Extreme values for diffusion in random media

Ivan Corwin

Columbia University

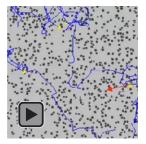
From pollen to Perrin

History: In 1827, Robert Brown observed that pollen suspended in water seemingly performed a random walk. Eighty years later, Einstein proposed a statistical description for this "Brownian motion" and an explanation: Water molecules jiggle and knock the pollen in small and seemingly random directions. This model was soon confirmed in experiments of Perrin.

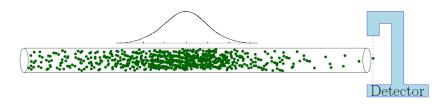
Questions for today:

- Are there senses in which Brownian motion fails to model such a physical system?
- Are there signatures of the underlying random media which can be recovered by studying the motion of particles?

I will argue that diffusion in random media has very different extreme value statistics / large deviations.



Diffusion in a random media



Many small particles moving in a viscous media:

- ► How does the bulk particle density evolve?
- ▶ What about the right-most particle?

Two models for such systems:

- ► Independent random walks.
- ▶ Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE drastically changes extreme value scalings / statistics to KPZ type. Case 1: Independent (simple) random walk X_t on \mathbb{Z}

$$\mathsf{P}(X_{t+1}=X_t+1)=\frac{\alpha}{\alpha+\beta}, \qquad \mathsf{P}(X_{t+1}=X_t-1)=\frac{\beta}{\alpha+\beta}.$$

Law of Large Numbers (LLN):

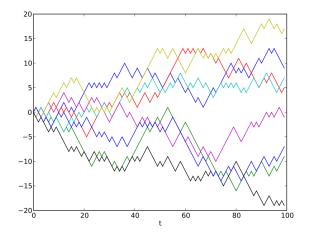
$$\frac{X_t}{t} \longrightarrow \frac{\alpha - \beta}{\alpha + \beta}.$$

▶ **Central Limit Theorem (CLT)**: For $\sigma = \frac{2\sqrt{\alpha\beta}}{\alpha+\beta}$, $\mathcal{N}(0,1)$ Gaussian,

$$\frac{X_t - t\frac{\alpha - \beta}{\alpha + \beta}}{\sigma \sqrt{t}} \quad \Longrightarrow \quad \mathcal{N}(0, 1).$$

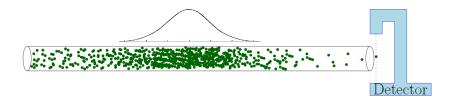
► Large Deviation Principle (LDP): For $\frac{\alpha-\beta}{\alpha+\beta} < x < 1$, with $I(x) = \sup_{z \in \mathbb{R}} (zx - \lambda(z))$ and $\lambda(z) := \log \left(\mathbb{E}[e^{zX_1}] \right)$, $\frac{\log \left(\mathbb{P}(X_t > xt) \right)}{t} \longrightarrow -I(x)$, e.g. For $\alpha = \beta$, $I(x) = \frac{1}{2} \left((1+x)\log(1+x) + (1-x)\log(1-x) \right)$.

Extreme value statistics for random walks



 $\mathsf{P}\big(\max(X_t^{(1)}, \dots, X_t^{(N)}) \le x\big) = \mathsf{P}(X_t \le x)^N = \big(1 - \mathsf{P}(X_t > x)\big)^N$

Extreme value statistics for random walks



- How does the bulk particle density evolve?
- ▶ What about the right-most particle?

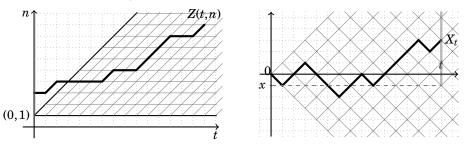
Let $X_t^{(1)}, \ldots X_t^{(N)}$ be *N*-independent copies of X_t . Then we have:

- ▶ Centered bulk density solves heat equation and is Gaussian.
- ▶ If $N = e^{ct}$ and $c < c_{\text{saturated}}$, then for $c_1 = I^{-1}(c)$ (and similarly explicit constants c_2, c_3)

$$\max_{i=1,\dots,N} \{X_t^{(i)}\} \approx c_1 \cdot t + c_2 \cdot \log(t) + c_3 \cdot \text{Gumbel}$$

where Gumbel has distribution function $e^{-e^{-x}}$.

