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§1. Introduction

Let X be an A,-space in the sense of Stasheff [10, 11]. We recall that there
is a sequence of quasi-fibrations {p,} with fibre X as follows:

X=F'C ,F2C—  ,F3C ,...C ,En

I e Jos I

pt=P0C s Pl=SX < P2 ... Cy Pr-1 C P

where 1) EF has the same homotopy type as the k-fold join of X,
2) EF is contractible in E¥*1,
3) P* has the same homotopy type as the mapping cone of py.

The space P* is called the X-projective k-space. The purpose of this paper is
to determine the ring structure of the Z/2-graded K-ring of the X-projective k-
space, k=3. For k=2, the structure of K*(P?) has been studied, for X satisfying
suitable condition, by several authors, e.g. [12]. In §3, we shall construct a
spectral sequence of Stasheff type [11], which converges to K*(P"), and define
an element x in K*(X) to be A,-primitive, k<n (Definition 3.3), a property which
is proved to be equivalent to the existence of u € K*(P¥) satisfying

s*(x)=¢3-- i),

where s* is the suspension isomorphism, and ¢} is the homomorphism induced
from the inclusion ¢;: Pi-'—P? (Proposition 3.4). In [5], the author gives a
certain decomposition of E¥ and P¥, k<n. Making use of this decomposition
and its Mayer-Vietoris exact sequence, we obtain the following Theorems.

THEOREM A. Let X be l-connected finite A,-complex, n=3, of rank L
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Suppose K*(X) is generated by A,-primitive elements {x;j}i<j<i k<n, with
s*(x;)=¢%-¢¥(u;) for some uj€ K*(P*).¥)  Then, for any choice of {u;}, there is
an isomorphism of rings over K, =K *(pt):

K*(Po)y= K1y, .., u]®S,,
where S, as defined in §3, is an ideal of K*(P¥) satisfying
¥ (S =0,
S, K*(P*)=0,

and K+ [u,,..., u,] is a truncated polynomial ring over K, of height k+1.

It is an immediate consequence of Theorem B below that, for k<n-—1,
there exist A,-primitive generators {x;} (see §5). Theorem A generalizes Co-
rollary 2.5 of [4].

THEOREM B. If X is a 1-connected finite A,-complex, n=3, then the follow-
ing two conditions are equivalent:

1) the spectral sequence {E**, d,} of Stasheff [10] collapses.

2) K*(X) is generated by A,-primitive elements.

COROLLARY. Let X be a 1-connected finite A,-complex, n=3. Then
K*(X) is an exterior algebra on odd dimensional A, - 1-primitive elements.

This paper is organized as follows. Based on the theorem of J. P. Lin and
L. Hodgkin, in §2, we present the K-cohomology of X and E¥, k<n. In §3, we
introduce the spectral sequence of Stasheff type which converges to the K-
cohomology of XP". Finally in §4 and §5, using results of §2 and §3, we prove
the above theorems.

The authur would like to express his gratitude to Professors M. Kamata,
M. Kato, M. Mimura and S. Oka for their valuable comments.

§2. Preliminaries

Let us recall some results which are used to prove Theorem A and The-
orem B. If a finite 1-connected CW-complex X is an A;-space, then J. P. Lin
[6, 7, 8] showed that its K-cohomology ring is torsion free.

*) As in Theorem 2.1, K*(X) becomes an exterior algebra generated by {x;} and deg x;=—1,
deg u;=0.
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THeoreM (J. P. Lin). If X is a 1-connected H-complex of finite type and its
Pontrjagin ring with coefficient ring Z|2 is associative, then the K-ring of X
has no torsion.

Moreover, making use of Hodgkin’s observation in K-rings of Lie groups,
we get

THEOREM 2.1 (J.P. Lin, J. R. Hubbuck, L. Hodgkin [8, 4, 3]) If such
X admits an A,-structure, n=3, then K*(X) is the exterior algebra on odd di-
mensional primitives.

Thus in the remainder of this paper, a space X is always assumed to be a
1-connected finite 4,-complex with n greater than 2. We introduce the following
mappings, as defined in [10].

U: X X EF —— E¥, 1<k<n-1,
such that
E*1xERU, X x C(E¥).

By induction, the Mayer-Vietoris exact sequence of (E*\U, X x C(E¥);
E*\J, X xCy, X x Cy), where C; U C,=C(E¥), C; n C,={x} x E¥, C;=[0, 1]x
E*[[0, 1] x {#}, where * is the unit of X, C,=C(EF), and the homotopy equi-
valences E¥*!~Ek\J, X x C(E*) imply that K*(E¥) can be described in terms of
the elements of K*(X) (Remark 2.3). The Mayer-Vietoris exact sequence is as
follows;

oo s R*(E*1) — R¥(X) @ R*(E¥) 2B,
2.1)
K*(XXE") I TTEN K*+1(Ek+1) — .

where pry is the canonical projection and 4, ; is the connecting homomorphism.
We recall the inclusions X E* and E¥GEF*! are all null-homotopic.  So 4,44
is epimorphic. For xe K*(X) and ee K*(E¥), we define

xxe=A4,,,(xxe).

