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The double zeta value is defined by the convergent series

ζ(k1, k2) =
∑

m1>m2>0

1

mk1
1 mk2

2

,

where k1 and k2 are positive integers with k1 > 1. This is a special case (“depth 2”)
of the multiple zeta value, which is defined by

ζ(k1, k2, . . . , kn) =
∑

m1>m2>···>mn>0

1

mk1
1 mk2

2 · · ·mkn
n

,

and was studied already back in 18th century by Euler. For the multiple zeta value
ζ(k1, k2, . . . , kn), the number k1 + k2 + · · ·+ kn is called weight, and n depth. Hence,
for the double zeta value ζ(k1, k2), the weight is k1 +k2 and the depth is 2. For some

technical reason, we shall look at the modified double zeta values ζ̃(k1, k2) defined
by

ζ̃(k1, k2) := (2π
√
−1)−(k1+k2)ζ(k1, k2).

We are interested in the Q-vector space spanned by the double zeta values of
fixed weight.

Definition. For k ≥ 3, define the Q-vector space DZk by

DZk =
k−1∑
i=2

Qζ̃(i, k − i).

Some ten years ago, Don Zagier conjectured

Conjecture (Zagier). For k ≥ 3, we have

dimQ DZk =

[
k + 1

2

]
− 1 − dimC Sk(SL2(Z))

=


k

2
− 1 − dimC Sk(SL2(Z)) if k is even,

k − 1

2
if k is odd.
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Here, Sk(SL2(Z)) is the C-vector space of cusp forms of weight k for the modular
group SL2(Z).

In the following, we shall sketch a proof of the inequality

dimQ DZk ≤
[
k + 1

2

]
− 1 − dimC Sk(SL2(Z)),

by studying the “double Eisenstein series.” This inequality was proved by Zagier
himself and Goncharov in different methods. The stress here is the new approach
using the double Eisenstein series. Note that the proof of the converse inequality
“≥”, which together would establish the validity of the conjecture, seems to be out of

reach. (Recall that we do not know for instance if dimQ

(
Qζ̃(2, 4) + Qζ̃(3, 3)

)
> 1,

nor any single example with dimQ DZk > 1.)

Definition. For τ ∈ H := upper half-plane, an element λ = mτ + n ∈ Zτ + Z is
positive, denoted by λ > 0, if either m > 0 or m = 0, n > 0. For λ, µ ∈ Zτ + Z, we
write λ > µ if λ − µ > 0.

We define the Eisenstein series Gk(τ) for k ≥ 3 and the double Eisenstein series
Gk,l(τ) for k ≥ 3, l ≥ 2 by

Gk(τ) =
∑

mτ+n>0

1

(mτ + n)k

and

Gk,l(τ) =
∑

λ>µ>0
λ,µ∈Zτ+Z

1

λkµl
.

If k = 2, the series defining Gk(τ) is not absolutely convergent and we define
G2(τ) by

G2(τ) = ζ(k) +
∞∑

m=1

∑
n∈Z

1

(mτ + n)k
.

As for Gk,l(τ), the situation is more subtle unless k ≥ 3, l ≥ 2. We shall define
Gk,l(τ) in the non-absolutely convergent case by the q-series given below.

Put G̃k(τ) = (2π
√
−1)−kGk(τ) and G̃k,l(τ) = (2π

√
−1)−k−lGk,l(τ). We give

Fourier expansions of G̃k(τ) and G̃k,l(τ).

The expansion of G̃k(τ) is standard and is given by

G̃k(τ) = ζ̃(k) +
(−1)k

(k − 1)!

∞∑
n=1

σk−1(n)qn,

where ζ̃(k) = (2π
√
−1)−kζ(k), σk−1(n) =

∑
d|n dk−1, q = e2π

√
−1τ . Note that the

series has rational coefficients except the constant term for odd k, which is pure
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imaginary. Put gk = (−1)k

(k−1)!

∑∞
n=1 σk−1(n)qn so that G̃k(τ) = ζ̃(k) + gk.