Deriving exact formulas via a recurrence



Recurrence formula

Define a function Z(t,n) via the recursion (with $Z(0,n) = \mathbf{1}_{n \ge 1}$)

$$Z(t,n) = \frac{\alpha}{\alpha+\beta} \cdot Z(t-1,n) + \frac{\beta}{\alpha+\beta} \cdot Z(t-1,n-1).$$

We have equality of

$$Z(t,n) = \mathsf{P}(X_t \ge t - 2n + 2).$$

This recursion is easily solved in terms of Binomial coefficients.

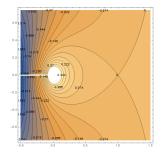
Asymptotics via contour integrals Binomial coefficients can be written in terms of contour integrals:

$$\binom{n}{k} = \frac{1}{2\pi i} \oint_{|z|<1} (1+z)^n z^{-k} \frac{dz}{z}$$

Can study various asymptotic regimes for n and k.

$$\binom{n}{n/2} = \frac{1}{2\pi i} \oint_{|z|<1} e^{nf(z)} \frac{dz}{z}, \quad \text{with} \quad f(z) = \log(1+z) - \frac{1}{2}\log z.$$

Steepest descent analysis expands around f(z)'s critical point z = 1.



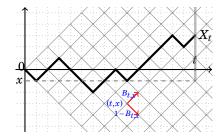
Case 2: Random walks in random environment (RWRE)

Let $B = (B_{t,x})_{t,x}$ be independent random variables with a common fixed distribution on [0, 1]. Call \mathbb{P} the probability measure on B.

For a given instance of *B* let P_B denote the probability measure on simple random walks on \mathbb{Z} with left / right jump probabilities

$$\mathsf{P}_B(X_{t+1} = x + 1 \mid X_t = x) = B_{t,x}, \qquad \mathsf{P}_B(X_{t+1} = x - 1 \mid X_t = x) = 1 - B_{t,x}.$$

Consider independent P_B -distributed copies $X_t^{(1)}, \ldots, X_t^{(N)}$ of X_t .



CLT and LDP

Theorem (Rassoul-Agha and Seppäläinen, 2004)

Assume $\mathbb{P}(0 < B_{t,x} < 1) > 0$ and let $v = 2\mathbb{E}[B_{t,x}] - 1$ and $\sigma = \sqrt{1 - v^2}$. Then for \mathbb{P} -almost every choice of jump rates,

$$\frac{X_{\lfloor nt \rfloor} - \lfloor nt \rfloor v}{\sigma \sqrt{n}} \xrightarrow[n \to \infty]{\text{ as a process in } t} BM(t).$$

Theorem (Rassoul-Agha, Seppäläinen and Yilmaz, 2013) Assume $\mathbb{E}[(\log(B_{t,x}))^3] < \infty$. Then $\lambda(z) := \lim_{t\to\infty} \frac{1}{t} \log(\mathsf{E}_B[e^{zX_t}])$ exists and is constant \mathbb{P} -almost surely. For I(x) the Legendre transform of $\lambda(z)$

$$\frac{\log \left(\mathsf{P}_B(X_t > xt)\right)}{t} \quad \xrightarrow{\mathbb{P}-almost \ surely}{t \to \infty} \quad -I(x).$$

- ▶ Finding an explicit formula for $\lambda(z)$ or I(x) is generally not possible.
- ▶ Random rate $I(x) \ge$ deterministic rate I(x) (by Jensen's inequality).
- ▶ Lower order fluctuations of $P_B(X_t > xt)$ are lost in this result.