Then any element of K*(X x E¥) is represented by a linear combination of xxe,
x e K*(X) and e e K*(E*).

LEMMA 2.2. The homomorphism A, restricted to R*(X)®K*(E¥) is an
isomorphism onto K*(E¥*Y).
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Proor. This can be obtained by combining the exactness at K*(X x E¥) of
(2.1) and the fact that the homomorphism K*(E¥+1)— K*(X)@® K*(E*) is a zero
mapping. Q.E.D.

We define isomorphisms
AG+1) . (K*(X)@,,_@K*(X))j SN Izj+k(Ek+1)

by the following formulas,
1) 4D is the identity mapping,
2) A®D =4, i (1@4®),

where p: K¥(X)® K*(E¥)—»K*(X x E*1) is the cross product. We denote
A®D(X @+ @Xp 4 1) bY Xp#--xX 4.

REMARK 2.3. We may take the module basis ik %Y Ay} is a module
basis for R*(X)} for R*(E*+1).

According to E. Thomas [12], the element e e K*(E¥) is said to be primitive
with respect to y iff uf(e)=xx 1+ 1x ¢’ for some x € K*(X) and ¢’ e (E¥).

PROPOSITION 2.4. For x,,..., x,_; € K¥(X), k<n,
(%) A (Pri-1)*(x %+ %X, _ q)
=E.,;;%(_1)jx1*"'*xj—1*(A2M*(xj))*xj+1*"'*xk—1,

where M: X x X—X is the multiplication defining the H-space structure on X,
M*(x)=M*(x)—xx 1—1xx and prge-1: X x ES-'>E*~! s the canonical pro-
jection.

ProOF. Let us consider the following commutative diagram [5];
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2.2)

. — R*(P) —  R¥(p)@R*(P2) —s
[t |oreot..

—s R*EY — R*X)®R*EYH) —
I |wen,

o —> R¥(X X E¥) — R¥(Xx X)®K*(X x E*1) —
K*(E*-1) G-l RrF(pR-ly
l(prsk—l)* lnt
R*(X x Ek-1) _4x,  R**1(EF) —, ..
1(Mx1)* lu;‘:
R¥*(X x X x Ex-1) 4k, R*+1(X x E¥) — ...,
where 8,_,, 4, and 4 are the suitable connecting homomorphisms for the

Mayer-Vietoris exact sequences. We prove this proposition by induction on k.
The formula (x) holds for k=2, because we can see

Ay (pre)*(x)=A4,(1x x)
=A,(1 x x)+ 4,(— M*(x) +x % 1)= — 4,M*(x).

Suppose that the formula (*) holds for k. Since 4,,,uf =0 by (2.1), we proceed
as follows:

g1 (Prp)*(x %2 X)
=i 1 (Prp)*(epxe 2 X) — Ay (X %% Xy)
= Ay 1(Prp)* (o2 xp) — Ay R Ai(x g X (X% X))
=Apy 1 (Pre)* (X% #X) — A4 1 A(M X 1)*(x ¢ X (X% %X;))
= Ay (1 X Qegxesxp)) — Ay 1 A1 (1 X X X (X% %X))
— Ay 4 1(xy X A(PrEec-1)*(X%-+%X;))
— Ay 1 A (M*(x ) X (X% %X)) -

Applying the inductive hypothesis to Ay(1 X (xp%-++xX;)) = A (prgr-1)*¥ (%% Xy),
we have ’
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Ay 1 (Prg)* (%)
= —Azﬁ*(%)*xz*“'*xk
+ X (=D gk kA, MA(X )% 4 5%
=2 EEL (=) x e x kA M )% 4 %0043 Q.E.D.

Since 4,M*(x)=3 ;> u;*v;, where M*(x)=3 5, u;xv;+xx 1 +1xx, x is
primitive if and only if 4,M*(x)=0. Hence Lemma 2.2 and Proposition 2.4
imply the following.

PROPOSITION 2.5. Let x,..., X, be non-zero elements of K¥(X). Then the
following two statements are equivalent:

1) Each x; is primitive,

2) xy*---xX; is primitive with respect to .

