Zero Temperature Limits for Directed Polymers in Random Environment

Ryoki Fukushima (RIMS, Kyoto University)

The 12th Mathematical Society of Japan, Seasonal Institute Stochastic Analysis, Random Fields and Integrable Probability August 9, 2019

Joint works with F. Comets, S. Nakajima, N. Yoshida, S. Junk.

Disclaimer

The partition function of a directed polymer:

$$
Z_{n}^{\beta}=\sum_{\gamma: \text { path }} \exp \left\{-\beta \sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)\right\} P(\gamma)
$$

The free energy $\varphi(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}^{\beta}$ is important.
(Existence by the subadditive ergodic theorem.)
In the zero-temperature limit $\beta \rightarrow \infty$,

$$
\lim _{\beta \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{\beta n} \log Z_{n}^{\beta}=-\lim _{n \rightarrow \infty} \frac{1}{n} \inf _{\gamma: \text { path }} \sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)
$$

when the right-hand side is non-zero. This is the First Passage Percolation.

A problem on oriented percolation

Q How many open paths of length n in the oriented percolation cluster starting at $(0,0)$?

From Durrett: Ten lectures on particle systems

A problem on oriented percolation

Q How many open paths of length n in the oriented percolation cluster starting at $(0,0)$?
Let $N_{n}=\#\{$ open paths from $(0,0)$ to level $n\}$.

- F.-Yoshida 2012: $N_{n} \geq e^{\delta n}$ when \exists an infinite path.
- Garet-Gouéré-Marchand 2016: $\alpha(p)=\lim _{n \rightarrow \infty} \frac{1}{n} \log N_{n}$ exists when \exists an infinite path.
- Duminil-Copin-Kesten-Nazarov-Peres-Sidoravicius 2019+: The number of maximizing paths grows exponentially.

A problem on oriented percolation

Q How many open paths of length n in the oriented percolation cluster starting at $(0,0)$?

Let $N_{n}=\#\{$ open paths from $(0,0)$ to level $n\}$.

- F.-Yoshida 2012: $N_{n} \geq e^{\delta n}$ when \exists an infinite path.
- Garet-Gouéré-Marchand 2016: $\alpha(p)=\lim _{n \rightarrow \infty} \frac{1}{n} \log N_{n}$ exists when \exists an infinite path.
- Duminil-Copin-Kesten-Nazarov-Peres-Sidoravicius 2019+: The number of maximizing paths grows exponentially.

If ω is $\operatorname{Ber}(p)$, then $N_{n}=\lim _{\beta \rightarrow \infty} \sum_{\gamma \text { : path }} \exp \left\{-\beta \sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)\right\}$.
Can we recover $\alpha(p)$ by taking zero-temperature limit?
We have corresponding results only for two toy models...

Model I: discrete time polymer with unbounded jumps

Toy model I

- $\left(\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}, P\right):$ Random walk on \mathbb{Z}^{d} with

$$
P\left(\gamma_{n+1}=x \mid \gamma_{n}=y\right)=c_{1} \exp \left\{-|x-y|_{1}^{\alpha}\right\} ;
$$

- $\left(\{\omega(j, x)\}_{(j, x) \in \mathbb{N} \times \mathbb{Z}^{d}}, \mathbb{P}\right)$: IID, $\operatorname{Ber}(p)$.

Directed polymer measure:

$$
\begin{aligned}
\mu_{n}^{\omega, \beta}(\gamma) & =\frac{1}{Z_{n}^{\omega, \beta}} \exp \left\{-\beta \sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)\right\} P_{0}(\gamma) \\
Z_{n}^{\omega, \beta} & =E\left[\exp \left\{-\beta \sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)\right\}\right]
\end{aligned}
$$

At $\beta=\infty$, we regard $\exp \{\cdots\}=1_{\sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)=0 \text {. }}$

$$
Z_{n}^{\omega, \beta}=\sum_{\gamma: \text { path }} c_{1}^{n} \exp \left\{\sum_{j=1}^{n}\left[-\beta \omega\left(j, \gamma_{j}\right)-\left|\gamma_{j-1}-\gamma_{j}\right|_{1}^{\alpha}\right]\right\} .
$$

$$
\bullet: \omega(j, x)=0
$$

$$
Z_{n}^{\omega, \beta}=\sum_{\gamma: \text { path }} c_{1}^{n} \exp \left\{\sum_{j=1}^{n}\left[-\beta \omega\left(j, \gamma_{j}\right)-\left|\gamma_{j-1}-\gamma_{j}\right|_{1}^{\alpha}\right]\right\} .
$$

$\bullet: \omega(j, x)=0$

- : better!

