Yang Baxter Field and Stochastic Vertex Models

MUCCICONI MATTEO
based on a collaboration with A．BUFETOV and L．PETROV

Stochastic Analysis，Random Fields and Integrable Probability

令和 1 年 08 月 5 日

Yang Baxter Field and Stochastic Vertex Models

- We discuss a random algorithm whose output is a random "field"of Young Diagrams $\lambda=\left\{\lambda^{(x, y)} \mid x, y \in \mathbb{Z}_{\geq 0}\right\}$.

Yang Baxter Field and Stochastic Vertex Models

- We discuss a random algorithm whose output is a random "field"of Young Diagrams $\lambda=\left\{\lambda^{(x, y)} \mid x, y \in \mathbb{Z}_{\geq 0}\right\}$.

- The algorithm consists in a sequence of local moves defined through a "bijectivization" of the Yang-Baxter Equation

$$
\mathbf{w}\left(b_{2}\right)
$$

Yang Baxter Field and Stochastic Vertex Models

- We discuss a random algorithm whose output is a random "field"of Young Diagrams $\lambda=\left\{\lambda^{(x, y)} \mid x, y \in \mathbb{Z}_{\geq 0}\right\}$.

- The algorithm consists in a sequence of local moves defined through a "bijectivization" of the Yang-Baxter Equation

- A bijectivization [Bufetov-Petrov '17] is a way to assign transition probabilities

$$
\mathbb{P}\left(a_{i} \rightarrow b_{j}\right)
$$

Yang Baxter Field and Stochastic Vertex Models

- Random fields of Young diagrams are popular objects in Integrable Probability because they allow the description of random tilings, stochastic interacting particle systems, stochastic vertex models, etc.

Yang Baxter Field and Stochastic Vertex Models

- Random fields of Young diagrams are popular objects in Integrable Probability because they allow the description of random tilings, stochastic interacting particle systems, stochastic vertex models, etc.
- In our case, the random field inherits its integrability from the Yang-Baxter Equation. The joint probability distribution along down-right paths π assume the form

where $\mathfrak{F}, \mathfrak{F}$ are special symmetric functions (multi-parameter generalizations of the Schur polynomials).

Yang Baxter Field and Stochastic Vertex Models

Results we obtain considering this simple procedure:

- From marginal observables (e.g. $\lambda^{(x, y)} \rightarrow$ length $\left(\lambda^{(x, y)}\right)$) we recover the Stochastic Six Vertex Model [Gwa-Spohn '92], the Stochastic Higher Spin Six Vertex Model [Corwin-Petrov '15] and also more general vertex models

Yang Baxter Field and Stochastic Vertex Models

Results we obtain considering this simple procedure:

- From marginal observables (e.g. $\lambda^{(x, y)} \rightarrow \operatorname{length}\left(\lambda^{(x, y)}\right)$) we recover the Stochastic Six Vertex Model [Gwa-Spohn '92], the Stochastic Higher Spin Six Vertex Model [Corwin-Petrov '15] and also more general vertex models
- We are able to construct "MacDonald operators"for symmetric functions $\mathfrak{F}, \mathfrak{F}$. These are guessed from known results about stochastic vertex models

Yang Baxter Field and Stochastic Vertex Models

Results we obtain considering this simple procedure:

- From marginal observables (e.g. $\lambda^{(x, y)} \rightarrow$ length $\left(\lambda^{(x, y)}\right)$) we recover the Stochastic Six Vertex Model [Gwa-Spohn '92], the Stochastic Higher Spin Six Vertex Model [Corwin-Petrov '15] and also more general vertex models
- We are able to construct "MacDonald operators"for symmetric functions $\mathfrak{F}, \mathfrak{F}$. These are guessed from known results about stochastic vertex models
- We describe statistics of the random field using these new operators (like in MacDonald Processes [Borodin-Corwin '11])