§3. The Stasheff spectral sequence

Suppose that X is an 4,-space. Then there is the following exact couple:

D% _a | pD*%
3.1 \/
E**
where
0, i<0,
Ki(py), i=0,

Di-i=
Kii(P?), 1<is<n,

Kiti(P"), n+1<i
0, i<0 or n+1Zi,

EbJ =¢ Ki(pt), i=0,

Ri+i-YE¥), 1<izn,

and «: D/ —»Di~1.i+1 js induced from the inclusion mapping ¢;: Pi-!— P!, i<n,
and for izn+1, a is the identity. p: D»/—Ei*1.j-1 is induced from the pro-
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jection mapping p;,,: Ei*'->P! i<n—1, and for i=n, B is the zero-mapping.
y: E4J—DbJ is the connecting homomorphism, i<n—1, and for i=n, y is the
zero-mapping.

DEFINITION 3.1.  We define the submodule d, of E**@E** and the sub-
modules Ker d,, Im d,, Dom d, and Ind d, of the module E** as follows:

d,> (x, y) iff there exists an element z € D** such y = f(z), a"~1(z) =y(x),

Kerd,ex iff (x, 0)24d,,

Im d, 5 x iff there exists an element y € E*-* such that (y, x) € d,,

Dom d, > x iff there exists an element y € E** such that (x, y) e d,,

Ind d,> x iff (0, x) e d,.
Then Kerd,_;/Imd,_;=Domd,/Indd, is the r-th term E** of the spectral
sequence induced by the above exact couple. Therefore we obtain the following.

PRrROPOSITION 3.2. If X is an A,-space, then there exists a spectral sequence
{E¥*, d,} which converges to K*(P") such that d,=0 for r=n and E}*=
E¥, = =E%*

DEFINITION 3.3. We say that xe K*(X) is A,-primitive iff xeKerd,_;.
x is said to be (k— 1)-transgressive iff there exists y € K¥+1(P¥~1) such that 5j(x)=
p¥(y) where 8}: K¥(X)—K**1{(E, X) is the connecting homomorphism. (cf. .
E. Thomas [12])

PROPOSITION 3.4. If X is an A,-space, the following three statements are
equivalent for x € K¥(X), k<n:

1) x is Ag-primitive,

2) x is (k—1)-transgressive,

3) s*(x)=c%--¢X(p) for some y e K¥+1(P¥),

Proor. The equivalence of 1) and 3) follows readily from the definition.
We are left to prove the equivalence of 2) and 3). Consider the following com-
mutative diagram,

(3.2)

R*(X) =——— RK*(X) —— K¥*(X) ——
J# l *|
K*+2( Dk, E¥) Ok K*+1(E¥, X) —— K**1(Dk, X) — K**(CX, X) =|s

* % * ~
Cr+1 p ¥t ~

ok

K*+2( Pk, pk=1) Ji Ra+1( ph-1) S R*+1( Pk g R**1(SX) =R**1(SX)

K*(X)
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where D* is a space, defined in Stasheff [10], such that (D¥, E¥) is homotopically
equivalent to (C(E¥), E¥) and for k<n—1, D* is a subspace of Ek*1, Opyq 1S
a mapping from D* to P* which is an extension of p,: E¥—P*~! for k<n and the
restriction of p,,, to D* for k<n—1. The second row with the last term.
K**1(CX, X) removed, and the third row with the last term K** 1(SX) removed
are exact. Assume that x satisfies 3). Then there exists ye K**1(P¥, pf)=
K*+1(P¥) such that s*(x)= ¢3---¢¥(y). From the diagram (3.2), we get

0x(x) =pie(y),

Conversely, assume that x is (k— I)-transgressive. Then there exists y’'e
R**1(PE=1) such that S{(x)=p§(y'). Since 6} .,8,()")=3}pi(y’)=6;51(x)=0
and o}, is an isomorphism, there exists an element y € K**1(P¥) such that y’=
¢k(y) and s*(x)=¢%---¢%(y). Q.E.D.

In particular, we remark that, for an element x in K*(X), where X is an
A ,-space, x is A -primitive iff it is co-transgressive.

Next we consider the following commutative diagram :

3.3)
.. IZ*H(Pk) ) K~*+1(Pk—1) N K*+1(Ek) N K*+2(Pk) 5> es

e e

K*(EF1) — R*(X x E*1)

IA(k—l)

(R*(X)® - ®R*(X))*+2

We denote by P the submodule consisting of all primitive elements of K*(X)
and by D the submodule consisting of all decomposable elements of K*(X).
Then we have K*(X)=P@®D and because the rank of X is I, the rank of P and D
are | and 2! —]—1 respectively. We define the following modules.

Si-1= £ R¥X)® @ RHX)®DORHX)® -~ @ R¥(X).

Si-1=4%"1(5,_ )= K*(E1),
Se-1= 0 1(Si- ) S K*(PE1).