Integrable probability to the rescue

In a lab, how could we distinguish deterministic or random media?

- ► × Extreme value **speed** depends non-universally on the underlying random walk model or media.
- ► ✓ Extreme value **fluctuations** have different behaviors than in the deterministic and random cases. (See below!)

Definition

The **Beta RWRE** has $Beta(\alpha, \beta)$ -distributed jump probabilities $B_{t,x}$:

$$\mathbb{P}\big(B_{t,x} \in [y, y + \mathrm{d}y]\big) = y^{\alpha - 1} (1 - y)^{\beta - 1} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \mathrm{d}y.$$

If $\alpha = \beta = 1$, we recover the uniform distribution on [0, 1].

Aim

We will show how to compute the distribution of $P_B(X_t \ge x)$ exactly.

Large deviations and cube-root fluctuations

For simplicity lets take $\alpha = \beta = 1$ (i.e. $B_{t,x}$ uniform on [0, 1]).

Theorem (Barraquand-C '15)

For $B_{t,x}$ uniform on [0,1], the large deviation principle rate function is

$$\lim_{t\to\infty} -\frac{\log\left(\mathsf{P}_B(X_t > xt)\right)}{t} = I(x) = 1 - \sqrt{1 - x^2}.$$

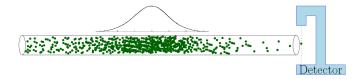
Moreover, as $t \to \infty$, we have convergence in distribution of

$$\frac{\log \left(\mathsf{P}_B(X_t > xt)\right) + I(x)t}{\sigma(x) \cdot t^{1/3}} \quad \Longrightarrow \quad \mathscr{L}_{GUE},$$

where \mathscr{L}_{GUE} is the GUE Tracy-Widom distribution, and $\sigma(x)^3 = \frac{2I(x)^2}{1-I(x)}$.

Cube-root \mathscr{L}_{GUE} fluctuations are a hallmark of random matrix theory and the Kardar-Parisi-Zhang universality class.

Extreme value fluctuations



Corollary (Barraquand-C '15)

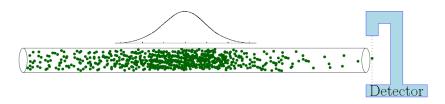
For $B_{t,x}$ uniform on [0,1], let $X_t^{(1)}, \ldots, X_t^{(N)}$ be random walks drawn independently according to P_B . For $N = e^{ct}$ with $c \in (0, 1)$,

$$rac{\max_{i=1}^{N}\left\{X_{t}^{(i)}
ight\}-t\sqrt{1-(1-c)^{2}}}{d(c)\cdot t^{1/3}} \ \ \, \Longrightarrow \ \ \, \mathscr{L}_{GUE}$$

Compare $\max_{r(andom \text{ probabilities})}$ to $\max_{d(eterministic \text{ probabilities})}$:

- ▶ max_r has a slower speed than max_d (the random $B_{t,x}$ routes many walkers along the same path and hence decreases entropy).
- max_r fluctuates $O(t^{1/3})$ versus O(1) for max_d.

Diffusion in a (random) media



Many small particles moving in a viscous media:

- ► How does the bulk particle density evolve?
- ▶ What about the right-most particle?

Two models for such systems:

- ► Independent random walks.
- ▶ Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE drastically changes extreme value scalings / statistics to KPZ type.

