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Abstract

We determine the L-S category of a total space of a sphere-bundle over a sphere in
terms of primary homotopy invariants of its characteristic map, and thus providing
a complete answer to Ganea’s Problem 4. As a result, we obtain a necessary and
sufficient condition for a total space IV to have the same L-S category as its ‘once
punctured submanifold” N \ {P}, P € N. Also necessary and sufficient conditions
for a total space M to satisfy Ganea’s conjecture are described.
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1 Introduction

The (normalised) L-S category cat(X) of X is the least number m such that
there is a covering of X by m + 1 open subsets each of which is contractible
in X, which equals to the least number m such that the diagonal map A, :
X — [I™ X can be compressed into the ‘fat wedge’ T™ (X)) (see James [8]
and Whitehead [21]). By definition, we have cat({x}) = 0.

A simple definition, however, does not always suggest a simple way of calcula-
tion. In fact, to determine the L-S category of a sphere-bundle over a sphere in
terms of homotopy invariants of its characteristic map is listed as Problem 4 of
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Ganea [2] in 1971. Ganea’s Problem 2 is also a basic problem on cat(X x.S™),
where we easily see that cat(X xS™) = cat(X) or cat(X) + 1: Can the latter
case only occur on any X and n > 17 The affirmative answer had become
known as “the Ganea conjecture” (see James [9]), particularly for manifolds.

Although a tight connection between L-S category and the Bar resolution
(Aso-structure) has been pointed out by Ginsburg [3] in 1963, a homologi-
cal approach could not succeed to solve Ganea’s problems on L-S category.
By Singhof [18] followed by Montejano [11], Gémez-Larranaga and Gonzalez-
Acuna [4], Rudyak [16,17] and Oprea and Rudyak [15], the conjecture is vali-
dated for a large class of manifolds. The first closed manifold counter-example
to the conjecture was given by the author [7] as a total space of a sphere-
bundle over a sphere, using the A,-method with concrete computations of
Toda brackets depending on results by Toda [20] and Oka [14]. Also, Lam-
brechts, Stanley and Vandembroucq [10] and the author [7] provided manifolds
each of which has the same L-S category as its once punctured submanifold.

The purpose of this paper is to determine the L-S category of a sphere-bundle
over a sphere in terms of a primary homotopy invariant of the characteristic
map of a bundle, providing simpler proofs of manifold examples in [7]. Using
it, we could obtain many closed manifolds each of which has the same L-S
category as its once punctured submanifold and many closed manifold counter-
examples to Ganea’s conjecture on L-S category.

Throughout this paper, we follow the notations in [6,7]: In particular for
amap f : S¥ — X, a homotopy set of higher Hopf invariants H? (f) =
{[HZ (f)] | o is a structure map of cat X<m} (or its stabilisation H> (f) =
Y>XH3(f)) is referred simply as a (stabilised) higher Hopf invariant of f,
which plays a crucial role in this paper. For a sphere map f : S*¥ — S*
with k,¢ > 1, we identify HY(f) and H{(f) with their unique elements,
Hy(f) and Hi(f) = X°H;(f), since a sphere S™ has the unique structure
o(S™): 8™ — XQS" for cat(S™) =1, n > 1.

The author would like to express his gratitude to Hans Baues, Hans Scheerer,
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versations and Max-Planck-Institut fiir Mathematik for its hospitality during
the author’s stay in Bonn.

2 L-S category of a sphere-bundle over a sphere

Let » > 1,t > 0 and E be a fibre bundle over S**! with fibre S”. Then E can
be described as S” Uy S™x D' with ¥ : S x St — S" (see Whitehead [21]).
Hence E has a CW decomposition S™ U, e U, e"™ ! with o : S* — S” and



P ST — Q = ST U, et given by the following formulae:

a=Vlgyxst,  Y|gr—1xpttt = Xao Py, Y|prust = Wolwpx1gt),

where we denote by xs : (C(A),A) — (Cy, B) the characteristic map for
f:A— Bandlet w, = X(us—1-7s). When r = 1, the L-S categories of £
and @ are studied by several authors; especially by Singhof [18] and Oprea-
Rudyak [15] in the case when r = ¢ = 1. We summarise known results.

Fact 2.1 Let r = 1. Then we have the following.

(t=0) cat(@xS™) =2, cat(Q) =1, cat(E) = 2, cat(ExS™) = 3.

