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§0. Introduction

The purpose of this paper is to give some missing terms in the associated
spectral sequence with a continuous completion. As an application, we get a
partial answer of the Miller conjecture.

For two topological groups G and H, we denote their classifying spaces by
BG and BH. 1t is well known that any continuous homomorphism from G to
H induces a continuous mapping from BG to BH. This turns into a natural
mapping from Hom (G, H) to Map, (BG, BH), where Hom (G, H) is the space of
all continuous homomorphisms and Map, (BG, BH) is the space of all base point
preserving mappings. When does the above mapping induce a bijection between
based homotopy sets? We can say that this is valid in a case where G is an
elementary Abelian p-group and H is a certain Lie group. To obtain this, we
need the following

THEOREM 0.1.  Let Y be a space of finite type whose mod p cohomology is a
free commutative algebra. Then the evaluation by mod p cohomology H*

no(Mapy (B(Z/pZ)", Y,), *) — Hom, (H*(Y), H*(B(Z/pZ))")

is a bijection of sets with base points for any n=0, where A denotes the category
of commutative associative algebras over A(p) by its left action.

REMARK 0.2. In the context of Theorem 0.1, if we further assume that Y
is nilpotent, then we can replace Y, with Y. This fact is obtained from the
arithmetic square theorem [4] with the fact that Y is Z-local and Map, (B(Z/
PZ)", Xg) is weakly contractible for any Q-local space Xo. quite similarly
to the proof of Theorem 1.5 in [9].
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The hypothesis of Theorem 0.1 holds for the classifying space of any finitely
generated Abelian group if p is odd, but does not hold for some finite non abelian
groups. In fact, the conclusion does not hold for a group with a non-central
element of order p. But the mod p cohomology ring has non-trivial relations
provided that the group is nilpotent.

ExAMPLE 0.3. There is a trivial counter example for Theorem 0.1 with p=2:
Let H be the dihedral group D,, n=2">4. Then H is finite nilpotent. To
show that the mod 2 cohomology of D, is not a free commutative algebra, we use
the cell-decomposition of BD, (due to M. Kamata and H. Minami [5]) together
with the Serre spectral sequence and obtain that the Bockstein operation
is injective on HY(BD,) and H*(BD,) =Z2Z[w]®Z[2Z[u, v]/(u?+uv), dimw
=2, dimu=dimv=1. And so ny(Mapy(BZ/2Z, BH), ¥)=Hom (Z/2Z, H)—
Hom, (H*(BH), H*(BZ/2Z)) is not bijective.

ExAMPLE 0.4. There is also a trivial counter example for Theorem 0.1
with p odd: Let H be the dihedral group D,. Then H is a non-nilpotent group
with free commutative cohomology algebra and mn,(Mapy (BZ/pZ, BH), *)=
Hom (Z/pZ, H)»Hom, (H*(BH), H*(BZ/pZ)) is not bijective, either. In
addition, H¥(BH)=Z/pZ[w]® Z/pZ[v]/(v?), dim v=3, dim w=4.

COROLLARY 0.5. Let p be any prime and G a connected associative mod p
H-space with a p-torsion free cohomology ring. Then there is a bijection

no(Map (B(Z/pZ)", BG), *) — Hom, (H*(BG), H*(B(Z/pZ)")).
Our examples for Corollary 0.5 is as follows:

ExAMPLE 4.7. Let p be any prime. Then there are bijections:
1) mo(Map, (B(Z/pZ)", BSp(1)), *)=no(Hom ((Z/pZ)", Sp(1)), *),
2) mo(Mapy (B(Z/pZ), BU(n)), *)=no(Hom (Z/pZ), U(n)), *).

In the case where the groups G and H are discrete, it is well-known that the
connected components of the above two sets are in one to one correspondence
with each other, and moreover the above mapping is a weak homotopy equivalence.
However, if G is not discrete, then we can not expect it, since there exist phantom
mappings in general. In the other case where G=(Z/2Z)", n=0 and H=S3=
Sp(1), H. Miller proved the same result as the discrete case in [8] by making use
of the following

THEOREM (H. Miller [8, 9]). Let G be (Z/pZ)", n>0, p a prime and Y a
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very nice space, i.e. the cohomology ring admits a p-simple system of generators
whose vector space M span is ciosed under the action of modulo p Steenrod

algebra A(p). Then the evaluation mapping of mod p cohomology induces
a bijection

mo(Mapy (BG, Y), *) — Hom,,, (M, H*(BG; Z/pZ)).