Walking across a city (the $\alpha, \beta \rightarrow 0$ limit)

- m ► (0, 0)n
 - ► For every edge, let E_e be i.i.d. exp(1) and for each vertex $\xi_{i,j}$ i.i.d. Bernoulli(1/2).
 - ► Define the passage time of an edge

$$t_e = \begin{cases} \xi_{i,j} E_e \text{ if vertical } (i,j) \to (i,j+1), \\ (1-\xi_{i,j}) E_e \text{ if horizontal } (i,j) \to (i+1,j). \end{cases}$$

• Define the first passage-time T(n,m) from (0,0) to the half-line $D_{n,m}$ by

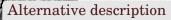
$$T(n,m) = \min_{\pi:(0,0)\to D_{n,m}} \sum_{e\in\pi} t_e.$$

Theorem

For any $\kappa > 1$, there are explicit functions $\rho(\kappa)$ and $\tau(\kappa)$ such that

$$rac{\Gamma(n,\kappa n)- au(\kappa)n}{
ho(\kappa)n^{1/3}} \ \ \, \Longrightarrow \ \ \, \mathcal{L}_{GUE}.$$

Dynamical construction of percolation cluster



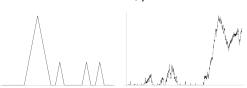
- At time 0, only one random walk trajectory (in black).
- From each point in the cluster, at exponential rate one we add the trace of a new random walk (until it rejoins the cluster).
- Colors represent when a point joined the cluster.

Barraquand-Rychnovsky '18

Prove a limit theorem for the shape of the percolation cone and that its fluctuations have a 4/9 exponent!

Sticky Brownian motion (another $\alpha, \beta \rightarrow 0$ limit)

Brownian motion sticky at the origin (Feller '52): Random walk away from origin; at origin, escape with probability $n^{-1/2}$



A pair of sticky Brownian motions has difference sticky at the origin.



N-particle sticky Brownian motion: Diffusive limit of *N* particles in the same random environment, when the $B_{t,x}$ are close to 0 or 1.

Need to specify rate for clusters of $k + \ell$ particles to "split" into separate clusters of size k and ℓ . Rate for limit of Beta RWRE is $\frac{k+\ell}{k\ell}$. Barraquand-Rychnovsky '19 prove KPZ extreme value results for this model.

KPZ equation limit

Theorem (C-Gu '16)

Consider the RWRE with $B_{t,x} = \frac{1}{2}(1 + e^{1/2}w_{t,x})$ for i.i.d. bounded, mean zero $w_{t,x}$. Fix any velocity $v \in (0, 1)$, and any t > 0 and $x \in R$. Then

$$\frac{\epsilon^{-1}}{2}e^{\epsilon^{-2}tI(v)+\epsilon^{-1}xJ(v)}\mathsf{P}_B(X_{\epsilon^{-2}t}=\epsilon^{-2}vt+\epsilon^{-1}x)\Longrightarrow \mathbf{U}(\mathbf{t},\mathbf{x})$$

where U solves the multiplicative stochastic equation equation

$$\partial_{\mathbf{t}} \mathbf{U}(\mathbf{t}, \mathbf{x}) = \frac{1 - v^2}{4} \cdot \partial_{\mathbf{x}\mathbf{x}} \mathbf{U}(\mathbf{t}, \mathbf{x}) + v^2 \mathbb{E}[w^2] \cdot \mathbf{U}(\mathbf{t}, \mathbf{x}) \xi(\mathbf{t}, \mathbf{x})$$

with space time white noise ξ and initial data $\mathbf{U}(\mathbf{0}, \mathbf{x}) = \delta_{x=0}$. Here

$$I(v) = \frac{1-v}{2} \log\left(\frac{1-v}{1+v}\right) + \log(1+v), \quad and \qquad J(v) = \frac{1}{2} \log\left(\frac{1+v}{1-v}\right).$$

The logarithm of the SHE solves the KPZ equation!