Proposition 1. Let k ≥ 3 and 1 ≤ i ≤ k−2. A Fourier series of G̃k−i,i(τ) is given
by

G̃k−i,i(τ) = ζ̃(k − i, i) + ζ̃(i) gk−i

+ (−1)i

k−2∑
j=2

{(
j − 1

i − 1

)
+ (−1)k+j

(
j − 1

k − i − 1

)}
ζ̃(j) gk−j

+
(−1)k

(i − 1)!(k − i − 1)!

∑
m>n>0

(∑
u>0

uk−i−1qmu

)(
1

2
δi,1 +

∑
v>0

vi−1qnv

)
.

(We set ζ̃(1) = 0. The right-hand side is the definition of G̃k−i,i(τ) unless k ≥ 5 and
i ≥ 2.)

We note that the series belongs to
√
−1

kR+qQ[[q]]+
√
−1qR[[q]]. Later we shall

consider the “imaginary part” of G̃k−i,i(τ) when k is even, which is a rational linear

combination of ζ̃(j)gk−j for odd j.

Proposition 2 (shuffle products). For k ≥ 3 and 2 ≤ i ≤ k/2, we have the
following relations.

(i) G̃i(τ) G̃k−i(τ) = G̃i,k−i(τ) + G̃k−i,i(τ) + G̃k(τ).

(ii) G̃i(τ) G̃k−i(τ) =
k−1∑
j=2

{(
j − 1

i − 1

)
+

(
j − 1

k − i − 1

)}
G̃j,k−j(τ).

Proof. Rather tedious computations involving binomial identities. The computation
only uses the q-expansions to avoid manipulation of conditionally convergent series.
¤

Corollary. For k ≥ 3 and 2 ≤ i ≤ k/2, we have the “double shuffle relation”

k−1∑
j=2

{(
j − 1

i − 1

)
+

(
j − 1

k − i − 1

)
− δi,j − δk−i,j

}
G̃j,k−j(τ) − G̃k(τ) = 0,

(δi,j = Kronecker’s delta).

Taking the constant term of the Fourier expansion of this expression, we obtain
the double shuffle relation of double zeta values. If we formally put i = 1 in that
relation, the divergent terms cancel out (formally) and we obtain the “sum formula”

k−1∑
j=2

ζ̃(j, k − j) = ζ̃(k),
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which is thought of as an example of the “regularized double shuffle relations.” The
next proposition “lifts” the sum formula for double zeta values, but involves one
extra term of the derivative of the (single) Eisenstein series.

Proposition 3. For k ≥ 3, we have

k−1∑
j=2

G̃j,k−j(τ) = G̃k(τ) −
G̃′

k−2(τ)

2(k − 2)
, ( ′ = q

d

dq
=

1

2π
√
−1

d

dτ
).

Proof. Also a quite complicated calculation using q-series. We need a formula
for the sum of powers of integers in terms of Bernoulli polynomials and the lemma
below. ¤

Lemma. Let M and N be positive integers. We have the following equality of
disjoint unions of sets of integers.

M−1∐
j=0

{divisors of N(M − j) with > j} =
M∐

j=1

{divisors of Nj with ≥ j} .

In particular (N = 1),

M−1∪
j=0

{divisors of M − j with > j} = {1, 2, . . . ,M} .

Combining Proposition 3 with a formula of Ramanujan, we obtain a refinement
of the sum formula.

Corollary.

(i)
k−2∑
j=2

j:even

G̃j,k−j(τ) =
3

4
G̃k(τ) −

G̃′
k−2(τ)

2(k − 2)
.

(ii)
k−1∑
j=3

j:odd

G̃j,k−j(τ) =
1

4
G̃k(τ).

Definition. For k ≥ 3, put

DEk =
k−1∑
i=2

Q G̃i,k−i(τ).
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Assume k is even ≥ 4 (odd weight case is treated similarly but less interesting
because of the absence of modular forms).

Proposition 4. We have

MQ
k (SL2(Z)) ⊕ Q G̃′

k−2(τ) ⊆ DEk,

where MQ
k (SL2(Z)) is the Q-vector space of holomorphic modular forms of weight

k on SL2(Z) whose Fourier coefficients belong to Q.