This theorem is obtained by making use of the Massey-Peterson tower.
He has conjectured in [8] that this is still true if 0 is any simply connected space
whose mod p cohomology H*(Y) is of finite type. But it is very delicate if we do
not use the Massey-Peterson towers, because of the fact that we have to treat
based sets. Theorem 0.1 is thus an answer to this conjecture.

To prove Theorem 0.1, we need a somewhat new convergence theorem of an
unstable Adams spectral sequence which was introduced by A. K. Bousfield and
D. M. Kan [2]. But unfortunately, the convergence lemma of this spectral
sequence does not include the one for the homotopy sets, because of the facts
that the homotopy sets form only a set with base point and that the E,-terms
Es'* are considered only for 1>s.

Bousfield and Kan introduced their unstable Adams spectral sequence in
terms of simplicial objects. But we construct it by using a symmetric product [3].

Let X and Y be any CW-complexes, R a prime field of characteristic p, Hy
ordinary homology theory with a coefficient ring R and R the functor taking
the mod p infinite symmetric product [3]. Then one can construct an unstable
Adams resolution for any CW-complex Y as follows;

RY=Y,e— Y e Y, «— Y e Y,
P I
Y F, F, F, Foy

where F,—Y,—Y,_, is a fibration with fibre F, having a weak homotopy type
of an Eilenberg-MacLane complex whose homotopy groups are R-modules and
Y p is the Bousfield-Kan R-completion [2] of Yif Yis a good space such as Hy(Y;
R)=H,(Y,). Then there is an unstable Adams spectral sequence {E$’, s=0,
t—s20} converging to mo(Map, (37" X, Y,), *) under some suitable conditions,
t—s>0, and its E,-terms are described as follows,

Ey'=Exte, (Ho(X'X), Hy(Y))

for s=0, t—s=0 where CA denotes the category of cocomutative coassociative
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coalgebra with unit over the modulo p Steenrod algebra A(p) by its right action,
and Ext§, is the derived functor of Hom., by Bousfield, Kan, Dror, Dwyer and
Miller (see Miller [9]).

REMARK. As Miller remarked in [9], the right hand side of the above
equality is definable even for negative total dimension, t—s<0, while the left
hand side is defined only for t—s=0.

In this paper, we define certain terms E5s~! for 2<s and extend the homotopy
exact sequence for the E,-terms over these groups. The definable range of E,-
terms for negative total dimension, however, is getting smaller and smller, and
will eventually vanishing entirely for r=o00. These vanishing terms Es! for
s> 1 of the spectral sequence are called the ghost terms, when they exist. Actually
at E,-stage, we can not define naturally ghost terms ES* for t<r—1, since
we need the E,-terms E;~"'~"*! to define Es*. The following figure represents
the E,-terms.

t=¢$
ordinar)' terms

t=r-1

’,lll”l”llllllllll (enm

!

undefinable $
rang,e

Figure 1

Under the situation, we can describe our convergence theorem which holds
even for the based homotopy sets, namely,

THEOREM 3.6. Let X be a CW-complex and Y a space with a non-degenerate
base point.  Then the following three statements hold for the evaluation of mod p
homology

H: n(Mapy (X, Y,), *) — Homg, (Hu(Z! X), Hi(Y)).
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a) IfExty, (Hi(2'X), H(Y))=0 for t—i=s>0, then H is injective.

b) If Extg, (He(XF X), Hi(Y))=0 for t—i+1=5>0, then H is surjective.

c) If Exti, (H¥X' X), Hi(Y))=0 for t—i=s>0 and for t—i+1=5>0, then
H is bijective.

Note that both the source and target sets of the bijection H are not naturally
groups, if i=0.

This paper is organized as follows. In the sections 1 and 2, we recall the
notions of cosimplicial spaces and algebra functors and state the key lemma,
Lemma 2.4, of the naturality theorem, Theorem 3.3, for the ghost terms. We
prove Theorem 3.6 in the section 3 by making use of Theorem 3.3 and the
description of the ghost terms to E,-terms which is given by Proposition 3.5.
In the section 4, we introduce a certain algebra functor over a category and
prove Theorem 0.1.

Throughout this paper, we work in the category of compactly generated
space with a non-degenerate base point. In the remainder of this paper, we
often abbreviate Hy( ; Z/pZ) and H*( ; Z/pZ) by H,( ) and H*( ), respectively.

