Scaling limits for the exclusion process with a slow site

L. Zhao¹

Joint work with T. Franco², P. Gonçalves³ and R. Marinho³

¹Peking University, China
²Universidade Federal da Bahia, Brazil
³Instituto Superior Técnico, Portugal

Stochastic Analysis, Random Fields and Integrable Probability Kyushu University, Fukuoka, Japan Aug. 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SSEP with a Slow Site

Let η_t be the process with time speeded up by n^2 . The emperical measure is defined by

$$\pi_t^n(du) := \frac{1}{n} \sum \eta_t(x) \delta_{x/n}(du).$$
(1)

The process has a family of reversible measures $\nu_p, p \in [0, 1]$. Density field is defined by

$$\mathcal{Y}_t^n = \frac{1}{\sqrt{n}} \sum \left(\eta_t(x) - E_p[\eta_t(x)] \right) \delta_{x/n}.$$
 (2)

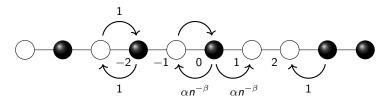


Figure: At most one particle per site. A particle at the origin jumps at a lower rate $\alpha n^{-\beta}$.

Hydrodynamics and Equilibrium Fluctuations

On \mathbb{T}_n , Law of Large Numbers, FGMZ, 2019+

If initially, $\pi_0^n(du) \to \rho_0(u)du$ in probability, then for any t > 0, $\pi_t^n(du) \to \rho(t, u)du$ in probability, where $\rho(t, u)$ is the heat equation with periodic conditions if $0 \le \beta < 1$, with Robin boundary conditions if $\beta = 1$, and with Neumann boundary conditions if $\beta > 1$.

On \mathbb{Z} , Central Limit Theorems, FGMZ, 2019+

Suppose that the process starts from ν_p . Then $\{\mathcal{Y}_t^n, 0 \le t \le T\}$ converges to the generalized Ornstein-Uhlenbeck process with the corresponding boundary conditions depending on whether $0 \le \beta < 1$, $\beta = 1$ or $\beta > 1$.

Remark

The case $\beta>1$ was proved ealier by the first two authors and G. M. Shütz in 2016.