(t=1, a=+1) cat(@xS") =1, cat(Q) =0, cat(E) = 1, cat(ExS™) = 2.

(t=1, a=0) cat(@xS") =2, cat(Q) =1, cat(E) = 2, cat(ExS") = 3.

(t=1, a#0,£1) cat(@xS") =3, cat(Q) = 2, cat(E) = 3, cat(ExS") =
4.

(t>1) cat(@xS™) =2, cat(Q) =1, cat(E) = 2, cat(ExS™) = 3.

When r > 1, we identify HY () with its unique element H, (). We summarise
the known results (due to Berstein-Hilton [1]) from [7, Facts 7.1, 7.2].

Fact 2.2 Let r > 1. Then we have the following.

(t<r) cat(@xS") =2, cat(Q) =1, cat(F) = 2, cat(ExS") = 3.

(t=r, a==xlg) cat(@xS") =1, cat(Q) =0, cat(F) = 1, cat(ExS™) =
2.

(t=r, a#=+xlg) cat(@xS") =2, cat(Q) = 1, cat(F) = 2, cat(ExS") =
3.

(t>r, H(a)=0) cat(@QxS") =2, cat(Q) =1, cat(F) = 2, cat(ExS™) =
3.

(t>r, H(a) #0) cat(@xS") = 3 or 2, cat(Q) = 2, cat(F) = 2 or 3,
cat(ExS™) = 3 or 4.

By [6] and [7, Theorem 5.2, 5.3, 7.3], the following is also known.
Fact 2.3 Whenr > 1,t>r and a # £1, we also have the following.

(1)  Y"Hi(a) = 0 implies cat(QxS™) = 2, and X" Hy(a) # 0 implies
cat(@xS™) = 3.

(2) cat(E) = 2 if and only if H5 (1)) 3 0, and cat(E) = 2 implies cat(ExS™)
= 3 for all n.

(3) YUHF () 3 0 implies cat(ExS™) = 3, and X" hy(a) # 0 implies
cat(ExS™) = 4.

Remark 2.4  When « is in meta-stable range, Hi(a) : St — QS"%QS"
is given by the second James-Hopf invariant hy(a) : St — BS™IAS™™1 com-
posed with an appropriate inclusion to a wedge-summand. Thus we may regard



ho(a) = Hy(«) when « is in meta-stable range.
Our main result is as follows:

Theorem 2.5 Let cat(Q) = 2 with t > r > 1, Then H5 (1)) contains 0 if
and only if X" Hy(a) = 0. More generally for a co-H-map (3 : SV — S"™ with
v<t+2r—1, HY(oB) = B*HS () contains 0 if and only if X" H,(a)of3 = 0.

The main result is obtained by the following lemma for @ of cat(Q) = 2 with
t>r>1.

Lemma 2.6 Hj(v) 3 £[(ix1gg.aq)eX" Hi ()], where the bottom-cell inclu-
sion i : 8”71 — QQ denotes the adjoint of the inclusion i : S™ — Q.

By combining above facts with Theorem 2.5, we obtain an answer to Ganea’s
Problem 4:

Theorem 2.7 (Table of L-S categories) For an S"-bundle E over S'*
and its once-punctured submanifold E~{P} ~ Q, we have the following table:

Conditions L-S categories
r t ! RxS™ | Q| E| ExS"
t=20 2 112 3
a==l1 1 01 2
r=1 P
a a=0 2 112 3
a#0,+1 3 213 4
t>1 2 112 3
t<r 2 112 3
a==l1 01 2
t=r
r>1 a# +1 2 1|2 3
Hi(a) =0 2 112 3
t>7| Hy(a) #0 & S"Hy(a) =0 2| 3
3or2 | 9
3 or4d
S H (o) # 0 (1) 3| 7
(2)
(1): 3" Hy(a) = 0 implies cat(QxS™) = 2 and (2); S H (o) = 0 implies cat(ExS™) = 3 and
| =t (o) # 0 implies cat(QxS™) = 3. ' SrEntlpy (@) # 0 implies cat(ExS™) = 4.



3 Applications and examples

Firstly, Theorem 2.7 yields the following result.

Theorem 3.1 Let a manifold N be the total space of a S"-bundle over St*
with a characteristic map W : S"xS* — 8", t >r > 1, and let &« = V|g:. Then
cat(N ~ {P}) = cat(N) if and only if Hi(a) # 0 and ¥"Hy () = 0.

