Annulus SLE partition functions and martingale-observables

Joint work with Nam-Gyu Kang, Hee-Joon Tak (arXiv:1806.03638)

Sung-Soo Byun

Seoul National University (Bielefeld-Seoul IRTG 2235)

The 12th MSJ-SI Stochastic Analysis, Random Fields and Integrable Probability

August 5, 2019

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

Overview

Goal Analytic implementation of CFT constructed from GFF with Dirichlet/excursion reflected boundary conditions to the theory of annulus SLE.

- To calculate correlation functions of conformal fields.
- To derive Eguchi-Ooguri, Ward and BPZ-Cardy type equations.
- To find explicit representations of SLE partition functions.
- To get a large class of SLE martingale-observables.

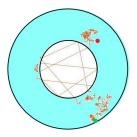


Figure: ERBM (Drenning, Lawler)

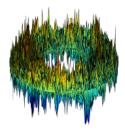


Figure: GFF with Dirichlet b.c.

Eguchi-Ooguri's type equation in a doubly connected domain

Theorem

For any string \mathcal{X} of fields in the OPE family \mathcal{F}_{β} with a stress tensor A_{β} ,

$$\frac{1}{\pi} \oint_{\partial_{\text{inner}}} \mathbf{E} \left[A_{\boldsymbol{\beta}}(\zeta) \mathcal{X} \right] d\zeta = \partial_r \mathbf{E} \left[\mathcal{X} \right].$$

 \triangleright If \mathcal{X} is a tensor product of two GFF, then the above equation is equivalent to

$$-\frac{1}{\pi}\oint_{\partial_{\text{inner}}}\partial_{\zeta}G_r(\zeta,z_1)\,\partial_{\zeta}G_r(\zeta,z_2)d\zeta=\partial_rG_r(z_1,z_2),$$

where G_r is the Green's function for Laplace equation with Dirichlet/ER b.c. \triangleright Set

$$G_r(z_1, z_2) := p(r) G_r^{Diri}(z_1, z_2) + (1 - p(r)) G_r^{ER}(z_1, z_2).$$

Then Eguchi-Ooguri equation holds *if and only if* $p(r) = r/(r + \chi)$.

- Cf. On a complex torus of genus one, similar form of Ward's equation holds.
 - Eguchi-Ooguri: Conformal and current algebras on a general Riemann surface, Nuclear Phys. B, 282(2):308-328, 1987.
 - Kang-Makarov: Calculus of conformal fields on a compact Riemann surface, arXiv:1708.07361, 86 pp.

 \triangleright Null-vector equation for annulus SLE partition functions Z(r, x): (Lawler, Zhan)

$$\partial_r Z = \frac{\kappa}{2} Z'' + H Z' + \frac{6-\kappa}{2\kappa} H' Z, \quad H(r,x) = 2(\log \Theta(r,x))'.$$

 \triangleright Annulus CFT provides family of solutions to null-vector equation for each $\kappa > 0$:

$$Z(r,x) = \Theta(r,x)^{\frac{2}{\kappa}} \oint_{\gamma} \Theta(r,x-\zeta)^{-\frac{4}{\kappa}} \Theta(r,\zeta)^{-\frac{4}{\kappa}} \exp\left(-\frac{(\sqrt{\frac{2}{\kappa}}(x-2\zeta)-2\beta\pi)^2}{4(r+\chi)}\right) d\zeta$$

(**Cf.** β : back ground charge parameter, χ : boundary condition parameter)

- \triangleright Examples of Z(r, x) associated to lattice models:
- *GFF with boundary value* β *on* ∂_{inner}

$$Z(r,x) = \Theta(r,x)^{-\frac{1}{2}} \\ \times \exp\left(-\frac{(x-2\sqrt{2\beta\pi})^2}{8r}\right)$$

• LERWs reflecting on ∂_{inner} with angle β

$$Z(r,x) = \frac{\Theta(r, x + \pi - 2\beta\pi)}{\Theta(r, x)} \times \left(H(r, x) - H(r, x + \pi - 2\beta\pi)\right)$$

ション ふぼう ふけう ふけい ほう ろくの