A new criteria of risk in Markov decision processes

Qi Wang¹ Masayuki Kageyama¹ Jingyao Zhang²

¹School of Design and Architecture, Nagoya City University, Japan ²Dept. of Architecture and Architectural Engineering, Kyoto University

(日) (四) (코) (코) (코) (코)

Optimal Equation

$$U(s) = R(s) + \max_{a} \sum_{s'} P(s'|s, a) U(s').$$

A new criteria

$$\rho_i(s,s') = \begin{cases} 1, & if \ U(s) > U(s') \\ 0.5, & if \ U(s) = U(s') \\ 0, & if \ U(s) < U(s') \end{cases}$$

Note that $i(1 \le i \le n-2)$ denotes the fire point. If $\frac{1}{n-2}\sum_{i=1}^{n-2}\rho_i(s,s') > 0.5$, then we say that state s is safer than s'.

2/3

Table 1 indicates the order of safety level and table 2 does the optimal evacuation root.

7	4	1	Exit
8		3	1
9	9	6	5

Table 1:(2,2) is blocked and (4,3) is exit.

\rightarrow	\rightarrow	\rightarrow	Exit
\uparrow		\uparrow	\uparrow
\uparrow	\rightarrow	\uparrow	\uparrow

Table 2:Optimal evacuation root.