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From pollen to Perrin

History: In 1827, Robert Brown observed that
pollen suspended in water seemingly performed a
random walk. Eighty years later, Einstein proposed
a statistical description for this “Brownian motion”
and an explanation: Water molecules jiggle and
knock the pollen in small and seemingly random di-
rections. This model was soon confirmed in experi-
ments of Perrin.

Questions for today:
Ï Are there senses in which Brownian motion

fails to model such a physical system?

Ï Are there signatures of the underlying random
media which can be recovered by studying the
motion of particles?

I will argue that diffusion in random media has very
different extreme value statistics / large deviations.
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Diffusion in a random media

Many small particles moving in a viscous media:

Ï How does the bulk particle density evolve?

Ï What about the right-most particle?

Two models for such systems:

Ï Independent random walks.

Ï Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE dras-
tically changes extreme value scalings / statistics to KPZ type.



Case 1: Independent (simple) random walk Xt on Z

P
(
Xt+1 =Xt +1

)= α

α+β , P
(
Xt+1 =Xt −1

)= β

α+β .

Ï Law of Large Numbers (LLN):
Xt

t
−→ α−β

α+β .

Ï Central Limit Theorem (CLT): For σ= 2
p
αβ

α+β , N (0,1) Gaussian,

Xt − tα−β
α+β

σ
p

t
=⇒ N (0,1).

Ï Large Deviation Principle (LDP): For α−β
α+β < x< 1, with

I(x)= supz∈R
(
zx−λ(z)

)
and λ(z) := log

(
E
[
ezX1

])
,

log
(
P

(
Xt > xt

))
t

−→−I(x),

e.g. For α=β, I(x)= 1
2

(
(1+x) log(1+x)+ (1−x) log(1−x)

)
.



Extreme value statistics for random walks

P
(
max(X(1)

t , . . . ,X(N)
t )≤ x

)=P(Xt ≤ x)N = (
1−P(Xt > x)

)N



Extreme value statistics for random walks

Ï How does the bulk particle density evolve?
Ï What about the right-most particle?

Let X(1)
t , . . .X(N)

t be N-independent copies of Xt. Then we have:

Ï Centered bulk density solves heat equation and is Gaussian.

Ï If N = ect and c< csaturated, then for c1 = I−1(c) (and similarly explicit constants c2 ,c3 )

max
i=1,...,N

{
X(i)

t
}≈ c1 · t+c2 · log(t)+c3 ·Gumbel

where Gumbel has distribution function e−e−x
.



Deriving exact formulas via a recurrence

t

n Z(t,n)

(0,1)

0 t

Xt

x

Recurrence formula
Define a function Z(t,n) via the recursion (with Z(0,n)= 1n≥1)

Z(t,n)= α

α+β ·Z(t−1,n)+ β

α+β ·Z(t−1,n−1).

We have equality of

Z(t,n)=P(
Xt Ê t−2n+2

)
.

This recursion is easily solved in terms of Binomial coefficients.



Asymptotics via contour integrals
Binomial coefficients can be written in terms of contour integrals:(

n
k

)
= 1

2πi

∮
|z|<1

(1+z)nz−k dz
z

.

Can study various asymptotic regimes for n and k.(
n

n/2

)
= 1

2πi

∮
|z|<1

enf (z) dz
z

, with f (z)= log(1+z)− 1
2 logz.

Steepest descent analysis expands around f (z)’s critical point z= 1.



Case 2: Random walks in random environment (RWRE)

Let B = (Bt,x)t,x be independent random variables with a common fixed
distribution on [0,1]. Call P the probability measure on B.

For a given instance of B let PB denote the probability measure on sim-
ple random walks on Z with left / right jump probabilities

PB
(
Xt+1 = x+1

∣∣ Xt = x
)=Bt,x, PB

(
Xt+1 = x−1

∣∣ Xt = x
)= 1−Bt,x.

Consider independent PB-distributed copies X(1)
t , . . . ,X(N)

t of Xt.