The author expresses his gratitude to late Professor S. Oka for his valuable
suggestions.

On January 22-nd, 1985, I gave a talk on the result of this paper under the
title “Maps between classifying spaces’’ at the ““Symposium on infinite dimensional
CW-complexes’” which was held in Osaka, Japan.

Then I met J. Lannes on July 27-th, 1986 in Arcata, California who has shown
me the preprint [6], whom I thank for his kindness. This result [6] is described
as follows: For any given nilpotent space Y of finite type, the free homotopy set
no(Map (B(Z/pZ)", Y), *) is bijective naturally with the set Hom, (H*(Y),
H*(B(Z/pZ)")). His proof for the free homotopy case is entirely different from
the one for the based homotopy case in this paper.

The original forms of Miller’s theorem and conjecture are those for based
mapping spaces. In this sense, our result might be better answer.

§1. Preliminaries

Let us recall the notion of a cosimplicial space and prepare the necessary
notions.

DEeFINITION 1.1.  The triple X =({X", n=0}, {d/: X**1->X" 0Li<n},
{s/: Xn*1s X" 0<j<n}) is a cosimplicial space if X" is a space and the
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following three identities hold:
1) didi=did’~!, i<},
2) sisi=sitlg)) i>j,
. dis™U i<j,
3) sidi=] identity, i=j or i=j+1,
di-lsi i>j+1.
These identities are called cosimplicial identities.
DEFINITION 1.2.  The standard cosimplicial space A" is defined by
A"={(t05'-'9 tn)e [0, 1]" [ Z;l'=1 tj=1} s
Ai(toyeens ty— 1) =(tos--es tiogs Oy tiyeeis ta_y),

S (tosevos tux ) =(toseos tim gy titlin gy Livaseens Byiy),s

and we denote by A's) the s-skeleton of A'.

Let X* be a cosimplicial space. We can construct its total spaces tot(X")
and tot(X.), s=0:

(L3) 10X )={{fp: A"> X"} |di fr=frt1di, sifr=fr"1s5'}
SIl,>-1 Map (4", X7),

(L4) tot(X)={{f": AL > X"} |d fr=fr*1di, st fr=fr"1s}
SI1.>-1 Map (41", X™),

with the sequences of the constant mappings as the base points.
Let us recall in this section two more notions introduced by Bousfield and
Kan [2] which will be used in later sections.

DEFINITION 1.5. The n-th matching space M"X" of a cosimplicial space
X is the following subspace of n+ 1-fold product (X")"+1 of X";

{(ags---» a,) € (XM " sia;=5""1a;, i>]}.

DErFINITION 1.6. The normal subspace NX' of a cosimplicial space X"
is the following cosimplicial closed subspace

NX"=S"1(*,..., %)
where S: X"—>M""'X" is a mapping defined by S(a)=(s%a), s'(a),..., s" 1(a)).
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§2. Algebra functors and group-like cosimplicial spaces

The terminology “algebra functor’ is used by J. F. Adams [1] which is
equivalent to “triple’” or “monad’’ used by categorists. In this paper, we adopt
Adams’ terminology.

Let C be a category. For an algebra functor T: C—C. Bousfield and
Kan [2] construct a new functor T-: C—s°C where s°C denotes the category of
all cosimplicial objects in C.

DEFINITION 2.1, For any object X and any morphism f of C, (T'X)" and
(T f)" denote the object T"*'X and the morphism T"*'f in C respectively where
the functor T**! is the n+ 1-times composition of the functor T.

The following is a well-known example due to [2] and [3].

EXAMPLE 2.2. The functor R=AG( ; p) is an algebra functor;
R(X)=AG(X; p)=SP(X)/p-SP(X),

where SP(X) is the infinite symmetric product and p-SP(X) is the p-th power
set of SP(X). There is an associated multiplication p: RR(X)— R(X) defined by

w>x; ni(Zj mijxij))= Zi,j (nirnij)xij’
and a unit n: X—R(X) defined by

n(x)=1x.