Free energy I

It is standard to show the existence of the free energy:

$$
\varphi(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}^{\omega, \beta}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\log Z_{n}^{\omega, \beta}\right] .
$$

If we naturally define $Z_{n}^{\omega, \infty}=P\left(\sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)=0\right)$, this holds even at $\beta=\infty$.

The key ingredient is $\mathbb{E}\left[\log Z_{n}^{\omega, \infty}\right]<\infty$,

Free energy I

It is standard to show the existence of the free energy:

$$
\varphi(\beta)=\lim _{n \rightarrow \infty} \frac{1}{n} \log Z_{n}^{\omega, \beta}=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\log Z_{n}^{\omega, \beta}\right] .
$$

If we naturally define $Z_{n}^{\omega, \infty}=P\left(\sum_{j=1}^{n} \omega\left(j, \gamma_{j}\right)=0\right)$, this holds even at $\beta=\infty$.

The key ingredient is $\mathbb{E}\left[\log Z_{n}^{\omega, \infty}\right]<\infty$, which fails to hold for some other models (2nd part).

Zero temperature limit I

In this model, we know $\varphi(\infty)$ exists.
Theorem (Comets-F.-Nakajima-Yoshida 2015, N. 2018)
For any $\alpha>0$,

$$
\varphi(\beta) \xrightarrow{\beta \nmid \infty} \varphi(\infty) .
$$

Remark

1. The joint continuity in (p, β) is easy on $\beta<\infty$ region.
2. The proof shows that for any $\epsilon>0$, we can choose $\beta \gg 1$ such that

$$
Z_{n}^{\omega, \infty} \leq Z_{n}^{\omega, \beta} \leq e^{\epsilon n} Z_{n}^{\omega, \infty}
$$

This gives an alternative proof of the existence of $\varphi(\infty)$.

Proof idea: $\alpha \leq 1$

The proof of $Z_{n}^{\omega, \infty} \leq Z_{n}^{\omega, \beta} \leq e^{\epsilon n} Z_{n}^{\omega, \infty}$ goes as follows:

$$
\begin{aligned}
Z_{n}^{\omega, \beta} & =\sum_{\gamma: \text { path }} c_{1}^{n} \exp \left\{\sum_{j=1}^{n}\left[-\beta \omega\left(j, \gamma_{j}\right)-\left|\gamma_{j-1}-\gamma_{j}\right|_{1}^{\alpha}\right]\right\} \\
& =\sum_{\text {no traps }}+\sum_{\text {few traps }}+\sum_{\text {many traps }}
\end{aligned}
$$

$\sum_{\text {no traps }}=Z_{n}^{\omega, \infty}$ and $\sum_{\text {many traps }}$ is negligible when $\beta \sim \infty$.

Proof idea: $\alpha \leq 1$

The proof of $Z_{n}^{\omega, \infty} \leq Z_{n}^{\omega, \beta} \leq e^{\epsilon n} Z_{n}^{\omega, \infty}$ goes as follows:

$$
\begin{aligned}
Z_{n}^{\omega, \beta} & =\sum_{\gamma: \text { path }} c_{1}^{n} \exp \left\{\sum_{j=1}^{n}\left[-\beta \omega\left(j, \gamma_{j}\right)-\left|\gamma_{j-1}-\gamma_{j}\right|_{1}^{\alpha}\right]\right\} \\
& =\sum_{\text {no traps }}+\sum_{\text {few traps }}+\sum_{\text {many traps }}
\end{aligned}
$$

$\sum_{\text {no traps }}=Z_{n}^{\omega, \infty}$ and $\sum_{\text {many traps }}$ is negligible when $\beta \sim \infty$.
For $\sum_{\text {few traps }}$, we can deform paths to trap free paths without too much extra cost and multiplicity:

$$
\Longrightarrow \sum_{\text {few traps }} \leq e^{\epsilon n} \sum_{\text {no traps }}
$$