0

(t,x)
Bt,x

1−Bt,x

t

Xt

x



CLT and LDP
Theorem (Rassoul-Agha and Seppäläinen, 2004)

Assume P
(
0<Bt,x < 1

)> 0 and let v= 2E
[
Bt,x

]−1 and σ=
p

1−v2.
Then for P-almost every choice of jump rates,

Xbntc−bntcv
σ
p

n
as a process in t−−−−−−−−−−−→

n→∞ BM(t).

Theorem (Rassoul-Agha, Seppäläinen and Yilmaz, 2013)

Assume E
[(

log(Bt,x)
)3]<∞. Then λ(z) := limt→∞ 1

t log
(
EB

[
ezXt

])
exists

and is constant P-almost surely. For I(x) the Legendre transform of λ(z)

log
(
PB

(
Xt > xt

))
t

P−almost surely−−−−−−−−−−−→
t→∞ −I(x).

Ï Finding an explicit formula for λ(z) or I(x) is generally not possible.

Ï Random rate I(x) ≥ deterministic rate I(x) (by Jensen’s inequality).

Ï Lower order fluctuations of PB
(
Xt > xt

)
are lost in this result.



Integrable probability to the rescue

In a lab, how could we distinguish deterministic or random media?

Ï × Extreme value speed depends non-universally on the
underlying random walk model or media.

Ï X Extreme value fluctuations have different behaviors than in
the deterministic and random cases. (See below!)

Definition
The Beta RWRE has Beta(α,β)-distributed jump probabilities Bt,x:

P
(
Bt,x ∈ [y,y+dy]

)= yα−1(1−y)β−1 Γ(α+β)
Γ(α)Γ(β)

dy.

If α=β= 1, we recover the uniform distribution on [0,1].

Aim
We will show how to compute the distribution of PB(Xt ≥ x) exactly.



Large deviations and cube-root fluctuations

For simplicity lets take α=β= 1 (i.e. Bt,x uniform on [0,1]).

Theorem (Barraquand-C ’15)
For Bt,x uniform on [0,1], the large deviation principle rate function is

lim
t→∞−

log
(
PB

(
Xt > xt

))
t

= I(x)= 1−
√

1−x2.

Moreover, as t→∞, we have convergence in distribution of

log
(
PB

(
Xt > xt

))+ I(x)t

σ(x) · t1/3 =⇒ LGUE,

where LGUE is the GUE Tracy-Widom distribution, and σ(x)3 = 2I(x)2
1−I(x) .

Cube-root LGUE fluctuations are a hallmark of random matrix theory
and the Kardar-Parisi-Zhang universality class.



Extreme value fluctuations

Corollary (Barraquand-C ’15)

For Bt,x uniform on [0,1], let X(1)
t , . . . ,X(N)

t be random walks drawn
independently according to PB. For N = ect with c ∈ (0,1),

maxN
i=1

{
X(i)

t

}
− t

√
1− (1−c)2

d(c) · t1/3 =⇒ LGUE.

Compare maxr(andom probabilities) to maxd(eterministic probabilities):

Ï maxr has a slower speed than maxd (the random Bt,x routes many
walkers along the same path and hence decreases entropy).

Ï maxr fluctuates O(t1/3) versus O(1) for maxd.



Diffusion in a (random) media

Many small particles moving in a viscous media:

Ï How does the bulk particle density evolve?

Ï What about the right-most particle?

Two models for such systems:

Ï Independent random walks.

Ï Independent random walks in a random environment (RWRE).

Punchline: Both models have same bulk behavior, but the RWRE dras-
tically changes extreme value scalings / statistics to KPZ type.



Walking across a city (the α,β→ 0 limit)

n

m
Dn,m

(0,0)

Ï For every edge, let Ee be i.i.d. exp(1) and
for each vertex ξi,j i.i.d. Bernoulli(1/2).

Ï Define the passage time of an edge

te =
{
ξi,jEe if vertical (i, j)→ (i, j+1),
(1−ξi,j)Ee if horizontal (i, j)→ (i+1, j).

Ï Define the first passage-time T(n,m) from
(0,0) to the half-line Dn,m by

T(n,m)= min
π:(0,0)→Dn,m

∑
e∈π

te.

