Stochastic Cahn-Hilliard Equation

Rongchan Zhu (Beijing Institute of Technology)

We study the asymptotic limit, as $\varepsilon \searrow 0$, of solutions to the stochastic Cahn-Hilliard equation:

$$\partial_t u^{\varepsilon} = \Delta \left(-\varepsilon \Delta u^{\varepsilon} + \frac{1}{\varepsilon} f(u^{\varepsilon}) \right) + \dot{\mathcal{W}}_t^{\varepsilon},$$

where $\mathcal{W}^{\varepsilon} = \varepsilon^{\sigma} W$ or $\mathcal{W}^{\varepsilon} = \varepsilon^{\sigma} W^{\varepsilon}$, W is a Q-Wiener process and W^{ε} is smooth in time and converges to W as $\varepsilon \searrow 0$. In the case that $\mathcal{W}^{\varepsilon} = \varepsilon^{\sigma} W$, we prove that for all $\sigma > \frac{1}{2}$, the solution u^{ε} converges to a weak solution to an appropriately defined limit of the deterministic Cahn-Hilliard equation. In radial symmetric case we prove that for all $\sigma \ge \frac{1}{2}$, u^{ε} converges to the deterministic Hele-Shaw model. In the case that $\mathcal{W}^{\varepsilon} = \varepsilon^{\sigma} W^{\varepsilon}$, we prove that for all $\sigma > 0$, u^{ε} converges to the weak solution to the deterministic limit Cahn-Hilliard equation. In radial symmetric case we prove that u^{ε} converges to deterministic Hele-Shaw model when $\sigma > 0$ and converges to a stochastic model related to stochastic Hele-Shaw model when $\sigma = 0$.