \mathbb{T}, and d the associated metric.

Conformally embedded RPM converge to $\sqrt{8 / 3}$-LQG

- Uniform triangulation M_{n} with n vertices, boundary length $\lceil\sqrt{n}$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_{n} be renormalized counting measure on the vertices in \mathbb{T}.
- Let d_{n} be a metric (distance function) on \mathbb{T} prop. to graph distances.
- Let μ be $\sqrt{8 / 3}$-LQG area measure in \mathbb{T}, and d the associated metric.

Theorem (H.-Sun'19)

In the above setting, $\left(\mu_{n}, d_{n}\right) \Rightarrow(\mu, d)$.

Conformally embedded RPM converge to $\sqrt{8 / 3}$-LQG

Theorem (H.-Sun'19)

In the above setting, $\left(\mu_{n}, d_{n}\right) \Rightarrow(\mu, d)$.
More precisely, \exists coupling of M_{n} and h s.t. with probability 1 , as $n \rightarrow \infty$,

- $\int f d \mu_{n} \rightarrow \int f d \mu \forall$ continuous $f: \mathbb{T} \rightarrow[0,1]$ (measure convergence)
- $d_{n}(z, w) \rightarrow d(z, w)$, uniformly in $z, w \in \mathbb{T}$ (metric convergence)

The Schramm-Loewner evolution (SLE)

- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
- loop-erased random walk, $\kappa=2$
- Ising, $\kappa=3$, and FK-Ising, $\kappa=16 / 3$
- percolation, $\kappa=6$
- discrete Gaussian free field level line, $\kappa=4$
- uniform spanning tree, $\kappa=8$

SLE_{2}

SLE_{4}

The Schramm-Loewner evolution (SLE)

- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
- loop-erased random walk, $\kappa=2$
- Ising, $\kappa=3$, and FK-Ising, $\kappa=16 / 3$
- percolation, $\kappa=6$
- discrete Gaussian free field level line, $\kappa=4$
- uniform spanning tree, $\kappa=8$

The Schramm-Loewner evolution (SLE)

- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
- loop-erased random walk, $\kappa=2$
- Ising, $\kappa=3$, and FK-Ising, $\kappa=16 / 3$
- percolation, $\kappa=6$
- discrete Gaussian free field level line, $\kappa=4$
- uniform spanning tree, $\kappa=8$

The Schramm-Loewner evolution (SLE)

- One-parameter family of random fractal curves indexed by $\kappa \geq 0$, which describe the scaling limit of statistical physics models
- loop-erased random walk, $\kappa=2$
- Ising, $\kappa=3$, and FK-Ising, $\kappa=16 / 3$
- percolation, $\kappa=6$
- discrete Gaussian free field level line, $\kappa=4$
- uniform spanning tree, $\kappa=8$
- Introduced by Schramm'99: SLE uniquely characterized by conformal invariance and domain Markov property.

Percolation on uniform triangulations \Rightarrow SLE $_{6}$

- Smirnov'01, Camia-Newman'06: $\eta_{n} \Rightarrow \mathrm{SLE}_{6}$ on triangular lattice.
- H.-Sun'19: $\eta_{n} \Rightarrow$ SLE $_{6}$ on Cardy embedded triangulation in a quenched sense.

Percolation on uniform triangulations $\Rightarrow \mathrm{CLE}_{6}$

- The conformal loop ensemble $\left(\mathrm{CLE}_{6}\right)$ is the loop version of SLE_{6}.
- Smirnov'01, Camia-Newman'06: $\Gamma_{n} \Rightarrow$ CLE $_{6}$ on triangular lattice.
- H.-Sun'19: $\Gamma_{n} \Rightarrow$ CLE $_{6}$ on Cardy embedded triangulation.

Convergence of percolation crossing probability

- Let M_{n} be a uniformly chosen triangulation with n (resp. $\lceil\sqrt{n}\rceil$) inner (resp. boundary) vertices.

Convergence of percolation crossing probability

- Let M_{n} be a uniformly chosen triangulation with $n($ resp. $\lceil\sqrt{n}\rceil)$ inner (resp. boundary) vertices.
- Pick edges $a_{n}, b_{n}, c_{n}, d_{n}$ uniformly at random from ∂M_{n}.

Convergence of percolation crossing probability

- Let M_{n} be a uniformly chosen triangulation with n (resp. $\lceil\sqrt{n}\rceil$) inner (resp. boundary) vertices.
- Pick edges $a_{n}, b_{n}, c_{n}, d_{n}$ uniformly at random from ∂M_{n}.
- Let $P_{n}=P_{n}\left(M_{n}, a_{n}, b_{n}, c_{n}, d_{n}\right) \in[0,1]$ denote the probability of a blue crossing from $a_{n} b_{n}$ to $c_{n} d_{n}$.