This theorem provides the following examples.

Example 3.2 Let p be an odd prime and o = ngocr1(3)ocv; (2p). Then we have
that Hi(a) = a1(3)ecy(2p) # 0 and X*H,(a) = 0 by [20]. Let N, — S~
be the bundle with fibre S* induced by Y(ay(3)oc (2p)) : S¥P~2 — S* from the
bundle CP® — HP' = S* with fibre Sp(1)/U(1) = S?. By the arguments given
in [7], we obtains that N, has a CW-decomposition as N, ~ S?U, e*?~2 U, e*?.
Then Theorem 3.1 implies that cat(N,) = cat(N, \ {P}) = 2.

Example 3.3 ([7]) Let p be a prime > 5 and a = ngocr1(3)oaa(2p) as in
[7]. Then we have that Hy(a) = a1(3)eas(2p) # 0 and X2Hy(a) = 0 by [20].
Let L, — S~ be the bundle with fibre S? induced by S(ay(3)oa(2p)) :
Sp=4 — 8% from the bundle CP?* — HP' = S* with fibre Sp(1)/U(1) = S
By the arguments given in [7], we obtains that L, has a CW-decomposition as
L, = 5% U, e~ U, %2, Then Theorem 3.1 implies that cat(L,) = cat(L,

{P}) =2
Secondly, Theorem 2.7 also yields the following result.

Theorem 3.4 Let a manifold M be the total space of a S™-bundle over S'!
with a characteristic map W : S"xS" — S™ t >r > 1, and let a = V|g:. If
Y'Hi(a) # 0 and Hi(a) = 0, then M is a counter-example to the Ganea’s

conjecture on L-S category; more precisely, cat(M) = cat(MxS™) = 3 if
Y Hi(«) # 0 and X" Hy(a) = 0.

This theorem provides the following manifold counter examples to Ganea’s
conjecture on L-S category.

Example 3.5 Let p = 2 and o = ngoniees. Then we have that Hy(a) =
nioes # 0, X2H (o) # 0 and X°H (o) = 0 by [20]. Let My — S be the
bundle with fibre S? induced by X(n3oes) : S — S* from the bundle CP? —
HP! = S* with fibre Sp(1)/U(1) = S% By the arguments given in [7] we
obtains that My has a CW-decomposition as My ~ S? U, e'* Uy e'®. Then
Theorem 3.4 implies that cat(MyxS™) = cat(My) = 3 for n > 4.

Example 3.6 ([7]) Let p =3 and o = ngocv1(3)o2(6) as in [7]. Then we
have that Hi(a) = a;(3)oas(6) # 0, X2H (a) # 0 and S H (a) = 0 by [20].



Let My — S be the bundle with fibre S? induced by X(ay(3)ocs(6)) @ S —
S* from the bundle CP® — HP! = S* with fibre S*. By the arguments given
in [7] we obtains that Mz has a CW-decomposition as Mz ~ S? U, e'* Uy €'®.
Then Theorem 3.4 implies that cat(Mzx S™) = cat(Msz) = 3 for n > 2.

Finally, Theorem 2.5 and [7, Theorem 5.2 imply the following result.

Theorem 3.7 Let a manifold X be the total space of a S™-bundle over St
with a characteristic map ¥ : S"xS" — S" t >r > 1, and let « = V|s:. When
Hi(a) # 0 and B is a co-H-map, we obtain that X () = S" U, € Uyop e+
is of cat(X () = 3 if and only if ¥"Hy(a)of3 # 0.

Remark 3.8 All examples obtained here still support the conjecture in [6].

4 Proof of Lemma 2.6

Let cat(Q) = 2 with ¢ > r > 1. In the remainder of this paper, we distinguish
a map from its homotopy class to make the arguments clear.

Here, let us recall the definition of a relative Whitehead product: For maps
f:XX - Mandg: (C(Y),Y) — (K, L), we denote by [f,g]" : X*Y =
C(X)xY UXxC(Y) — MxL U {x}xK the relative Whitehead product,
which is given by

[ 91 oy Az, y) = (f(tAz),g(y))  and
1/, g]rel\XxC(y)(SC,t/\y) = (%, g(t\y)).