Proof idea: $\alpha>1$

The "deformation cost" is too large in this case.
The proof is based on a control of the rate of convergence:

$$
\log Z_{n}^{\beta}-n \varphi(\beta)=\underbrace{\log Z_{n}^{\beta}-\mathbb{E}\left[\log Z_{n}^{\beta}\right]}_{\text {random error }}+\underbrace{\mathbb{E}\left[\log Z_{n}^{\beta}\right]-n \varphi(\beta)}_{\text {non-random error }}
$$

We need (uniformly in $\beta \in[0, \infty]$):

$$
\begin{aligned}
& \mathbb{P}\left(\left|\log Z_{n}^{\beta}-\mathbb{E}\left[\log Z_{n}^{\beta}\right]\right|>n^{1-\delta}\right) \leq n^{-M}, \\
& \left|\mathbb{E}\left[\log Z_{n}^{\beta}\right]-n \varphi(\beta)\right| \leq n^{1-\delta} .
\end{aligned}
$$

Proof idea: $\alpha>1$

The "deformation cost" is too large in this case.
The proof is based on a control of the rate of convergence:

$$
\log Z_{n}^{\beta}-n \varphi(\beta)=\underbrace{\log Z_{n}^{\beta}-\mathbb{E}\left[\log Z_{n}^{\beta}\right]}_{\text {random error }}+\underbrace{\mathbb{E}\left[\log Z_{n}^{\beta}\right]-n \varphi(\beta)}_{\text {non-random error }}
$$

We need (uniformly in $\beta \in[0, \infty]$):

$$
\begin{aligned}
& \mathbb{P}\left(\left|\log Z_{n}^{\beta}-\mathbb{E}\left[\log Z_{n}^{\beta}\right]\right|>n^{1-\delta}\right) \leq n^{-M}, \\
& \left|\mathbb{E}\left[\log Z_{n}^{\beta}\right]-n \varphi(\beta)\right| \leq n^{1-\delta} .
\end{aligned}
$$

In fact, the first bound implies the second (Y. Zhang 2010).

Maximal jump

Proof of concentration requires a control on the influence, which is related to the jump size.
Lemma (Nakajima 2018)
For any $\alpha>1$, "typical" polymers of length n jumps at most $n^{o(1)}$.
Remark
Numerical experiment shows that there is a big jump when $\alpha<1$. I have a proof that the maximal jump is larger than $(\log n)^{c}$ but for all $\alpha \in(0, \infty)$.

Model II: Brownian polymer in Poissonian environment

Toy model II

- $\left((B(t))_{t \geq 0}, P_{x}\right)$: standard Brownian motion on $\mathbb{R}^{d}, B(0)=x$.
- $\left(\omega=\sum_{i} \delta_{\left(t_{i}, x_{i}\right)}, \mathbb{P}\right)$: Poisson point process on $(0, \infty) \times \mathbb{R}^{d}$ with unit intensity.

Directed polymer measure:

$$
\mu_{t}^{\omega, \beta}(\mathrm{d} B)=\frac{1}{Z_{t}^{\omega, \beta}} e^{-\beta \#\{\text { hitting to } \phi \text { up to } t\}} P_{0}(\mathrm{~d} B)
$$

See a survey article by Comets-Cosco for known results.

Toy model II

- $\left((B(t))_{t \geq 0}, P_{x}\right)$: standard Brownian motion on $\mathbb{R}^{d}, B(0)=x$.
- $\left(\omega=\sum_{i} \delta_{\left(t_{i}, x_{i}\right)}, \mathbb{P}\right)$: Poisson point process on $(0, \infty) \times \mathbb{R}^{d}$ with unit intensity.

Directed polymer measure:

$$
\mu_{t}^{\omega, \beta}(\mathrm{d} B)=\frac{1}{Z_{t}^{\omega, \beta}} e^{-\beta \#\{\text { hitting to up to } t\}-\int_{0}^{t}|\dot{B}(s)|^{2} \mathrm{~d} s}
$$

See a survey article by Comets-Cosco for known results.

