
$T=$ infinite binary canopy tree

$\tau_{n}=$ subtree rooted at v_{n}
$\mathcal{L}_{n}=$ leaves of τ_{n}

Functions on T : -input from children

- combination function at nodes
- output to parents

Choose functions $\left(f_{v}, v \in \tau_{n} \mathcal{L}_{n}\right)$; this turns T_{n} into a function,

$$
x=\left(x_{v}, v \in \mathcal{R}_{n}\right) \longmapsto T_{n}(x) \longleftarrow \text { output at root } v_{n} \text {, on input } x \text {. }
$$

Either or both of x and $\left(f_{v}, v \in \tau_{n}, \mathcal{L}_{n}\right)$ can be random

Examples
(1) $f_{v}= \begin{cases}(a, b) \longmapsto 1+a+b & \text { with prob. } P \\ (a, b) \longmapsto 1 & \text { with prob. 1-P }\end{cases}$

Then $T_{n}(\overrightarrow{1}) \stackrel{d}{=}$ \# nodes at level $\leqslant n$ in a Galton-Watson tree with offspring dist $\left\{\begin{array}{l}2 \text { with probability } p \\ 0 \text { with probability 1- } p\end{array}\right.$
(2) Let $\left(D_{v,}, v \in T\right)$ be IID with law μ, let $f_{v}(a, b)=\max (a, b)+D_{v}$

Then $T_{n}(0) \stackrel{d}{=}$ maximum position in generation $n-1$ of a binary branching random walk with displacement dist μ (displacements at vertices)
(3) Let $\left(D_{v}, v \in T\right)$ be IID with law μ, let $f_{v}(a ; b)=a D_{v_{0}}+b D_{v 1}$.

This is a smoothing transform; fixed points studied by Durrett ह Liggett (1983), many others.
In fact, all these equations have been studied from the perspective
 of fixed-point equations (sometimes wish to introduce a rescaling or shift).

Examples without a fixed-point theory
(4) Derrida-Retaux model/"Parking on trees". Here $f_{v}(a, b)=\max (a+b-1,0)$ Question: Large - n behaviour of $T_{n}(X)$ where $X=\left(X_{v}, v \in \mathcal{L}_{n}\right) \| D$ with some law μ
(answer of course depends on μ)
[Refs: Hus, Mallein, Pain, 1811.08749v2; Hi, Sh, 1705.03792; Goldschmidt, Przykucki, 1610.08786; Chen, Dagard, Derrida, He, Lifshits, Shi, 1907.01601]
(5) Random hierarchical lattice. Series connection Resistance $\rightarrow a+b$

$$
f_{v}= \begin{cases}(a, b) \longmapsto a+b & \text { with prob. } p \\ (a, b) \longmapsto \frac{a b}{a+b} & \text { with prob. 1-p }\end{cases}
$$

[Ref: Hambly-Jordan 2004. $p>\frac{1}{2} \rightarrow T_{n}(\overrightarrow{1})$ grows exponentially: $p<\frac{1}{2} \rightarrow T_{n}(\overrightarrow{1})$ decays exp.]
(6) Pemantle's Min-Plus tree

$$
f_{v}= \begin{cases}(a, b) \longmapsto a+b & \text { with prob. } p \\ (a, b) \longmapsto \min (a, b) & \text { with prob. 1-p }\end{cases}
$$

[Ref: Auffinger-Cable: 1709.07849

$$
\text { Theorem }(A-C) \frac{\log \tau_{n}(\overrightarrow{1})}{\left(\pi^{2} n / 3\right)^{1 / 2}} \xrightarrow{d} \operatorname{Beta}(2,1)
$$

Pemantle conjectured that $\exists c$ st.
(Open question: universality: what happens for other inputs?) $\log _{c} \frac{T_{n}(1)}{} \xrightarrow{d} \operatorname{Beta}(2,1)$