Also a pairing F': MxL — M with axes 1p; and h : L — M (see Oda [13])
determines a map

(FUxp): (MXLU{x}xK)— (MU, K,M)

by (F'U Xa)|lmuxe = F and (F U xp)|sjxx = Xa, Where x5 : (K,L) —
(MU, K, M) is a relative homeomorphism given by the restriction of the iden-
tification map M U K — M U, K. Then we can easily see that ¢ : S™ — @
is given as

¢ = (\P U Xa)o[bra C(Lt)]v (41)
where ¢, : S¥ — S* and C(y,) : C(S*) — C(S*) denote the identity maps.
We denote by j¢ : PH(QQ) — P>®(QQ) the classifying map of the fibration

P9 BHYQQ) — PQQ) and €2 = €20, where €2 : P®(QQ) — Q is a
homotopy equivalence extending the evaluation map e? =ev : 2OQQ — Q.



Let 0, be the homotopy inverse of €¥. Then we may assume that o.|sr =
j%0(S") for dimensional reasons.

Proposition 4.1  The following without the dotted arrows is a commutative
diagram where the lower squares are pull-back diagrams.

E3(QQ) QQ+E2(QQ) Q0Q+00Q+Q0
ng [j?ngQOXp?Q]rel [e?,(e?xe?)Ox[L’L]]rel
PA(0Q) ——5— PX(2Q)XZQU {(+} < PX(2Q) TQ
) gQQ 06 - ego Xe?U*Xego
Q— v QxQ P QxQxQ.
(4.2)

Therefore, there is a lifting of, of Ag and hence a lifting oy of the identity 1¢.
Remark 4.2  The homotopy fibre QQ+QQ*QQ — T3 Q of the inclusion

T°Q = Qx(QVQ) U {+}x(QxQ) — Qx(QxQ)

is given by a relative Whitehead product [e?, (e?xe?)oXM]“ﬂ, where + denotes

the identity 1s0g and
X ¢ (C(QQ*QQ), QQ*QQ) — (EQQ X XQQ, EQQVEQQ)
denotes a relative homeomorphism.
A lifting of, of Ag in diagram (4.2) is given by the following data:
oolse(y) = (70 (S)(y), 0(S7)(y)) fory € 5",
and for uAz € (0,1]xS*/{1}xS" = Q ~ 5" with u(z) = (21, x2),

(%0 (S™))oar x 0(S")ea)oHy (2unz), if u <1
(XOL(QU_ 17$1)7>A<a(2u_ 17-7:2))7 lf’LLZ %,

O'6|Q\ST(U/\37) = {
where H, is a homotopy Ag: ~ py in S*xS*, py, = X1y : SF — SFv GF
denotes the unique co-H-structure of S* and Y, is a null-homotopy oucoXa :

(C(51), 81 — (Q,87) — (P(QQ),im(j%c(S7))) of j%0 (S )ear ~ .

Since the lower left square of diagram (4.2) is a homotopy pullback diagram,
oy and the identity 1¢ defines a lifting o¢ : Q — P?(QQ) of 1.



Proof of Proposition 4.1. By [6, Lemma 2.1] with (X, A) = (P*(2Q), {*}),
(Y, B) = (P*(2Q),XQQ), Z = P*(QQ) and f = g = 1p=(aq), we have the
following homotopy pushout-pullback diagram:

E*(QQ) {*}
P HPO
£00 P20Q) 2% PX(Q0)x£0Q U {x} x P*(QQ)
e2Q HPB egoxe?U*xeoQo
0— 0xQ,

(4.3)

where we replaced P*°(QQ) by @ in the bottom, since P> (QQ) is the homo-
topy equivalent with Q by 2 : P®(QQ) — Q and o, : Q — P>(QQ).

By [6, Lemma 2.1] with (X, A) = (P*(QQ), {+}), (Y, B) = (P*(QQ), 220),
Z = {x} and f = g = %, we have the following homotopy pushout-pullback
diagram:

QO E*(QQ) Py QQ
pra HPO
[j?nggoxpsz@]rel
E(QQ) QQ+E2(QQ) —2 P®(QQ) x20Q U {x} x P=(QQ)
HPB eoQoXelQU*XeoQo
{*} QxQ,

(4.4)

where x 00 : (C(E*(QQ)), E*(2Q)) — (P%(QQ),XQQ) is a relative homeo-

morphism.