For any based space X, RX is a topological Abelian group, u is a continuous
homomorphism onto RX and # is a homeomorphism onto a closed subspace of
RX. Note that 5 is not a homomorphism even if X is a topological Abelian group
Using this functor, we can construct topological p-completion Yp of the space Y
with base point as in [2]. Inclusions induce the tower of fibrations {tot(R'Y)—
tot,_;(R'Y)}. By the definition, tot(R'Y) is R-nilpotent and the tower is equi-
valent to the realization of the Bousfield and Kan tower {R(Y)} in [2]. Hence
10t(R'Y) is equivalent to the p-completion Y ,.

DEFINITION 2.3. A cosimplicial space A. is called (Abelian) group-like if
it satisfies the following two conditions:
1) A" is a topological (Abelian) group for all n=0,
2) all the degeneracies s’ and faces d' for i>0 are continuous homomorphisms
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and d° preserves units,

Then the fibration S: A"*!'—M" A" has a natural cross section (see J. P. May
[7], page 69). We denote the section by C. Let p,,: tot,, (A)—tot(A’) be
the restriction and observe that (p,, )" !(*)x{h: 4> A" |h(04")={0}, sih=0,
j=0}. We prove the following

LEMMA 2.4. Let A" be an Abelian group-like cosimplicial space. Then
the natural projection

Ds+1: IOts+ 1(A) - tOts(A.)

is a principal fibration with the fibre Q**'\NAs*! and is induced from a mapping
Pgiq: tot(A) — QSNASH! for s=0,
where QINAST = {f: A" As*1|f(04")={0}, s/ f=0, j=0}. Moreover, we have
bor1Js™= Ts=i (= 1) di =00 35, (= 1) d/,
D5t 1bs+1=M(Pss1Js X bsr1),

where jg is the canonical inclusion and myg is the group addition of Q'NAs+!
and ‘~’ means ‘is homotopic to’.

Proor. Since it is known that the fibration is principal (see Bousfield and
Kan [2, Chap. 2 Lemma 2.6]), we are left to prove the latter part of the lemma.
Let ¢4 1(f)=05+1(f**) and i, (fsH)=f+"—const (f*+(eg)) — C;S,(fs+! -
const (f*71(eg))), for f={f"} 0

This is well-defined since the fibration S and the cross section C are
homomorphisms. By the definition of ¢, ,, ¢si1u(h, f)=m s, j(h),
¢s+1(f)). On the other hand, f can be lifted to tot,,,(A4") if and only if
'¢s+1(f) is null-homotopic in QSNAs*!. Actually, assume that f has a
lift f, then ¢, ((f)=¢.,(f**') and fs*' can be regarded as a null-
homotopy of fs*!.  Conversely assume that ¢,,,(f) is null-homotopic in
N As*!, then we can take an extension g,,; of ¢.,,(f5*!) over 4s*!, and put
gsti=g,, 1+ (ey)+ C({f5s/ —const (s'fs*'(ep))};). Then fs*! is an ex-
tension of f5*1 over 45*! and a lifting of fss/ upon A4s*1. Therefore, we can
construct a lifting f of f such that f*=f", t<s; g**!, t=s+1 by the cosimplicial
identities. To complete the proof of the lemma, we consider more about the
mapping @, j;: QNAS—>QSNAs*! which is given by the following formula:
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bs+1J5(9)=0(g9): d'x — dig(x).

Let F be the double adjoint of 6=¢,,,j,. Then the mappings F and Fd*
are given as

F: 045t1—— Mapy, (@SN As, AstY),
Fdi: A5 — Map, (QSNAs, Ast1).

Since Fd' satisfies Fd'(d/(x))(f)=d'fd’(x)=0, F is homotopic to XSt} F;
where F;: 045*1— As*1 is given as follows

Fd'(x)), i=j,

R otherwise.

F(d'(x))=

On the other hand, the degree of d/ is (— 1)/ through the homeomorphism
k: 4%/04s—045*t. Hence we obtain a homotopy

k*F;~(—1)/ad(ad())di
=(—1)/ad(ad(d}))
~ad(ad((—1)/d})).
Therefore, again by taking double adjoint, we get the following homotopy
G,: [0, 1] — Map, (2SN As, Map, (045*1, Ast1))

such that G0)=4, k*G(1)=33%-0(—1)/d{. This completes the proof of
Lemma 2.4.

Making use of this lemma, we will extend the definition of the E;-terms E%s
and E,-terms E%s of the unstable Adams spectral sequence to the range with
negative total dimension t—s<0, in section 3.