Theorem
For any κ> 1, there are explicit functions ρ(κ) and τ(κ) such that

T(n,κn)−τ(κ)n
ρ(κ)n1/3 =⇒ LGUE.



Dynamical construction of percolation cluster

Alternative description
Ï At time 0, only one random

walk trajectory (in black).

Ï From each point in the cluster,
at exponential rate one we add
the trace of a new random walk
(until it rejoins the cluster).

Ï Colors represent when a point
joined the cluster.

Barraquand-Rychnovsky ’18
Prove a limit theorem for the shape
of the percolation cone and that its
fluctuations have a 4/9 exponent!



Sticky Brownian motion (another α,β→ 0 limit)
Brownian motion sticky
at the origin (Feller ’52):
Random walk away from
origin; at origin, escape
with probability n−1/2

A pair of sticky Brownian motions has difference sticky at the origin.

N-particle sticky Brownian motion: Diffusive limit of N particles in
the same random environment, when the Bt,x are close to 0 or 1.

Need to specify rate for clusters of k+` particles to “split” into separate
clusters of size k and `. Rate for limit of Beta RWRE is k+`

k` . Barraquand-
Rychnovsky ’19 prove KPZ extreme value results for this model.



KPZ equation limit

Theorem (C-Gu ’16)
Consider the RWRE with Bt,x = 1

2 (1+ε1/2wt,x) for i.i.d. bounded, mean
zero wt,x. Fix any velocity v ∈ (0,1), and any t> 0 and x ∈R. Then

ε−1

2
eε

−2tI(v)+ε−1xJ(v)
PB

(
Xε−2t = ε−2vt+ε−1x

)=⇒U(t,x),

where U solves the multiplicative stochastic equation equation

∂tU(t,x)= 1−v2

4
·∂xxU(t,x)+v2E[w2] ·U(t,x)ξ(t,x)

with space time white noise ξ and initial data U(0,x)= δx=0. Here

I(v)= 1−v
2

log
(1−v
1+v

)
+ log(1+v), and J(v)= 1

2
log

(1+v
1−v

)
.

The logarithm of the SHE solves the KPZ equation!



A first step into integrable probability

The following result shows that this model is exactly solvable:

Proposition (Barraquand-C ’15)
For t,n,kÊ 1,

E
[
PB

(
Xt Ê t−2n+2

)k
]
=

1
(2iπ)k

∫
· · ·

∫ ∏
1ÉA<BÉk

zA −zB

zA −zB −1

k∏
j=1

(
α+β+zj

zj

)n (
α+zj

α+β+zj

)t dzj

α+β+zj

where the contour for zk is a small circle around the origin, and the
contour for zj contains the contour for zj+1 +1 for all j= 1, . . . ,k−1, as
well as the origin, but all contours exclude −α−β.

Since PB ∈ [0,1], its moments uniquely identify its distribution. Combin-
ing these into a formula for E

[
euPB(Xt≥x)

]
we may extract asymptotics.



Random recurrence

t

n Z(t,n)

(0,1)

0 t

Xt

x

Recurrence formula
Define a function Z(t,n) via the recursion (with Z(0,n)= 1n≥1)

Z(t,n)=Bt,n ·Z(t−1,n)+ (1−Bt,n) ·Z(t−1,n−1).

For fixed t,n, we have equality in law of

Z(t,n)=PB
(
Xt Ê t−2n+2

)
.



Recursion for moments

Z(t,n)=Bt,n ·Z(t−1,n)+ (1−Bt,n) ·Z(t−1,n−1).

We wish to compute formulas for moments of Z(t,n), and more generally

u(t,~n) := E[Z(t,n1)Z(t,n2) · · · Z(t,nk)
]
.

When k= 1, u satisfies u(t+1,n)= α
α+β ·u(t,n)+ β

α+β ·u(t,n−1).