The above constructions give a standard QQ-projective plane P?(2Q) and a
standard projection py@ : E3(QQ) — P2(QQ). In fact, the diagonal map A}
Q — Q@xQxQ is the composition (19xAg)oAg and there is the following ho-
motopy pushout-pullback diagram by [6, Lemma 2.1] with (X, A) = (Q, {*}),



(Y, B) = (@xQ,QVQ), Z = QxQ, f =pr; and g = Agopry:

{x}xTQK {x}xQ

HPO

QX XOQQ—= P>(QQ)xEQQ U {*} x P*(QQ) T30

egoxe?U*XeoQo HPB

QXQ——— = QxQXQ.

By combining this diagram with diagrams (4.3) and (4.4), we obtain the de-
sired diagram. QED.

Since there is a right action of S'xS* on S"xS" by W2 = (UxW)o(1xTx1) :
STxSTx Stx St — S"x 8", we obtain the following.

Proposition 4.3  The map ojotp : S* — P (QQ)xXQQ U {x} x P>(QQ)
satisfies

ot ~ (o0 (7)) x 0 (S7))o%5 U (Xa V Ra))eltr, C 1),
where \I’(Q) = \I/2|(Srvsr)><(5tv5t) . (ST\/ST>X(St\/St) — S"VST.

Proof. By (4.1), we know opot) = apo(¥ U Xa)o[tr, C(14)]" = 05o(¥ U x4) =
(0 limo(smy o U agoxa)eltr, C(1)]™, where we have

0-6|imU(ST)0\IJ = leOO'(ST)OASrO\IJ = leOO'(ST)o\I/2O<ASr XAst) and
0goXa = (700 (S7))earx (jier (7))o )o Hy + (XaV Xa)oC (1),

where the addition denotes the composition of homotopies. Using the same
homotopy H; : Agt ~ u;, we obtain homotopies

0-6|ima(ST)O\I/ ~ leOU(ST>°\IJQO(ASTXNt> and 0'60)(,1 ~ ()ACa\/Xa)OC(/JO
which fit together into a homotopy

0go(¥ U xa) ~ (((7700(S7)) x 7(57))oWPe(Agrxj1¢) U (Ra V Xa)oC ().

Then the homotopy H, : Agr ~ u, gives the homotopy relation

oot ~ (((j17e0(S7)) x 0(S7))oW sty X 1) U (Ra V Xa)oClpte))oltr, Ce)],



which yields oot ~ (((j20(57)) x 0(S7))5W2U (o V Xa))elptr, Cp)] ™. QED.

Hence by the definition of oy and ), we obtain the following proposition.
Proposition 4.4  We have Agopy@oHS® (¥) ~ [0 (S7), Xa]™.
Proof. By the definition of oy, we obtain

Agoaoot) ~ gty ~ (10 (7)) X 0(ST))eWF U (Ra V Xa))olr, C 1)

Let in; : Z — ZVZ be the inclusion to the i-th factor. Then [u,, C'(u)]™ :
STt — (S™VST)x (STVS!) can be deformed as

(1, C (1) ~ [iny oty + ing oty, ing oC (1) + ing oC'(14)]"
~ [ing oy, ing oC'(14)]" + [ing ot, ing oC' ()]
+ [ing ot,., ing oC'(£4)]™ + [ing oty., ing oC (14)]™
~ [ing ot,, iny oC'(14)]™ + [ing ot ing oC'(1)]™
+ [ing oty, ing oC'(24)]" + [iny ot,, ing oC'(14)]™

n (S™VS")x (St S"). Thus we have

Agoogoth ~ (((j200(S™)) x 0(ST))oW2 U (Xa V Xa))o[ing oty ing oC'(1y)]™
+ (((j2o0(S™)) x 0(S")eWG U (Xa V Xa))e[ing otr, ing oC'(2¢)]™
+ (o0 (S7)) x 0(S)oWF U (Xa V Xa))o[ing oty ing oC'(1y)]"
(((J?oo S7)) x a(57))oW5 U (Xa V Ra))eliny oy, ing oC' ()"
~ ing o(j{? oo(S’")o\P U Xa)eltr, C(u)]”1
+ 1ng 0(31 oo (S"

)O\II U )A(a) [L“C’(Lt)]rel
+ [Ra 200 (ST + [200(S), Xa]™

Y

where T : "™ = §7 145t — StxSr—1 — St ig a switching map. Since

[Xa» 1200 (ST ~ % in P®(QQ)xTQQ U {x}x P>(QQ), we obtain
Agooget) ~ ing o0goth + ing oagot) + (o0 (S7), Kol
On the other hand, we have

AQOEQ¢OU<ST+t)

(J?XJ )oAs0qoX Qe (S"T)

— (2% )o( S0 (™) X Eer (SH))eA g
~ (7 omwoaw“)vjé?omwoaw”t)>our+t

= N1 000t + iNg 0T 501,

Since pP9oHI (1)) is the difference between oot and j2oX Qoo (S7), we
have the desired homotopy relation. QED.
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Next we show the following description of Y, up to homotopy.