Free energy II

Existence of the free energy $\varphi(\beta)$ for $\beta \in \mathbb{R}$ is standard:

$$
\varphi(\beta)=\lim _{t \rightarrow \infty} \frac{1}{t} \log Z_{t}^{\omega, \beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\log Z_{t}^{\omega, \beta}\right]
$$

At $\beta=\infty$, the model makes sense by setting $\tau(\omega)$ to be the hitting time to ϕ and $Z_{t}^{\omega, \infty}=P_{0}(\tau(\omega)>t)$.

Free energy II

Existence of the free energy $\varphi(\beta)$ for $\beta \in \mathbb{R}$ is standard:

$$
\varphi(\beta)=\lim _{t \rightarrow \infty} \frac{1}{t} \log Z_{t}^{\omega, \beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\log Z_{t}^{\omega, \beta}\right]
$$

At $\beta=\infty$, the model makes sense by setting $\tau(\omega)$ to be the hitting time to ϕ and $Z_{t}^{\omega, \infty}=P_{0}(\tau(\omega)>t)$. But $\mathbb{E}\left[\log Z_{t}^{\omega, \infty}\right]=-\infty$.

Proof.

Brownian motion has to avoid the first disaster in $[0, \infty] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$. If it occurs at time F, then

$$
\begin{aligned}
\log P_{0}(\tau(\omega)>t) & \lesssim \log \exp \left(-\left(\frac{1}{2}\right)^{2} / F\right) \\
& =-\frac{1}{4 F}
\end{aligned}
$$

Since $F \stackrel{\text { d }}{=} \operatorname{Exp}(1), 1 / F$ is not integrable.

Free energy II

Existence of the free energy $\varphi(\beta)$ for $\beta \in \mathbb{R}$ is standard:

$$
\varphi(\beta)=\lim _{t \rightarrow \infty} \frac{1}{t} \log Z_{t}^{\omega, \beta}=\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\log Z_{t}^{\omega, \beta}\right]
$$

At $\beta=\infty$, the model makes sense by setting $\tau(\omega)$ to be the hitting time to ϕ and $Z_{t}^{\omega, \infty}=P_{0}(\tau(\omega)>t)$. But $\mathbb{E}\left[\log Z_{t}^{\omega, \infty}\right]=-\infty$.

Proof.

Brownian motion has to avoid the first disaster in $[0, \infty] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$. If it occurs at time F, then

$$
\begin{aligned}
\log P_{0}(\tau(\omega)>t) & \lesssim \log \exp \left(-\left(\frac{1}{2}\right)^{2} / F\right) \\
& =-\frac{1}{4 F}
\end{aligned}
$$

Since $F \stackrel{\text { d }}{=} \operatorname{Exp}(1), 1 / F$ is not integrable.

Zero temperature limit II

Theorem
There exists $p(\infty) \in(-\infty, 0)$ such that the following hold:
(i) \mathbb{P}-almost surely, $\lim _{t \rightarrow \infty} \frac{1}{t} \log Z_{t}^{\omega, \infty}=p(\infty)$;
(ii) $\lim _{\beta \rightarrow \infty} p(\beta)=p(\infty)$.

Zero temperature limit II

Theorem
There exists $p(\infty) \in(-\infty, 0)$ such that the following hold:
(i) \mathbb{P}-almost surely, $\lim _{t \rightarrow \infty} \frac{1}{t} \log Z_{t}^{\omega, \infty}=p(\infty)$;
(ii) $\lim _{\beta \rightarrow \infty} p(\beta)=p(\infty)$.

The proof follows the same line as $\alpha>1$ case of Model I.

Modified death time

Lemma (non-integrability is due to the first disaster)
Let F_{t} be the first disaster in $[0, t] \times\left[-\frac{7}{2}, \frac{7}{2}\right]^{d}$. Then there exists $c>0$ such that

$$
\mathbb{E}\left[\log P_{0}(\tau(\omega)>t) \mid F_{t}\right] \geq-c\left(t+F_{t}^{-1}\right)
$$

Thus the following modification ensures the integrability:

$$
\tau^{1}(\omega):=\inf \left\{s \geq 1:\left(s, B_{s}\right) \text { hits a disaster }\right\}
$$