True evolution equation for general k
For~n= (n, . . . ,n)

u(t+1,~n)=
k∑

j=0

(
k
j

)
E
[

Bj (1−B)k−j Z(t,n)j Z(t,n−1)k−j
]

=
k∑

j=0

(
k
j

)
(α)j(β)k−j

(α+β)k
u
(
t, (n, . . . ,n,n−1, . . . ,n−1)

)
.

where B is Beta(α,β) distributed and (a)k = a(a+1) . . . (a+k−1).



Non-commutative binomial identity

For general~n ∈Wk = {
~n ∈Zk : n1 Ê n2 Ê ·· · Ê nk

}
, we find that

u(t+1,~n)=L u(t,~n),

where L acts on functions fromWk →C as the direct sum of the previous
action on each cluster of equal coordinates in~n.

Lemma (Rosengren ’00, Povolotsky ’13)
Let X,Y generate an associative algebra such that

XX + (α+β−1)XY +YY − (α+β+1)YX = 0.

Then we have the following non-commutative binomial identity:(
α

α+βX + β

α+βY
)k

=
k∑

j=0

(
k
j

)
(α)j(β)k−j

(α+β)k
X jYk−j.



Factorizing L

Let τ(i) act on a function f (~n) by changing ni to ni −1.
Define the operator L on functions f : Zk →C by (X 7→ 1, Y 7→ τ)

L=
k∏

i=1

(
α

α+β + β

α+βτ
(i)

)

This equals L for~n strictly in Wk.

Define the boundary condition

B(i,i+1) = 1+ (α+β−1)τ(i+1) +τ(i)τ(i+1) − (1+α+β)τ(i).

Corollary
Any function u : Zk →C which satisfies (for all 1≤ i≤ k−1)

B(i,i+1)u(~n)
∣∣∣
ni=ni+1

= 0

has, for all~n ∈Wk,
Lu(~n)=L u(~n).



Moment formula

It is now easy to check the following formula.

Proposition (Barraquand-C ’15)
For n1 Ê n2 Ê ·· · Ê nk Ê 1,

E
[

Z(t,n1) · · · Z(t,nk)
]
=

1
(2iπ)k

∫
· · ·

∫ ∏
1ÉA<BÉk

zA −zB

zA −zB −1︸ ︷︷ ︸
boundary condition

k∏
j=1

(
α+β+zj

zj

)nj ( α+zj

α+β+zj

)t

︸ ︷︷ ︸
solution of u(t+1)=Lu(t)

dzj

α+β+zj︸ ︷︷ ︸
initial condition

where the contour for zk is a small circle around the origin, and the
contour for zj contains the contour for zj+1 +1 for all j= 1, . . . ,k−1, as
well as the origin, but all contours exclude −α−β.



Stochastic quantum integrable systems

Beta RWRE: moments solved a closed evolution equation which could
be “factorized” and solved explicitly via contour integrals.

KPZ equation / SHE: moments solve the δ-Bose gas which is explicitly
diagonalizable via Bethe ansatz (see, e.g. Kardar ’87).

These are special cases of a general theory of stochastic vertex models
which come from the theory of quantum integrable systems.

Ï Model transfer matrix for representations of Uq(ŝl2) R matrix.

Ï Moment evolution equation Markov self duality.

Ï Moment formulas Bethe ansatz eigenfunctions

ψ~n(~z;t,ν) := ∑
σ∈Sk

∏
1≤a<b≤k

zσ(b) − tzσ(a)

zσ(b) −zσ(a)

k∏
j=1

(1−νzσ(j)

1−zσ(j)

)nj

and Plancherel theory (i.e., completeness and orthogonality).



Summary

Physics goal: Study the effect of space-time random jump probabilities
on the behavior of random walks in one dimension.

Ï Bulk behaviors are unchanged from deterministic case.

Ï Extreme value statistics show different scaling and statistics
(connected to Kardar-Parisi-Zhang universality class).

Ï This is only demonstrated for special Beta distribution case.

Math goal: Use quantum integrable system tools in probability.

Ï Relate to a random recurrence relation whose moments solve a
Bethe ansatz diagonalizable evolution equation.

Ï Utilize moment formulas to compute the distribution (and
subsequently perform asymptotics).

Ï Connect to theory of stochastic vertex models.

Tomorrow we will further study stochastic vertex models.