Proposition 4.5  For some §y : S — XQQ, there is a homotopy relation
X~ J5ox,00°C(Hi(a)) + jiod : (C(S"), 8') — (PX(QQ), im(je0(S57))),

where the addition is given by the coaction (C(S?),S?) — (C(S*)vSH1 SY).

Proof. Let X/, : (C(S%),S%) — (P?(QQ),XQQ) be the map given by the de-
formation of o to p?eHi () in £QQ and by Xp0oC(Hi(a)) : (C(SY),S") —
(P*(QQ),20Q) as in [6, Lemma 5.4, Remark 5.5], where we denote by C
the functor taking cones. Then by definition, we have x!, ~ XpSI)QOO(Hl(Oé))
in (P%(QQ), 2QQ) and jPox g = j¥o0 (S )oa = Xq4l|g:. Hence the difference
between Y, and szox’a is given by a map ¢ : S — P>*(QQ)~Q, which can
be pulled back to dy : S — 3QQ (C P*(2Q)) (see the proof of [6, Theorem
5.6]). Thus we have Yo ~ jeox, + j2ody ~ jQQoxpionC(Hl(&)) + j%00. QED.

Now we prove Lemma 2.6 using Propositions 4.1, 4.4 and 4.5:

(1, 78 ox,00] Ve HS (1) ~ Dgopy CoH5® (¢) ~ [jo0(S7), %a]™
~ [j700(57), j3ox,0aC (Hi (@) + [j{ea (S7), ji'do]
= £[j1Y, j ox 0] e (ix1aquaq)o(Lsr-1xHi(a)) + (VT o[ (S"), do]-

Since [0(S"), dp] ~ 0 in XQQxXQQ), we proceed as

[, G5’ ox, @] o HF® (1) ~ £[j7, 5 ox,00] o (ix10guag) S  Hi (@).

] rel

Since the relative Whitehead product | j? , j2Q oX,0Q induces a split monomor-
1

phism in homotopy groups, we have HI () ~ i(%*ng*QQ)oE”Hl (). Thus
we obtain H5 () 3 [H3°(¥)] = £[(1%lageag)oX" Hi(a)]. This completes the
proof of Lemma 2.6.

5 Proof of Theorem 2.5

In this section, we always assume that 5 : S¥ — S™ is a co-H-map and
v <t+2r—11If [XH(a)oB] = 0, then we have Hj (¢o3) > [H3"(¢))of3] =
+([(i*1ageaq)oX" Hi(a)sB] = 0 by Lemma 2.6. Hence we show the converse.
There are cofibre sequences as follows:

7

St N ST C_) Q i> SH_I, Sr+t i) Q c]_> E i) ST+t+1'
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By the arguments given in Section 4, we know there are ‘standard’ structures
o(S7) : ™ — PL(QS7) and 0¢ : Q — P%*(QQ) for cat(S”) = 1 and cat(Q) = 2,
respectively, where og|sr = o(S7) in P?(QQ).

Let o be a structure for cat(Q) = 2 with HJ(1))o3 ~ 0 in E3(QQ). For dimen-

sional reasons, o|sr is homotopic to o(S™) which is given by the bottom-cell
2Q

inclusion. We regard €§ : P2(QQ) — Q as a fibration with fibre E3(QQ) 2

P?(QQ) and oy as a cross-section of eg. Then by the definition of a structure,

we have egoa ~ 1g. Thus we obtain the following homotopy relations:
| ~ ( Sr — | . P2 (Q Q Q o ~u Q o =1
olsr ~a(S") = oglsr in ), €500 ~ efoay Q-

Thus the difference between o and oy is given by a map 7, : S — P?(QQ)
which can be lift to E*(QQ):

o~og+7 in PQ(QQ),

where the addition is taken by the coaction p : Q — Q Vv S™! along the
collapsing ¢ : Q — S*™!. Thus we obtain that cot) ~ {a¢, v }eprer) in P?(QQ),
where {0¢,7%} : Q@ V S — P%(QQ) is a map given by {00,70}/qo = 00 and
{0, 70} st+1 = 70