§3. A cosimplicial resolution

Let X and Y be CW-complexes and A'=R"Y a group-like cosimplicial space.
Then Map, (X, A4°) is also a cosimplicial space and we get naturally tot(Map, (X,
A’))=Map, (X, tot,A’) and hence n(tot(Mapy (X, A4°)), *)=n(Map, (X, tot,A’),
*).  Bousfield and Kan introduced in [2] the homotopy spectral sequence {E,, d,}
with the following extended exact sequences converging to m(Mapy (X, Y,), *)
fori>1:
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@3.1) Dymirtt — Eyt — Dyt — Dy,
for t=s>1 and bijections

3.2) E%t — DOt for t 20,

where we define inductively as E$*=m, Map, (X, NA5)=Nn, Map, (X, 45)=
7, Mapy (X, 45) n Ker s° n Ker s* n---n Ker s~ ! and D§* =n,_(Mapy (X, tot(A°))),
and as Epf =Im{Dg*~Lrtr-15Dst}Im {d,: Es 't S Est)(=Ker {Est—
Estrttr=13Im {d, : Esrt=rt1LEst) for t>5), d,: ESt—Dst—Estrttr1; D5t =
Im {Ds+1.t+1, ps.ty,

Note that the extended exactness at the set Dss means that Ds:s/{action of
E}s} is mapped injectively onto the set of the elements annihilated by the mapping
Dys—>D;=1:s=1 Also note that the extended exactness at the Abelian group
E* means that Im {D;~"*""*'>E$s} is mapped injectively onto the set of
the elements annihilated by the mapping ES>S— Ds-s,

Moreover we can define the extra terms E$* and E5* for t <s as follows:

E$t=m,Map, (X, A)nKers®nKers' n---nKerss—!, =0,

Eyt=Ker{d,: E¢'>E{*"'}/Im {d,: 'Ey" V' >Eyt), t=>1

)

where 'E§~!:* means E{™">! when t<s—1 and E}' when t=s—1,and d,= jas)
(=1)/di.
We obtain the following basic fact on these terms.

THEOREM 3.3. The extra terms fit to the above extended exact sequences
with the mappings for s=>1:

‘115 Dsl—l,s—l > Ei,s—l’
q,: Di—l,s—l E‘§+1’s,

whose annihilating subsets are just the images of Dys—D*71s~! and Dys—
D515~ pespectivel y.

PrROOF. We need to show the existence of g; and the exactness at D§ 151
fori=1and 2. Let g;=¢,. Then the exactness at D§~!-s~1 is easily obtained
by Lemma 2.4. Moreover, Lemma 2.4 gives the following commutative diagram
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Esl,s Jjs# D.i,s ps¥ D‘i—l,s—-l

ldl ld’s+1“

Esl+1,s = E.§+1,s dy Ei+2’s

We define g, by the formula g,(p.(x))= ¢, 1s(x) which is well-defined by the
commutativity of the above diagram and Lemma 2.4 together with the fact that
d;¢,+15=0 which will be proved in the next lemma. Then the exactness at
D5 1-s71 is obtained by chasing the diagram, making use of the definition of
the E,-terms, the definition of the ghost terms and Lemma 2.4.

LemMMA 3.4, d ¢, is trivial for s=1.
ProoOF. Before proving this, we remark, by Lemma 2.4, that
d1@ss 15> =CE5H (= 1)/d/(f**! —const (f++2(e))))

in my Map, (X, A5*2) for the homotopy class {f> of any element f of Map, (X,
tot(A')). To prove the lemma, it suffices to show that the element

5~ 1)IdI(f**1 —const (1 (eo)))

is homotopic to the constant mapping. The part ¥ 53 (—1)/d’(fs*!—const
(f5*1(ep))) of the above summand is deformable as follows. For j=>1, di(fs*!1—
const (f5*1(ey)))=f5*2d/ —const (f5*%(e,)) and the summation with j=1 is
homotopic to

—(f*'w)*(f+2d°) + const (f$*2(e,))
== (f*"w)*(d°f )+ const (f+*%(e,))
~ —dOfs*t1+const (f5*2(ey))
~ —dO(f**! —const (f**(eo))) ,

where w is a path from e, to e, (f**1w)*(d®fs*1) is the action of path on the map-
ping, and the above homotopy is given by

t—— —(f*"w)*(d°f*"1) +const (f*2(w(1)))

and

t— —dO(fs*1 —const (4(f))) + const (d°(f5*1(e,) — £4(1)),
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where w(u)=w(t+(1—1t)u), and £(¢) is a path from 0 to const (f+1(e,)). This
implies the lemma.