Aside: Example from Ivan Corwin's course

$$
\begin{aligned}
& Z(t, n)={B_{t, n}}_{\operatorname{Beta}(\alpha, \beta)} Z(t-1, n)+\left(1-B_{t, n}\right) \cdot Z(t-1, n-1) \\
& Z(0, n)=1_{n \geq 1}
\end{aligned}
$$

\uparrow
Recurrence for partition f^{n} of point-to-line Beta polymer/ random CDF of Beta-RWRE

With

$$
u\left(t,\left(n_{1}, \ldots, n_{k}\right)\right):=\sqrt{E}\left[z\left(t, n_{1}\right) \cdots z\left(t, n_{k}\right)\right]
$$

then

$$
u\left(t+1,\left(n, n_{, \ldots} n\right)\right)=\sum_{j=0}^{k}\binom{k}{j} \frac{(\alpha)_{j}(\beta)_{k-j}}{(\alpha+\beta)_{k}} u(t,(\overbrace{n, \ldots, n}^{j} \overbrace{n-1, \ldots, n-1))}^{k-j}
$$

New model Hipster random walk

Fix $\left(D_{v, v \in \mathcal{L}}\right) \| D$ ．Let f_{v} be defined by
$(a, b) \stackrel{f_{v}}{\longmapsto} a+D_{v} 1_{a=b}$
with prob．$\frac{1}{2}$
$(a, b) \stackrel{f_{v}}{\longrightarrow} b+D_{v} \mathbb{1}_{a=b} \quad$ with prob：$\frac{1}{2}$
Idea Think of time as running up the tree 1 One of vo，$v 1$ is hipper than the other（chosen randomly）
vo is hipper
v_{1} is hipper

2 If another particle shows up，hipper child takes off．
We will study • symmetric simple hipster random walk $\longrightarrow D_{v}=\left\{\begin{array}{l}1 \text { w／prob．} \frac{1}{2} \\ \text { SSHRW }\end{array}\right.$
－totally asymmetric lazy simple hipster random walk $\longrightarrow D_{v}=\left\{\begin{array}{ll}1 & \text { w／prob．} \\ 0 & \text { w／prob．1－p }\end{array} \quad p \in(0,1)\right.$ ． TALSHRW
Theorem
For SSHRW，$\frac{\operatorname{Tn}(\overrightarrow{0})}{(36 n)^{1 / 3}} \xrightarrow{d} \operatorname{Beta}(2,2)-\frac{1}{2}$ ．
Hipster：
A）新しがり屋。

$$
\text { For TALSHRW } \frac{T(\overrightarrow{0})}{(4(1-p) n)^{1 / 2}} \xrightarrow{d} \operatorname{Beta}(2.1)
$$

B）中目黒や下北沢にあるような
サードウェーブコーヒー ショップにいる人々

Note Result for TALSHRW very similar to that of Auffinger-Cable.
Recall Auffinger-Cable:

$$
f_{v}=\left\{\begin{array}{ll}
(a, b) \mapsto a+b & \text { with prob. } p \\
(a, b) \mapsto \min (a, b) & \text { with prob. 1-p }
\end{array} \quad \text { Theorem }(A-C) \frac{\log \tau_{n}(\bar{\sigma})}{\left(\pi^{2} n / 3\right)^{\frac{1}{2}}} \xrightarrow{d} \operatorname{Beta}(2,1)\right.
$$

Intuition (connecting min/plus and TALSHRW)
Write L, R for values at children of root of T_{n}.
If $T_{n}(\overrightarrow{0})$ is growing on a (stretched) exponential scale then it's natural to compare $\log L$ and $\log R$.
Behaviour when $|\log L-\log R|$ small

$$
\text { If }|\log L-\log R| \approx 0 \quad \text { then }\left\{\begin{array}{l}
L+R \approx 2 L \quad \log (L+R) \approx \log (L)+1 \\
\min (L, R) \approx L
\end{array} \quad \begin{array}{l}
\text { This is the common }(\log L, \log R) \approx \log L
\end{array}\right\} \begin{aligned}
& \text { value plus a } \text { incr, } 1\}- \text { valued }
\end{aligned}
$$