Modified death time

Lemma (non-integrability is due to the first disaster)
Let F_{t} be the first disaster in $[0, t] \times\left[-\frac{7}{2}, \frac{7}{2}\right]^{d}$. Then there exists $c>0$ such that

$$
\mathbb{E}\left[\log P_{0}(\tau(\omega)>t) \mid F_{t}\right] \geq-c\left(t+F_{t}^{-1}\right)
$$

Thus the following modification ensures the integrability:

$$
\tau^{1}(\omega):=\inf \left\{s \geq 1:\left(s, B_{s}\right) \text { hits a disaster }\right\}
$$

Problem: Standard argument for super-additivity yields

$$
\begin{aligned}
& \mathbb{E}\left[\log P\left(\tau^{1}(\omega) \geq s+t\right)\right] \\
& \quad \geq \mathbb{E}\left[\log P\left(\tau^{1}(\omega) \geq s\right)\right]+\mathbb{E}[\log P(\tau(\omega) \geq t)]
\end{aligned}
$$

Effect of changing disasters in a slab

We show an almost super-additivity by estimating

$$
\begin{aligned}
& \log P\left(\tau^{1}(\omega) \geq s+t\right)-\log P\left(\tau^{1}\left(\omega_{[s, s+1]^{c}}\right) \geq s+t\right) \\
& \quad=\log P\left(\tau^{1}(\omega) \geq s+t \mid \tau^{1}\left(\omega_{[s, s+1]^{c}}\right) \geq s+t\right) .
\end{aligned}
$$

Effect of changing disasters in a slab

We show an almost super-additivity by estimating

$$
\begin{aligned}
& \log P\left(\tau^{1}(\omega) \geq s+t\right)-\log P\left(\tau^{1}\left(\omega_{[s, s+1]^{c}}\right) \geq s+t\right) \\
& \quad=\log P\left(\tau^{1}(\omega) \geq s+t \mid \tau^{1}\left(\omega_{[s, s+1]^{c}}\right) \geq s+t\right) .
\end{aligned}
$$

We need a control on the survival in tubes and that the polymer is "spread out" under $P\left(\cdot \mid \tau^{1}\left(\omega_{[s, s+1]}\right) \geq s+t\right)$.

Survival in tube

Lemma

Let F_{t} and L_{t} be the first and last disaster in $[0, t] \times\left[-\frac{7}{2}, \frac{7}{2}\right]$ respectively. Then

$$
\begin{aligned}
& \inf _{x, y \in[-5 / 2,5 / 2]^{d}} \mathbb{E}\left[\log P_{0, x}^{t, y}\left(\tau(\omega) \wedge \tau_{[-3,3]}>t\right) \mid F_{t}, L_{t}\right] \\
& \geq-c\left(t+F_{t}^{-1}+\left(t-L_{t}\right)^{-1}\right) .
\end{aligned}
$$

Concentration bound

Previous Lemma and "spread-out" estimate for polymer measure (skipped) yield almost super-additivity
\Rightarrow Existence of $\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\log P\left(\tau^{1}(\omega)>t\right)\right]$.
Control on the effect of changing disasters in a slab
\Rightarrow Concentration around the mean
\Rightarrow Existence of $\lim _{t \rightarrow \infty} \frac{1}{t} \log P\left(\tau^{1}(\omega)>t\right)$, \mathbb{P}-a.s.

Concentration bound

Previous Lemma and "spread-out" estimate for polymer measure (skipped) yield almost super-additivity
\Rightarrow Existence of $\lim _{t \rightarrow \infty} \frac{1}{t} \mathbb{E}\left[\log P\left(\tau^{1}(\omega)>t\right)\right]$.
Control on the effect of changing disasters in a slab
\Rightarrow Concentration around the mean
\Rightarrow Existence of $\lim _{t \rightarrow \infty} \frac{1}{t} \log P\left(\tau^{1}(\omega)>t\right), \mathbb{P}$-a.s.
Once we get a concentration around the mean, as before,

$$
\left|\frac{1}{t} \log P\left(\tau^{1}(\omega)>t\right)-p(\infty)\right| \leq t^{-\delta}
$$

which extends to the positive temperature uniformly in $\beta \in \mathbb{R}$. This yields the continuity of $p(\beta)$.

Proof of survival in tube Lemma

Thank you for your attention!