Convergence of percolation crossing probability

- Let M_{n} be a uniformly chosen triangulation with n (resp. $\lceil\sqrt{n}\rceil$) inner (resp. boundary) vertices.
- Pick edges $a_{n}, b_{n}, c_{n}, d_{n}$ uniformly at random from ∂M_{n}.
- Let $P_{n}=P_{n}\left(M_{n}, a_{n}, b_{n}, c_{n}, d_{n}\right) \in[0,1]$ denote the probability of a blue crossing from $a_{n} b_{n}$ to $c_{n} d_{n}$.
- The random variable P_{n} converges in law as $n \rightarrow \infty$.

Convergence of percolation crossing probability

- Let M_{n} be a uniformly chosen triangulation with n (resp. $\lceil\sqrt{n}\rceil$) inner (resp. boundary) vertices.
- Pick edges $a_{n}, b_{n}, c_{n}, d_{n}$ uniformly at random from ∂M_{n}.
- Let $P_{n}=P_{n}\left(M_{n}, a_{n}, b_{n}, c_{n}, d_{n}\right) \in[0,1]$ denote the probability of a blue crossing from $a_{n} b_{n}$ to $c_{n} d_{n}$.
- The random variable P_{n} converges in law as $n \rightarrow \infty$.
- P_{n} gives some notion of extremal distance between $a_{n} b_{n}$ and $c_{n} d_{n}$.

Cardy embedding: percolation-based embedding

random planar map
Cardy embedding ϕ

Cardy embedding: percolation-based embedding

random planar map

Cardy embedding ϕ

Cardy embedding: percolation-based embedding

- What is the "correct" position of v in \mathbb{T} ?

C

Cardy embedding: percolation-based embedding

- What is the "correct" position of v in \mathbb{T} ?

Cardy embedding: percolation-based embedding

- What is the "correct" position of v in \mathbb{T} ?

Cardy embedding: percolation-based embedding

- What is the "correct" position of v in \mathbb{T} ?
- Map $v \in V(M)$ to $x \in \mathbb{T}$ such that

$$
\left(p_{A}(x), p_{B}(x), p_{C}(x)\right)=\left(\widehat{p}_{a}(v), \widehat{p}_{b}(v), \widehat{p}_{c}(v)\right)
$$

RPM \Rightarrow LQG under conformal embedding

Our result is for uniform triangulations and the Cardy embedding, but is also believed to hold for other
(1) conformal embeddings,
(2) local map constraints, and
(3) universality classes of random planar maps.

Discrete conformal embeddings

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

circle packing (sphere topology)

circle packing (disk topology)

Discrete conformal embeddings

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

Random planar map

Riemannian manifold

Discrete conformal embeddings

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

Uniformization theorem: For any simply connected Riemann surface M there is a conformal map ϕ from M to either \mathbb{D}, \mathbb{C} or \mathbb{S}^{2}.

Discrete conformal embeddings

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

Tutte embedding

Conformally embedded RPM converge to $\sqrt{8 / 3}-\mathrm{LQG}$

Conformally embedded RPM converge to $\sqrt{8 / 3}$-LQG

The proof is based on multiple works, including:

- Percolation on triangulations: a bijective path to Liouville quantum gravity (Bernardi-H.-Sun)
- Minkowski content of Brownian cut points (Lawler-Li-H.-Sun)
- Natural parametrization of percolation interface and pivotal points (Li-H.-Sun)
- Uniform triangulations with simple boundary converge to the Brownian disk (Albenque-H.-Sun)
- Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense (Gwynne-H.-Sun)
- Liouville dynamical percolation (Garban-H.-Sepúlveda-Sun)
- Convergence of uniform triangulations under the Cardy embedding (H.-Sun)

Convergence as metric measure space

- M_{n} is a uniform triangulation with n vertices and bdy length $\lceil\sqrt{n}$.

Convergence as metric measure space

- M_{n} is a uniform triangulation with n vertices and bdy length $\lceil\sqrt{n}$.
- M_{n} is a random metric measure space.

Convergence as metric measure space

- M_{n} is a uniform triangulation with n vertices and bdy length $\lceil\sqrt{n}$.
- M_{n} is a random metric measure space.
- Gromov-Hausdorff-Prokhorov (GHP) topology on the space of metric measure spaces.

Convergence as metric measure space

- M_{n} is a uniform triangulation with n vertices and bdy length $\lceil\sqrt{n}\rceil$.
- M_{n} is a random metric measure space.
- Gromov-Hausdorff-Prokhorov (GHP) topology on the space of metric measure spaces.