A first step into integrable probability

The following result shows that this model is exactly solvable:

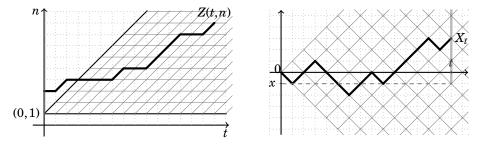
Proposition (Barraquand-C '15) For $t, n, k \ge 1$,

$$\mathbb{E}\Big[\mathsf{P}_B\big(X_t \ge t - 2n + 2\big)^k\Big] = \\ \frac{1}{(2i\pi)^k} \int \cdots \int \prod_{1 \le A < B \le k} \frac{z_A - z_B}{z_A - z_B - 1} \prod_{j=1}^k \Big(\frac{\alpha + \beta + z_j}{z_j}\Big)^n \Big(\frac{\alpha + z_j}{\alpha + \beta + z_j}\Big)^t \frac{\mathrm{d}z_j}{\alpha + \beta + z_j}$$

where the contour for z_k is a small circle around the origin, and the contour for z_j contains the contour for $z_{j+1} + 1$ for all j = 1, ..., k - 1, as well as the origin, but all contours exclude $-\alpha - \beta$.

Since $\mathsf{P}_B \in [0, 1]$, its moments uniquely identify its distribution. Combining these into a formula for $\mathbb{E}\left[e^{u\mathsf{P}_B(X_t \ge x)}\right]$ we may extract asymptotics.

Random recurrence



Recurrence formula

Define a function Z(t,n) via the recursion (with $Z(0,n) = \mathbf{1}_{n \ge 1}$)

$$Z(t,n) = B_{t,n} \cdot Z(t-1,n) + (1-B_{t,n}) \cdot Z(t-1,n-1).$$

For fixed t, n, we have equality in law of

$$Z(t,n) = \mathsf{P}_B(X_t \ge t - 2n + 2).$$

Recursion for moments

$$Z(t,n) = B_{t,n} \cdot Z(t-1,n) + (1-B_{t,n}) \cdot Z(t-1,n-1).$$

We wish to compute formulas for moments of Z(t, n), and more generally

$$u(t,\vec{n}) := \mathbb{E}\left[Z(t,n_1)Z(t,n_2)\cdots Z(t,n_k)\right].$$

When k = 1, u satisfies $u(t+1,n) = \frac{\alpha}{\alpha+\beta} \cdot u(t,n) + \frac{\beta}{\alpha+\beta} \cdot u(t,n-1)$.

True evolution equation for general k

For $\vec{n} = (n, \ldots, n)$

$$\begin{split} u(t+1,\vec{n}) &= \sum_{j=0}^{k} {k \choose j} \mathbb{E} \left[B^{j} (1-B)^{k-j} Z(t,n)^{j} Z(t,n-1)^{k-j} \right] \\ &= \sum_{j=0}^{k} {k \choose j} \frac{(\alpha)_{j} (\beta)_{k-j}}{(\alpha+\beta)_{k}} u(t,(n,\dots,n,n-1,\dots,n-1)) \end{split}$$

where *B* is $Beta(\alpha, \beta)$ distributed and $(a)_k = a(a+1)...(a+k-1)$.

Non-commutative binomial identity

For general $\vec{n} \in \mathbb{W}^k = \{ \vec{n} \in \mathbb{Z}^k : n_1 \ge n_2 \ge \cdots \ge n_k \}$, we find that

 $u(t+1,\vec{n}) = \mathscr{L}u(t,\vec{n}),$

where \mathscr{L} acts on functions from $\mathbb{W}^k \to \mathbb{C}$ as the direct sum of the previous action on each cluster of equal coordinates in \vec{n} .

Lemma (Rosengren '00, Povolotsky '13)

Let X, Y generate an associative algebra such that

$$XX + (\alpha + \beta - 1)XY + YY - (\alpha + \beta + 1)YX = 0.$$

Then we have the following non-commutative binomial identity:

$$\left(\frac{\alpha}{\alpha+\beta}X+\frac{\beta}{\alpha+\beta}Y\right)^k=\sum_{j=0}^k\binom{k}{j}\frac{(\alpha)_j(\beta)_{k-j}}{(\alpha+\beta)_k}X^jY^{k-j}.$$

Factorizing \mathcal{L}

Let $\tau^{(i)}$ act on a function $f(\vec{n})$ by changing n_i to $n_i - 1$. Define the operator L on functions $f: Z^k \to \mathbb{C}$ by $(X \mapsto 1, Y \mapsto \tau)$

$$\mathsf{L} = \prod_{i=1}^{k} \left(\frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} \tau^{(i)} \right)$$

This equals \mathscr{L} for \vec{n} strictly in \mathbb{W}^k .