Proof. We know DEk 3 G̃k, G̃′
k−2, G̃i · G̃k−i (4 ≤ i ≤ k/2) by the shuffle products

(Proposition 2) and the sum formula (Proposition 3). In view of works of Rankin
and Eichler-Shimura (do we really need all this?), the space MQ

k (SL2(Z)) is spanned

by G̃k and G̃i · G̃k−i (4 ≤ i ≤ k/2), hence the result follows. ¤

Proposition 5. The space DEk is spanned by G̃i,k−i(τ) (k/2 + 2 ≤ i ≤ k − 1),

G̃k(τ), and G̃′
k−2(τ). In particular, we have dimQ DEk ≤ k/2.

Proof. The double shuffle relations (Corollary to Proposition 2) and the sum formula

(Proposition 3) give k/2 linear relations among G̃k, G̃′
k−2, G̃k−i,i (1 ≤ i ≤ k − 2).

Looking at the coefficients, the proposition directly follows. ¤

Now we consider two projections π1 : DEk −→ DZk and π2 : DEk −→ =DEk,
where, for f ∈ DEk, we define

π1(f) = constant term of the Fourier series of f,

π2(f) = imaginary part (times
√
−1) of the Fourier series of f.

The space =DEk is the “imaginary part” of DEk, embedded into C[[q]] via Fourier
series. By definition, we have the following two exact sequences

0 −→ ker π1 −→ DEk
π1−→ DZk −→ 0

and
0 −→ ker π2 −→ DEk

π2−→ =DEk −→ 0.

Theorem 1 (Goncharov, Zagier). For k ≥ 4 even, we have

dimQ DZk ≤ k

2
− 1 − dim Sk(SL2(Z)).

Proof. We know by Proposition 4 that kerπ1 ⊇ SQ
k (SL2(Z)) ⊕ Q G̃′

k−2(τ). From
this and Proposition 5, we obtain the theorem. ¤

The equality holds if and only if both dimDZk = k/2 and ker π1 = SQ
k (SL2(Z))⊕

Q G̃′
k−2(τ) hold true.
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As for the second exact sequence, we see by Proposition 1 (Fourier series) that

the map π2 on the generators (abundant) G̃i,k−i(τ) (2 ≤ i ≤ k−2) is given explicitly
by

t(π2(G̃2,k−2), π2(G̃3,k−3), . . . , π2(G̃k−2,2))

= Qk · t(ζ̃(3)gk−3, ζ̃(5)gk−5, . . . , ζ̃(k − 3)g3),

with

Qk :=

(
δk−i,j + (−1)i+j

(
j − 1

i − 1

)
+ (−1)k+i

(
j − 1

k − i − 1

))
2≤i≤k−2

2≤j≤k−2, j:odd

=

(
δk−2−i,2j + (−1)i

(
2j

i

)
− (−1)i

(
2j

k − 2 − i

))
1≤i≤k−3

1≤j≤k/2−2

.

Theorem 2. rank Qk = k/2 − 2 − dim Sk(SL2(Z)).

Proof. Use the theory of periods of Sk(SL2(Z)). ¤

Now we impose the hypothesis:

Hypothesis (OZ)k: ζ̃(3), ζ̃(5), . . . , ζ̃(k − 3) are all linearly independent over Q.

Proposition 6. Under the hypothesis (OZ)k, we have dimDEk = k/2, dim=DEk =

k/2 − 1 − dim Mk(SL2(Z)), and ker π2 = MQ
k ⊕ QG̃k−2(τ).

The matrix Qk is nice. It’s kernel vectors on the right give even period polyno-
mials, whereas those on the left give linear combinations of double Eisenstein series
which become modular, so their constant terms give relations of double zeta values.

Example For k = 12, we have

Q12 =



−2 −4 −6 −8
1 6 15 28
0 −4 −20 −48
0 1 15 42
0 0 0 0
0 0 −14 −42
0 4 20 48
0 −6 −15 −27
2 4 6 8


.