Theorem (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ in the GHP topology, where M is $\sqrt{8 / 3-L Q G ~(e q u i v a l e n t l y, ~ t h e ~}$ Brownian disk).

Building on Le Gall'13, Miermont'13, Bettinelli-Miermont'17, Poulalhon-Schaeffer'06, Addario-Berry-Albenque'17, Addario-Berry-Wen'17

Convergence as metric measure space with loops

```
Theorem (Albenque-H.-Sun'19)
\(M_{n} \Rightarrow M\) in the GHP topology, where \(M\) is \(\sqrt{8 / 3}-L Q G\) (the Brownian disk).
```


Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ in the GHP topology, where M is $\sqrt{8 / 3}-L Q G$ (the Brownian disk).

- Let P_{n} be a uniform percolation on M_{n}.

Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ in the GHP topology, where M is $\sqrt{8 / 3}-L Q G$ (the Brownian disk).

- Let P_{n} be a uniform percolation on M_{n}.
- Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology on the space of metric measure spaces with a collection of loops.

Convergence as metric measure space with loops

Theorem (Albenque-H.-Sun'19)

$M_{n} \Rightarrow M$ in the GHP topology, where M is $\sqrt{8 / 3}-L Q G$ (the Brownian disk).

- Let P_{n} be a uniform percolation on M_{n}.
- Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology on the space of metric measure spaces with a collection of loops.

Theorem (Gwynne-H.-Sun'19)

$\left(M_{n}, P_{n}\right) \Rightarrow(M, \Gamma)$ in the GHPU topology, where Γ is the conformal loop ensemble CLE E_{6}.
Building on Gwynne-Miller'17, Bernardi-H.-Sun'18

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE $_{6}$ for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE $_{6}$ for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a $C L E_{6}$ for each $t \geq 0$.
- $\left(\Gamma_{t}\right)_{t \geq 0}$ is mixing (in particular, ergodic): Γ_{t} is asymptotically indep. of Γ_{0}.
- $\lim _{t \rightarrow \infty} \operatorname{Cov}\left(E_{1}\left(\Gamma_{0}\right), E_{2}\left(\Gamma_{t}\right)\right)=0$ for all events E_{1}, E_{2}.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE $_{6}$ for each $t \geq 0$.
- $\left(\Gamma_{t}\right)_{t \geq 0}$ is mixing (in particular, ergodic): Γ_{t} is asymptotically indep. of Γ_{0}.
- $\lim _{t \rightarrow \infty} \operatorname{Cov}\left(E_{1}\left(\Gamma_{0}\right), E_{2}\left(\Gamma_{t}\right)\right)=0$ for all events E_{1}, E_{2}.
- Noise sensitivity: If a fraction $C n^{-1 / 4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_{6}.

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.
- $\left(\Gamma_{t}\right)_{t \geq 0}$ is mixing (in particular, ergodic): Γ_{t} is asymptotically indep. of Γ_{0}.
- $\lim _{t \rightarrow \infty} \operatorname{Cov}\left(E_{1}\left(\Gamma_{0}\right), E_{2}\left(\Gamma_{t}\right)\right)=0$ for all events E_{1}, E_{2}.
- Noise sensitivity: If a fraction $C n^{-1 / 4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_{6}.
- Corollary: k indep. percolations on a map M give k indep. CLE $_{6}$'s in the scaling limit \Rightarrow convergence of Cardy embedding of M via LLN argument.

(M, P)

(M, \widetilde{P})

Liouville dynamical percolation

- Dynamical percolation $\left(P_{t}\right)_{t \geq 0}$ on M : Each vertex has an exponential clock and its color is resampled when its clock rings.
- $\left(P_{n^{-1 / 4} t}\right)_{t \geq 0} \Rightarrow\left(\Gamma_{t}\right)_{t \geq 0}$, for $\left(\Gamma_{t}\right)_{t \geq 0}$ Liouville dynamical percolation.
- Γ_{t} is a CLE_{6} for each $t \geq 0$.
- $\left(\Gamma_{t}\right)_{t \geq 0}$ is mixing (in particular, ergodic): Γ_{t} is asymptotically indep. of Γ_{0}.
- $\lim _{t \rightarrow \infty} \operatorname{Cov}\left(E_{1}\left(\Gamma_{0}\right), E_{2}\left(\Gamma_{t}\right)\right)=0$ for all events E_{1}, E_{2}.
- Noise sensitivity: If a fraction $C n^{-1 / 4}$ of the vertices are resampled for $C \gg 1$, we get an essentially independent limiting CLE_{6}.
- Corollary: k indep. percolations on a map M give k indep. CLE $_{6}$'s in the scaling limit \Rightarrow convergence of Cardy embedding of M via LLN argument.

(M, P)

(M, \widetilde{P})

Thanks!