Define the boundary condition

$$B^{(i,i+1)} = 1 + (\alpha + \beta - 1)\tau^{(i+1)} + \tau^{(i)}\tau^{(i+1)} - (1 + \alpha + \beta)\tau^{(i)}.$$

Corollary

Any function $u: \mathbb{Z}^k \to \mathbb{C}$ which satisfies (for all $1 \le i \le k-1$)

$$B^{(i,i+1)}u(\vec{n})\Big|_{n_i=n_{i+1}}=0$$

has, for all $\vec{n} \in \mathbb{W}^k$,

 $\mathsf{L}u(\vec{n}) = \mathscr{L}u(\vec{n}).$

Moment formula

It is now easy to check the following formula.

Proposition (Barraquand-C '15) For $n_1 \ge n_2 \ge \dots \ge n_k \ge 1$, $\mathbb{E}\Big[Z(t,n_1)\cdots Z(t,n_k)\Big] = \frac{1}{(2i\pi)^k} \int \dots \int \prod_{\substack{1 \le A < B \le k}} \frac{z_A - z_B}{z_A - z_B - 1} \prod_{j=1}^k \left(\frac{\alpha + \beta + z_j}{z_j}\right)^{n_j} \left(\frac{\alpha + z_j}{\alpha + \beta + z_j}\right)^t \underbrace{\frac{dz_j}{\alpha + \beta + z_j}}_{solution of u(t+1) = Lu(t)}$

where the contour for z_k is a small circle around the origin, and the contour for z_j contains the contour for $z_{j+1} + 1$ for all j = 1, ..., k - 1, as well as the origin, but all contours exclude $-\alpha - \beta$.

Stochastic quantum integrable systems

Beta RWRE: moments solved a closed evolution equation which could be "factorized" and solved explicitly via contour integrals.

KPZ equation / **SHE**: moments solve the δ -Bose gas which is explicitly diagonalizable via Bethe ansatz (see, e.g. Kardar '87).

These are special cases of a general theory of *stochastic vertex models* which come from the theory of quantum integrable systems.

- ▶ Model \rightsquigarrow transfer matrix for representations of $U_q(\widehat{\mathfrak{sl}_2}) R$ matrix.
- $\blacktriangleright\,$ Moment evolution equation \rightsquigarrow Markov self duality.
- ► Moment formulas ~→ Bethe ansatz eigenfunctions

$$\psi_{\vec{n}}(\vec{z};t,v) := \sum_{\sigma \in S_k} \prod_{1 \le a < b \le k} \frac{z_{\sigma(b)} - tz_{\sigma(a)}}{z_{\sigma(b)} - z_{\sigma(a)}} \prod_{j=1}^k \left(\frac{1 - vz_{\sigma(j)}}{1 - z_{\sigma(j)}}\right)^{n_j}$$

and Plancherel theory (i.e., completeness and orthogonality).

Summary

Physics goal: Study the effect of space-time random jump probabilities on the behavior of random walks in one dimension.

- ▶ Bulk behaviors are unchanged from deterministic case.
- Extreme value statistics show different scaling and statistics (connected to Kardar-Parisi-Zhang universality class).
- ► This is only demonstrated for special Beta distribution case.

Math goal: Use quantum integrable system tools in probability.

- Relate to a random recurrence relation whose moments solve a Bethe ansatz diagonalizable evolution equation.
- Utilize moment formulas to compute the distribution (and subsequently perform asymptotics).
- ► Connect to theory of stochastic vertex models.

Tomorrow we will further study stochastic vertex models.