Figure 2

We give here the description of the ghost terms which is obtained by the
definition and is similar to the ordinary terms.

PROPOSITION 3.5. Let X and Y be CW-complexes. Then the ghost terms
in E\-terms and E,-terms of the Bousfield and Kan unstable Adams spectral
sequence are described as

Ey*=~Home, (He (X! X), Hi(RY))  for 0=<t<s,
E$t~Exty, (H (X' X), HW(Y)) for 1=t<s.
PrOOF. By the definition, we have
E$t=n,Map, (X, NRs*1Y)
=7, Map, (X, R¥*1'Y)n Kers°nKers! n--- n Kerss1,
Dyt=m,_(Map, (X, tot(R'Y))).

Since R*Y has the homotopy type of a generalized Eilenberg-Maclane space and
X is a CW-complex, n, Map* (X, R**1Y) is in one to one correspondence with
Homg, (H(X'X), H4(R°Y)) as sets and the proposition is obtained easily
from the definitions.

Combining this proposition with Theorem 3.3, we obtain the following

THEOREM 3.6. Let X be a CW-complex and Y a space with nondegenerate
base point. Then the following three statements hold for the evaluation mapping
by mod p homology
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H: n(Mapy (X, Yp), *) — Home, (H(ZF X), Hy(Y)), i20.

a) IfExty, (HyX'X), H(Y))=0 for t—i=s=1, then H is injective.

b) If Ext{, (He (X! X), H(Y))=0 for t—i+1=s=1, then H is surjective.

c) If Exti, (Hu(2'X), Hi(Y))=0 for t—i=s=1 and for t—i+1=s=1, then
H is bijective.

Proor. Clearly, a) and b) imply c¢). Firstly we prove a). By Theorem 3.3,
Dgs*i » Dy~ Ls=1+1 g injective and D$s+1+i— Ds~1.s*ijs surjective for s=1. This
implies proj-lim} D$:s*1* =0 and n,(Mapy (X, Yp), *)= proj-lim, D5 s+i=D9-i,
This implies a). Next, we prove b). Again by Theorem 3.3, D§s*i— Dg1.s—1+i
is surjective. This implies b) and so completes the proof of the theorem.

§4. Proof of Theorem 0.1

Before we prove Theorem 0.1, we introduce the notions of a category MA and
an algebra functor P while recalling the notions of some other categories and
functors in Miller [9, 10].

Let U be the category of unstable modules over A(p), C the category of
graded cocommutative coassociative coalgebras over R and nR the category of
graded modules over R as in Miller [9]. Also we introduce here the other category
MA as the full subcategory of U whose objects have no elements in dimension
2pn for p odd or 2n for p=2, such that the image under the power operation 2"
for p odd or the squaring operation S% for p=2 is non-trivial. Then MA is not
merely a category of desuspendable objects in U for p>2.

Let I, J and J’ be the forgetful functors from CA to C, U to nR and MA to
nR respectively; P and P’ the functors from CA to MA and C to nR respectively,
taking primitive modules; S’ the functor from nR to C, taking maximal cocom-
mutative tensor coalgebras; and ( )* the functor from MA to CA, adding units
and trivial comultiplications to modules.

Let G, Q (denoted by F in Miller [9]), P and S’ be the algebra functors of
CA, of U, of MA, and of C respectively defined as

4.1 G=G'I, G'(V)=HJ(I1K(V,, n),
Q=QV’, Q(V),=Hom,g (P(m), V)=0H,(I1K(V,, n,),
P=P'J, P'(V),=Hom,g (Q(m), V)=PH,(I1K(V,, n),
and as S'=S'Ij,, where Q(m);=QH™(K(R, j)) and P(m);=PH™(K(R, j)). Then,
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Q(m+1)=P(m) in U (not in MA), since o(m+1);,,=QH™YK(R, j+1))=
PH™(K(R, j))=P(m); for j=1. By the definition we have P=PG and the fol-
lowing formulae

4.2) Homy, (Q(m), N)=N,,,
Homy (P(m), N)~N,,.

As in [10], we can easily get the relation Homg, (M*, C)=Homy, (M, PC)
and the factorization

Homg, (M*, )=Homy,(M, )P

for any object M e MA. In the above context, the following lemma is obtained
essentially in [9, 10].

