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Yang Baxter Field and Stochastic Vertex Models
I We discuss a random algorithm whose output is a random
"field"of Young Diagrams λ = {λ(x,y) | x, y ∈ Z≥0}.
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I The algorithm consists in a sequence of local moves defined
through a "bijectivization"of the Yang-Baxter Equation
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I A bijectivization [Bufetov-Petrov ’17] is a way to assign
transition probabilities

P(ai → bj).
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Yang Baxter Field and Stochastic Vertex Models
I Random fields of Young diagrams are popular objects in
Integrable Probability because they allow the description of
random tilings, stochastic interacting particle systems, stochastic
vertex models, etc.

I In our case, the random field inherits its integrability from the
Yang-Baxter Equation. The joint probability distribution along
down-right paths π assume the form
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×
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i : xi+1=xi+1Gλ(xi+1,yi+1)/λ(xi ,yi )(vxi+1)

where F,G are special symmetric functions (multi-parameter
generalizations of the Schur polynomials).
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Yang Baxter Field and Stochastic Vertex Models

Results we obtain considering this simple procedure:
I From marginal observables (e.g. λ(x,y) → length(λ(x,y))) we
recover the Stochastic Six Vertex Model [Gwa-Spohn ’92], the
Stochastic Higher Spin Six Vertex Model [Corwin-Petrov ’15]
and also more general vertex models

I We are able to construct "MacDonald operators"for symmetric
functions F,G. These are guessed from known results about
stochastic vertex models

I We describe statistics of the random field using these new
operators (like in MacDonald Processes [Borodin-Corwin ’11])
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