Behaviour when $|\log L-\log R|$ large

$$
\text { If }|\log L-\log R| \approx \infty \text { then }\left\{\begin{array}{ll}
L+R \approx \max (L, R) & \log (L+R)=\max (\log L, \log R) \\
\min (L, R)=\min (L ; R) & \log (\min (L, R))=\min (\log L, \log R)
\end{array}\right\} \log (\text { value of a a random child })
$$

Similar intuition should work for the hierarchical lattice:

$$
f_{v}=\left\{\begin{array}{l}
(a, b) \longmapsto a+b \\
(a, b) \longmapsto \frac{a b}{a+b} \\
\text { with prob prob. } \frac{1}{2}
\end{array}\right.
$$

Intuition: Suppose $\vec{\tau}_{n}(\vec{\sigma})$ is growing on a (stretched) exponential scale.
Write L, R for values at children of root.
Behaviour when $|\log L-\log R|$ small
If $|\log L-\log R|$ small then $\left\{\begin{array}{c}L+R \approx 2 L \\ \frac{L R}{L+R} \curvearrowleft \frac{1}{2} L\end{array} \quad \log (L+R) \approx \log (L)+1 . \begin{array}{l}L R \\ L+R\end{array} \approx \log (L)-1 \quad\right.$ This is the common value
Behaviour when $|\log L-\log R|$ large
If $|\log L-\log R|$ big then $\left\{\begin{array}{l}L+R \approx \max (L, R) \log (L+R) \approx \max (\log L, \log R) \\ \frac{L R}{L+R} \approx \min (L, R) \log \left(\frac{L R}{L+R}\right)=\min (\log L, \log R)\end{array}\right\}$ Tog is just due of a random child)
Motivates the following conjecture: in the random hierarchical lattice with $p=\frac{1}{2}, \exists c>0$ st.

$$
\frac{\log T_{n}(\overline{0})}{(c n)^{1 / 3}}-\frac{1}{2} \xrightarrow{d} \operatorname{Beta}(2,2)
$$

(Disagrees with a conjecture of Hambly-Jordan)

Theorem (Totally asymmetric lazy SHRW) $\frac{T(\overrightarrow{0})}{(2 n)^{1 / 2}} \xrightarrow{d} \operatorname{Beta}(2,1)$
Proof Idea
Original dynamics:
vo is hipper
VI is hipper

$D_{V} \sim \operatorname{Bernoull}\left(\frac{1}{2}\right)$

By symmetry, can assume left child is always chosen.
For inputs $x=\left(x_{v}, v \in \mathcal{L}\right)$, useful notation: $T_{n}(x):=T_{n}\left(\left(x_{v}, v \in \mathcal{L}_{n}\right)\right)$

Proof Idea (Totally asymmetric case)

$$
\begin{aligned}
P_{n}(k) & \left(1-P_{n}(k)\right) \leftarrow \text { left child }=k \text {, right child } \neq k \\
& \frac{1}{2} P_{n}(k-1)^{2} \leftarrow \text { both }=k-1 \text {, make a step } \\
& \frac{1}{2} P_{n}(k)^{2} \leftarrow \text { both }=k \text {, be lazy }
\end{aligned}
$$