LemMMA 4.3. (1) There is a convergent cohomological spectral sequence
Es't whose E,-and E.-terms are described as

Eg'=Exty, (M, RLP(C)),
ES{=Extgl (M*, C)

natural with respect to M € MA and C e CA.
(2) For each t, there is an isomorphism of graded vector spances

J(REP)(C)=(R3-P)(IC).

natural with respect to C € CA.

By replacing U and F with MA and P and by the fact that P(H*(K(R, 1)))=
PH*(K(R, 1)) is injective in MA, we obtain this lemma similarly to the proof
of Theorem 2.5 in [9, 10], which uses a general Grothendiek spectral sequence
for the setting (4.4) and (4.5), ‘

4.4) CA 2, MA HommaM.), pg
J J
G P

for M e MA and
4.5)
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As Miller proved in [8, 9 and 10] for any prime p, H(ZB(Z/pZ)")=XH*(B(Z
/pZ)") is a direct summand of the direct limit of ZP(n)=Q(n+1); if n=1, then
H*(XB(Z/pZ)") is a direct summand of

Q2,41 =lim {Q2n+1) 2%, Q(2pn+1) 225 ...}
=lim {XP(2n) -2, XP(2pn) 225 .-},
Since Homy, (Q(m), N)=N,,, Q(m) is projective in MA, and
Extina (H«(Z(BZ/pZ)"), N)=0

for s=1 and N e MA of finite type.

As Homy, (Q(m), N)=N,, the right adjoint Q of X is described as Homy,,
(ZQ(m), ). And the right derived functors R"Q are trivial for n=1. If N is of
finite type, so are QN and R"QN (see Miller [8, 9 and 10]). And then we can
easily obtain

PROPOSITION 4.6. Let p be any prime. If NeMA is of finite type, then
Extioa (H(X' (BZ/pZ)"), N)=0 for s2121.

Assume Y is a space whose mod p cohomology is a free commutative algebra
and of finite type. Then I(H(Y)) is injective in C and R*P(H*(Y))=0 for t=1.
This implies

Extga (Ho(Z' (BZ[pZ)"), Hy(Y))
=Extia (Ho (X' (BZ/pZ)"), PHy(Y))=0

fort=s=1lort+1=s21. Hence, the following evaluation by mod p cohomology
is a natural bijection of sets with base points by Theorem 3.6:

no(Mapy (B(Z/pZ)", Y,), *) — Homg, (Hu(B(Z/pZ)"), H«(Y))
— Hom, (H*(Y), H¥(B(Z/pZ)")).

This completes the proof of Theorem 0.1.
The corollaries are obtained directly.
Finally, we give some examples for Corollary 0.5.

ExAMPLE 4.7. Ley p be any prime. Then there exist following bijections:
1) 7o Map, (B(Z/pZ)", BSp(1))=n, Hom ((Z/pZ)", Sp(1)),
2) moMap, (B(Z/pZ), BU(n))=n, Hom (Z/pZ), U(n)).
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Proor. We show the Bar construction functor B induces the bijection.
Composing B with the cohomology functor, we have the mapping is monic.
So we show it is epic. By simple computations, n, Hom ((Z/pZ)", Sp(1))=
{beZ/pZ; b=a? for some aeZ/pZ}" and =, Hom ((Z/pZ)", U(m))=(SP™(Z/|
pZ))". Then 1) follows from a computation of the commutativity of a homo-
morphism and the cohomology operations #=[T]; 2! and B by using the well-
knwon fromulae

Pvy=vy, Pv,=v,, Pv,=v,+1v5, Pv,=0,
Pwy=wy+2wP V2 4wk Bw,=0

on the modulo p cohomology rings H*(B(Z/pZ))=E(v,)®Z,[v,] and H*(BSp(1))
=F,[w,]. So, we omit the proof of 1). We show 2). Using the well-known
formulae

Pl =ty Q(Uy,...s Uy),
QS 1(Xgseees Xp)seevs SpX g,y X)) =S;(xI71,..., x571),

where Si(ty,..., t,) is the elementary symmetric polynomial of ¢,,..., t, for the
cohomology ring H*(BU(n))=F,[uy,...,u,], and the elementary algebraic fact;
in the algebraic closure F, of F,, a?~! =1 implies a is'in F,; we may take elements
a; in F, and the image of u; is described as Si(a,,..., a,)v5. So we obtain the
example.
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