By the definition of 1, we have pr; opot) ~ 1 and pryopor) ~ qorp ~ x, and
hence we obtain

poth ~ (Y V x)op + afu, )] in QV S for some a € Z,

where ¢ : S" — Q — QVS'"™ and ¢, : ST — QVS'! are inclusions.
Hence by putting v = avy, we obtain

o) ~ goetp +[0(S7),7] in PA(QQ),

which yields the following homotopy relation in P?(QQ) for a co-H-map £3:

P32 HZ (1h)of3 ~ P*(Q))oa (S"H)of3 — aotpof3
~ P2(Q)oa(S"T)of3 — (0gotof + [0(S7), 7]oB)
~ (P2(Q)oa (ST) — agotp)o3 — [0(S"), 7]o3 (5.1)
~ py Qo HG (¥)o — [0(S"), ]
~ £py5 S Hy(a0)of3 — [0(S"), )3

To proceed, we consider the following commutative ladder of fibre sequences.

QS” T
pzs S

QTTC . ES(,TST> PZQTST) ©2 Tr
QQ Q

QQ—— E*(QQ) —— P2(2Q) ——~ Q.
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Since the pair (E*(QQ),E?(Q2S7)) is (t+ 2r — 1)-connected and t+1 < r+t <
t+2r—1,7 > 1, we have 7,1 (E3(QQ)) = 701 (E3(2S7)) and 7,4 ( E3(QQ)) =
T4t (E3(QS7)). Since v can be lift to £3(QQ) and we know m 1 (E?(QQ)) =
T (E2(Q2S7)), we may regard that the image of 7 is contained in P?*(QS").
Hence ~ vanishes in P*(§2S"), and so is [0(S"),7]. Thus [0(S7), 7] can be lift
to 4 : ST — E3(QS7) as [0(S7), 7] ~ pPo o4 in P2(QS7).

Therefore, the hypothesis H(1))o3 ~ * together with the homotopy equation
(5.1) implies the homotopy relation

P57 [sr-tmz sy oS Hi(a)off ~ £p3® 4o in P*(QQ). (5.2)
Since p¢ induces a split monomorphism in homotopy groups and T.(E3(00Q))
>~ 7, (E3(287)) for v < t + 2r — 1, (5.2) implies a homotopy relation

pgST’Sr—l*E2(QSr)oErH1(Oé)oﬁ ~ :i:[o‘(ST),’y]oﬁ in PZ(QST)

To show X" H;(«)of is trivial, we use the following proposition obtained by a
straight-forward calculation (see Mac Lane [12], Stasheff [19] or [5], for exam-
ple) of Bar resolution:

r

QS
Proposition 5.1  The composition map § : E™(QS") " P™(QS") —
Pm™(QS")/EQST ~ XE™(2ST) induces a homomorphism

O, : Ho(A™QS™,Z) — H,(A™QS™; Z),

which 1s given by

a*(l’ao@xal@ Ce ®xam) — Z(_l)ixao(g) e ®xai—1+ai® Ce ®xam’
i=1

where ag, -+ ,aym > 1 and x € H,_1(2S"; Z) is the generator of the Pontryagin

ring H.(Q2S™;Z).

Corollary 5.1.1  The composition map & : S™'+E*(QS") C E3(QS") %
YE?(QS7) — LE?(QS7)/S(ST1%QST) induces an isomorphism

Oy - Ho(S"PAQS"AQS™:Z) — H,((QS"/S™™1) AQS™; 7Z),
which is given by 0. (x@xI@z*) = —2 T @a® for j,k > 1.
Thus we obtain a left homotopy inverse of p§*" |gr-1.p2(qsr) : " *E?(QS") —
P?(2S7) as a composition map P%(QS") — P?(Q2S57)/LQS" ~ LE?(QS") —
YEA(QST)/S(STQST) ~ STk E?(QST), where the image of X" Hy(«) lies

in ST7'%FE2(QS7). On the other hand by the fact that im o (S™) C XQS™, we
also know that the Whitehead product [¢(S"), 7] vanishes in the quotient space
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P?(257)/¥QS", and hence never appears non-trivially in S~ 1+ E?(QS"). Thus
we conclude that X" H;(a)of is trivial.
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