The kernel vector

Q12


1
−3
3
−1

 = 0
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corresponds to the even period polynomial X8 − 3X6 + 3X4 − X2.
On the other hand, the kernel on the left of Q12 is 6（= k/2 − 1 + dim Sk）

dimensional and spanned by

(1, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 7, 28, 0, 20, 0, 0, 0)

(0, 0, 1, 0, 0, 0, 1, 0, 0), (15, 30, 6, 0, 0, 0, 0, 16, 0)

(0, 0, 0, 0, 1, 0, 0, 0, 0), (5, 10, 12, 8, 0, 0, 0, 0, 0).

The three vectors on the first column come from the product of ordinary Eisenstein
series. For instance, (1, 0, 0, 0, 0, 0, 0, 0, 1) corresponds to the fact that G̃2,10(τ) +

G̃10,2(τ) has Q-rational coefficients, which is clear from the shuffle product identity

G̃2,10(τ) + G̃10,2(τ) = G̃2(τ)G̃10(τ) − G̃12(τ).

As an other example, let us take (0, 0, 7, 28, 0, 20, 0, 0, 0). Corresponding to this,
we have the relation

7G̃4,8(τ) + 28G̃5,7(τ) + 20G̃7,5(τ) =
3 · 11 · 149

22 · 691
G̃12(τ) − 1

27 · 32 · 5 · 691
∆(τ).

(∆(τ) = q
∏∞

n=1(1 − qn)24) and hence

∆(τ) = 25 · 33 · 5 · 11 · 149 G̃12(τ) − 27 · 32 · 5 · 7 · 691 G̃4,8(τ)

−29 · 32 · 5 · 7 · 691 G̃5,7(τ) − 29 · 32 · 52 · 691 G̃7,5(τ).

Comparing the Fouries coefficients on both sides, we obtain (apparently new) for-
mula for τ(n), the nth Fourier coefficient of ∆(τ):

τ(n) =
149

840
σ11(n) − 691

180
σ7(n) − 11747

126
σ5(n) +

173441

360
σ3(n)

−3455

9
σ1(n) − 2764

3
ρ3,7(n) − 19348

3
ρ4,6(n) − 13820

3
ρ6,4(n)

=
149

23 · 3 · 5 · 7
σ11(n) − 691

22 · 32 · 5
σ7(n) − 17 · 691

2 · 32 · 7
σ5(n)

+
251 · 691

23 · 32 · 5
σ3(n) − 5 · 691

32
σ1(n) − 22 · 691

3
ρ3,7(n)

−22 · 7 · 691

3
ρ4,6(n) − 22 · 5 · 691

3
ρ6,4(n),

where
ρk,l(n) :=

∑
a+b=n
a,b>0

∑
u|a, v|b
a
u > b

v

uk vl.

Or if we take the simplest (0, 0, 0, 0, 1, 0, 0, 0, 0), we have correspondingly (or from

G̃6,6(τ) = (G̃6(τ)2 − G̃12(τ))/2)

G̃6,6(τ) =
22 · 3
691

G̃12(τ) − 1

27 · 3 · 52 · 691
∆(τ),
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and thus
∆(τ) = 29 · 32 · 52 G̃12(τ) − 27 · 3 · 52 · 691 G̃6,6(τ).

Comparing the coefficients, we obtain

τ(n) =
2

693
σ11(n) +

691

22 · 32 · 7
σ5(n) − 691

22 · 32
σ3(n) +

5 · 691

2 · 32 · 11
σ1(n)

− 2 · 691

3
ρ5,5(n).

Since 693 = 691 + 2, it is transparent that we have the famous congruence of
Ramanujan:

τ(n) ≡ σ11(n) (mod 691).

The other example (5, 10, 12, 8, 0, 0, 0, 0, 0) gives

5G̃2,10(τ) + 10G̃3,9(τ) + 12G̃4,8(τ) + 8G̃5,7(τ)

=
41 · 1321

22 · 3 · 691
G̃12(τ) +

1

24 · 3 · 5 · 7 · 691
∆(τ) − 1

4
G̃′

10(τ)

and taking it’s constant term

5ζ(2, 10) + 10ζ(3, 9) + 12ζ(4, 8) + 8ζ(5, 7) =
41 · 1321

22 · 3 · 691
ζ(12).

Also we have yet another formula for τ(n), etc.
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