Let $p_{n}(k)=\mathbb{P}\left(T_{n}(\vec{o})=k\right)$
Then $p_{n+1}(k)=\overbrace{P_{n}(k)\left(1-p_{n}(k)\right)+\frac{1}{2} p_{n}(k-1)^{2}+\frac{1}{2} p_{n}(k)^{2}}$
Rearranging gives $p_{n+1}(k)-p_{n}(k)=-\frac{1}{2}\left(p_{n}(k)^{2}-p_{n}(k-1)^{2}\right)$
This is a discretization of the inviscid Burgers equation $\frac{\partial}{\partial t} u(x, t)=-\frac{1}{2} \frac{\partial}{\partial x}\left(u(x, t)^{2}\right)$
So we are trying to solve the (measure-valued) initial-value problem $\quad U_{t}=-\frac{1}{2}\left(U^{2}\right)_{x}=-u u_{x}$

$$
\left\{\begin{array}{l}
u_{t}=-u u_{x}, t \geqslant 0, x \in \mathbb{R} \\
u_{0}(x)=\delta_{0}(x)=V_{[x=0]} \quad \text { (Dirac mass at } 0 \text {, understood as a prob. measure) }
\end{array}\right.
$$

Ignoring space-time points of discontinuity, this is solved ${ }^{*}$ by $U: \mathbb{R} x[0, \infty) \rightarrow \mathbb{R}$ given by

$$
U(x, t)=\left\{\left.\begin{array}{ll}
x / t, & 0 \leqslant x<\sqrt{2 t} \\
0 & \text { otherwise }
\end{array} \int_{0}^{\sqrt{2}}\right|_{\sqrt{2}} ^{t}\right.
$$

$$
t=4
$$

Note $u(t, x)$ is always a prob. dist: the density of a scaled Beta $(2,1)$.

* But solution is not unique!

Proof Idea (Symmetric simple HRW case)

$$
q_{n}(k)\left(1-q_{n}(k)\right) \leftarrow \text { left child }=k \text {, right child } \not \ddagger k
$$

$$
\text { Let } q_{n}(k)=\mathbb{P}\left(\tau_{n}(\vec{o})=k\right)
$$ $\frac{1}{2} q_{n}(k-1)^{2} \leftarrow$ both $=k-1$, make $a+1$ step $\frac{1}{2} q_{n}(k+1)^{2}<$ both $=k$, make $a-1$ step Then $q_{n+1}(k)=\overbrace{q_{n}(k)\left(1-q_{n}(k)\right)+\frac{1}{2} q_{n}(k-1)^{2}+\frac{1}{2} q_{n}(k+1)^{2}}$

Rearranging gives $q_{n+1}(k)-q_{n}(k)=\frac{1}{2}\left(q_{n}(k+1)^{2}-2 q_{n}(k)^{2}+q_{n}(k-1)^{2}\right)$
This is a discretization of the porous membrane equation $\frac{\partial}{\partial t} u(x, t)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(u(x, t)^{2}\right)$
So we are trying to solve the (measure-valued) initial-value problem

$$
\left\{\begin{array}{l}
u_{t}=\frac{1}{2}\left(u^{2}\right)_{x x}, \quad t \geqslant 0, x \in \mathbb{R} \\
u_{0}(x)=\delta_{0}(x)=1_{[x=0]}
\end{array}\right.
$$

Target solution: $u(t, x)=\max \left(\left[\frac{3}{4}\left(\frac{2}{9 t}\right)^{\frac{1}{3}}-\frac{2 x^{2}}{9 t}\right], 0\right)$; truncated parabola. 三 Density of a scaled $\operatorname{Beta}(2,2)$.

Rest of talk: focus principally on TALSHRW

Inviscid Burgers equation Initial value problem $\left\{\begin{array}{l}\frac{\partial}{\partial t} U(x, t)=-\frac{1}{2} \frac{\partial}{\partial x}\left(U(x, t)^{2}\right) \\ U(x, 0)=\delta_{0}(x) \leftarrow \text { Dirac mass at } 0 .\end{array}\right.$
Note: $u(x, t)=\frac{\alpha x+\beta}{\alpha t+\gamma}$ has $\frac{\partial}{\partial x}\left(u(x, t)^{2}\right)=2 u(x, t) \cdot \frac{\partial}{\partial x} u(x, t)=2 \cdot \frac{\alpha x+\beta}{\alpha t+\gamma} \cdot \frac{\alpha}{\alpha t+1}$
Satisfies $\frac{\partial}{\partial t} u(x, t)=-\frac{1}{2} \frac{\partial}{\partial x}\left(u(x, t)^{2}\right)$
Special cases:

$$
\begin{array}{ll}
\alpha=1, \beta=\gamma=0 & u(x, t)=\frac{x}{t} \quad \alpha>0 \text { : solution flattens out } \\
\alpha=\beta=0, \gamma=1 & u(x, t)=0
\end{array} \quad \alpha=0 \text { : flat line } \quad \text { a } \begin{array}{ll}
\alpha=-1, \beta=\alpha=1 & u(x, t)=\frac{1-x}{1-t}
\end{array} \quad \alpha>0: \text { solution steepens with time } \quad \text { (problem at } t=1 \ldots \text {) }
$$

Why should $\left(\left(p_{n}(k), k \in \mathbb{Z}\right), n \geqslant 0\right)$ converge to the claimed solution?
This is by no means obvious.
Warning example: solve $p_{n+1}(k)-p_{n}(k)=-\frac{1}{2}\left(p_{n}(k)^{2}-p_{n}(k-1)^{2}\right)$ with $p_{0}(k)= \begin{cases}2, & k=0 \\ 0 & k \neq 0\end{cases}$ Then $p_{1}(0)=2-\frac{1}{2}\left(2^{2}-0^{2}\right)=0\left\|p_{1}(1)=-\frac{1}{2}\left(0^{2}-2^{2}\right)=2\right\|$ get $\quad p_{n}(k)=\left\{\begin{array}{cc}2, & k=n \\ 0 & k \neq n\end{array}\right.$

Heuristic "naturally arising" difference equations pick out "physical" solutions What does "solution" mean?

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & =-\frac{1}{2} \frac{\partial}{\partial x}\left(u(x, t)^{2}\right) \\
u(x, 0) & =\delta_{0}(x)
\end{aligned}
$$

Potential solutions: functions of bounded variation.
"Locally integrable functions u whose generalized derivatives are locally measures." (Volpert 1967)
This means:
\exists a Radon measure $\stackrel{\nabla}{\nabla}=\left((\nabla u)_{x},(\nabla u)_{t}\right)$ on $\mathbb{R} \times[0, \infty)$, taking values in \mathbb{R}_{2}, st.

- $|\nabla u|$ is locally finite
- For any C^{∞} test $f^{n} \phi: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ with compact support,

$$
\begin{array}{r}
=\int u(x, t) \nabla \phi(x, t) d x d t=-\int \phi(x, t) \nabla u(x, t) \\
\left(\int u \frac{\partial}{\partial x} \phi(x, t), \int u \frac{\partial}{\partial t} \phi(x, t)\right) \quad-\left(\int \phi(x, t)(\nabla u)_{x}(x, t), \int \phi(x, t)(\nabla u)_{t}(x, t)\right)
\end{array}
$$

What does "physical" mean?
Viscosity solution add Gaussian noise and take a small-noise limit.
Solve $\left\{\begin{array}{l}\frac{\partial}{\partial t} u(x, t)=-\frac{1}{2} \frac{\partial}{\partial x}\left(u(x, t)^{2}\right)+\varepsilon \frac{\partial^{2}}{\partial x^{2}} u(x, t) \\ u(x, 0)=\frac{1}{\sqrt{2 \pi \varepsilon}} \exp \left(-x^{2} / 2 \varepsilon\right)\end{array}\right\}$; let $\varepsilon \rightarrow 0$ and hope for the best $\begin{aligned} & \text { (Not a helpful perspective in our setting.) }\end{aligned}$
"Entropy"/generalized solution
Mathematically formalizes that "in a fluid, shocks increase disorder / have a scattering effect".

A generalized solution of (*) is a weak solution u st. for all $c \in \mathbb{R}$, the following holds.
Let $\Gamma_{u}=$ set of discontinuities of $u . \quad$ Let $v=\left(\nu_{x}, \nu_{t}\right)$ be the normal to Γ_{u}.
Then $\left.\left.\quad\left(\operatorname{sign}\left(u^{+}-c\right)-\operatorname{sign}\left(u^{-}-c\right)\right)\left((\bar{u}-c) \nu_{t}+\overline{b(u(x, t)}\right)-b(c)\right) \nu_{x}\right] \leq 0$, "Scattering condition near discontinuities"
mean value in direction $\pm \nu$ symmetric mean value
in that the 1-dimensional Hausdorff capacity of the set of points where this fails is zero. Volpert (2000): Proves uniqueness of the generalized solution under weak conditions on A, b.

In Volpert's result, initial condition must be a f^{n}; cant start from the measure δ_{0}.
First step Start Burgers from a smoother initial condition of the form $U_{0}(x)=\frac{x}{t_{0}} \mathbb{1}_{0 \leqslant x \leqslant \sqrt{2 t_{0}}}$
Probabilistically what does this mean?
(think of to as small).
U_{0} is density of $\sqrt{22_{0}} \cdot B$ where $B \sim \operatorname{Beta}(2,1)$
Fix $M>0$ and define $u_{j}^{0}(M)=M \int_{j / M}^{j+1) / M} u_{0}(x) d x$ for $j \geqslant 0$ st. $\frac{j}{M} \leqslant \sqrt{2 t_{0}}$
Then $\sum_{j} u_{j}^{0}(M)=1$, so $\left(u_{j}^{0}(M), j \geqslant 0\right)$ defines a probability distribution on $\left\{0,1, \ldots, L M \cdot \sqrt{2 t_{0}} J\right\}$
Let $X^{M}=\left(X_{v}^{m}, v \in \mathcal{L}\right)$ be vector of IIDs with $\mathbb{P}\left(X_{v}^{m}=j\right)=U_{j}^{0}(M)$ (discretization of U_{0} at mesh size $\frac{1}{M}$)
$T_{n}\left(X^{M}\right)$ is value of TALSHRW when initial distribution is $\frac{1}{M}$-mesh discretization of $\sqrt{2 t_{0}} \cdot B$.
Lemma we have $\mathbb{P}\left(\tau_{n}\left(X^{m}\right)=j\right)=\frac{1}{M} \cdot U_{j}^{n}(M)$, where $\left(U_{j}^{n}(M)\right)_{n \geqslant 0, j \geqslant 0}$ is defined by the recurrence $M \cdot u_{j}^{n+1}=M \cdot u_{j}^{n}-\frac{1}{2}\left(\left(u_{j}^{n}\right)^{2}-\left(u_{j-1}^{n}\right)^{2}\right.$.
Proof Easy induction

Second step Convergence of the fine-mesh approximation.
The spatial mesh is $\frac{1}{M}$. We take a temporal mesh of $\frac{1}{M^{2}}$.

$$
U_{M}(t, x)=U_{\lfloor\times M\rfloor}^{\left\lfloor t M^{2}\right\rfloor}(M)=\mathbb{P}\left(\tau_{\left\lfloor L M^{2}\right\rfloor}\left(X^{M}\right)=\lfloor x M J) \text { for } t, x \geqslant 0\right.
$$

Call U_{M} a $\frac{1}{M}$-fine mesh approximation of Burgers' equation
Theorem (Eve Karlsen, 2000)
From a bounded variation initial condition, the $\frac{1}{M}$-fine mesh approximation converges to the generalized solution u of Burgers equation almost everywhere on $\mathbb{R} \times[0, \infty)$, and for any compact $C \subset \mathbb{R} \times[0, \infty), \quad \int_{C}\left|U^{m}(x, t)-U(x, t)\right| d x d t \rightarrow 0$.
Generalized solution \rightarrow The correct solution of our problem (this requires verification this requires verification
but is basically technical)
Conclusion $U_{M} \rightarrow u$ defined by $u(t, x)=\frac{x}{t+t_{0}} 1_{0 \leqslant x \leqslant \sqrt{2\left(t+t_{0}\right)}}^{0}$
Evje Karlsen in fact prove convergence for general monotone finite difference approximations of Cauchy problems of the form $\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}} A u((x, t))-\frac{\partial}{\partial x} b(u(x, t)$, with smooth initial condition. So we can also use their result when we study the SSHRW.

Implication for TALSHRW
Corollary For $\varepsilon>0$ small, if $U=U_{\text {if }}[1-\varepsilon, 1+\varepsilon]$ is independent of X, then as $M \rightarrow \infty$,

$$
\frac{\tau_{\left.i u M^{2}\right\rfloor}\left(X^{M}\right)}{\sqrt{2\left(t_{0}+u\right)} M} \xrightarrow{d} \operatorname{Beta}(2,1) .
$$

Proof: For any compact $\subset \subset \mathbb{R} \times[0, \infty)$,

$$
\iint_{C}\left|\mathbb{P}\left(T_{L m^{\prime} \leq}\left(X^{M}\right)=L x M J\right)-\frac{x}{t+t_{0}} \mathbb{1}_{0 \leqslant x \leqslant \sqrt{2\left(t+t_{0}\right)}}\right| d x d t \rightarrow 0
$$

Taking $C=\left\{(x, t):|t-1| \leqslant \varepsilon, 0 \leqslant x \leqslant a \sqrt{2\left(t+t_{0}\right)}\right\}$, this yields by the triangle inequality that

$$
\int_{[1-\varepsilon, 1+\varepsilon]}\left|\mathbb{P}\left(\tau_{\left.L m^{2}\right\rfloor}\left(X^{M}\right) \leqslant a \sqrt{2\left(t+t_{0}\right)} M\right)-\int_{0}^{a} \frac{x}{t+t_{0}} d x\right| \frac{1}{2 \varepsilon} d t \rightarrow 0 \text { as } M \rightarrow \infty
$$

(There are "discretization errors" coming from the floors, but it's easy to see these tend to 0 as $M \rightarrow \infty$.)
Since U has density $\frac{1}{2 \varepsilon} \mathbb{1}_{|t-1| \leqslant \varepsilon}$, the result follows.

Last step stochastic domination.
Proposition
If $x=\left(x_{v}, v \in \mathcal{L}\right)$ and $y=\left(y_{v}, v \in \mathcal{L}\right)$ are such that $x_{v} \in \mathbb{Z}, y_{v} \in \mathbb{Z}$ and $x_{v} \leqslant y_{v}$ for all $v \in \mathcal{L}$, then $T_{n}(x) \leqslant_{s t} T_{n}(y)$ for all $n \geqslant 1$.
Proof: A straightforward induction.
Corollary 1 For all $n, M \in \mathbb{N}, T_{n}\left(X^{M}\right)-\left\lfloor\sqrt{2 t_{0} M}\right\rfloor \leqslant_{s t} T_{n}(\overrightarrow{0}) \leqslant_{s t} T_{n}(\overrightarrow{0})$
Allows us to compare all-o input to random input with of) error (recall $t_{0}>0$ is fixed but arbitrarily small).
Corollary 2 For all $M \in \mathbb{N}, \tau_{(1-\varepsilon) M^{2}}\left(X^{M}\right) \imath_{s t} T_{U^{2}}\left(X^{M}\right) \prec_{s t} \tau_{(1+\varepsilon) M^{2}}\left(X^{M}\right)$
Allows us to compare fixed time near M^{2} to randan time $U M^{2}$.

Stochastic domination argument more delicate for SSHRW as dynamics non-monotone, but core idea of the argument is the same.