Then the rank of S, _, is equal to rank Si—1=Q!=1)k"1—[k-1 and the rank of
Sy is equal to 2! —[—1. We have the following lemma:
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LemmMma 3.5. Coker p}d,_, is torsion free and isomorphic to

k
Px.-.x P ) _SL__
Px--«PnIm pFé,_, Sy nIm p¥s,_,

PROOF. Take any element x; #---#x; _ from the module basis of K*(E¥™!)
given in Remark 2.3.  As p}d,_; =0,(prgx-1)*, the formula () of Proposition 2.4
implies that p}d, _,(x; *---#x;__,) can not be divisible by any integer greater than 1.
Hence Coker p#d,_, is torsion free. Since K*(E¥)xPx---*+P@®S,, the lemma
follows. Q.E.D.

We mention that the above {p%d,_} represent the first differential d, of the
spectral sequence {E*-*, d,}. Then Proposition 2.4 tells us that {E%*, d;, k=0}
is the cobar construction of the exterior algebra on odd dimensional primitive
elements, k<n—1.

ProrosiTION 3.6.
d(Si:) NS, =Kerd, nS,, for k<n—1.

Proor. We define a certain differential algebra. Let (E1-*)/ be a submodule
of En* = K*(X) generated by {x;,---x; | each x, is the primitive generator}, and let

(E)i= 5 (EM*)mex(EL¥) S V¥,

i+
then d,: (Eb¥*)/ —(Ei+L*) is

Sioy (= Dy s (A, M* e e, iSn—1,
dy(xyxe-oxx;) =
0, i=n.

Let E'-* be an exterior algebra of rank / on odd dimensional primitive generators
with co-multiplication m. Denote by P the submodule of E':* generated by the
primitive elements. {E'/} are defined to be the submodules of E'-* generated
by the following set;

{y?l-nfj |each X, is primitive} .
Define

Z . (El’jl)®"'®(E1’ji)’igly

Jubet =i
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equipped with the differential d’: E/—Ei+1.J given by
dl('?1®"'®55i)= Zl(”l)jfl®"'®>?j—1®('T7(fj))®fj+1®'”®fu
=

where m(X)=m(X)—X®1 -1®X.
Consider the homomorphism ¢: E"»J »(Ei-*)/ given by

XykeookX, IS,
¢(3?1®"'®’?i)=
0, iZn+1.
Immediately we see that d,¢=¢d’ and ¢ is isomorphic for i <n.
According to J. C. Moore [9] and A. Borel [1],

H(E**)=Ext**, o o (Z, Z)

=Z[uy,.  u,],

where X} is the dual to X;, and ii; is the image of X; under the transgression.
Thercfore Kerd'/Imd'= Z[i,,..., #,]. On the other hand, d'(P®---@P)=0
and (P®---®@P) nImd’ is the module generated by the following set;

{3?,'1®"‘®-’_Cij_l®()_fij®)_cijﬂ—5C-,~j+1®)_(?,~j)®)?ij+2®~--®)_C,-k: each
X, is a primitive generator} .

Thus we have the following

k
P®R---®P Ker d’

2 e = _ c — =Z[uy,..., u,].
k=0 PQ--@PnIm d s Imd Lu, ]

Let us determine the rank of above modules:

P®---QP _ (I+k-1)!

k5 ePamd =

=rank Z{n;--u; : 1<, £ <i, 21}

(37 = =

Therefore we obtain the following equation:

P®R---®QP _ Kerd
PR---®@PnImd Im d’

k20

Since ¢ is an isomorphism for k <n, we get
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Px-x P _ P*---*P(—ngﬂKer dl
Px---xsPnIm dl - (P*'-'*Pnlm d1)®(§k NnIm dl)

and S, nKerd, =S, nImd,. Q.E.D.

§4. Proof of Theorem A

Let us recall the following basic theorem.

THEOREM 4.1 (E. Thomas [12]). Let xy,..., X, be A,-primitive elements in
Hod(X; Q)= K (X)®Q, and {y;} be elements such that 5 eF(y ) =5%x)),
1<j<k. Then the following formula holds:

O(X e kX)) =Yy oo Vi

PROPOSITION 4.2. If X satisfies the hypothesis in Theorem A, then the
following hold.

(A), K*(PH)=K¥+1[ug,..., u,]®S, as modules,

(B) pils,_, is monomorphic,

(O S(xyxxxp) =yt
where ¢%---¢¥(u) =s*(x;), K¥(X) = A(xg,..., X))

PROOF. As K*(SX)xZ®,(P)®5,(D) for k=1, we get (4);, (O);- The
fact “P°=one point space” implies (B);. Suppose that (4);, (B); and (C); hold
for i<k. The hypothesis for K*(X) implies

(pk+l)*(K£kk+1][uls'--s ul])=0’

Im (py )* =Im (P4 1)* -

Proposition 3.6 implies that
Ker 3, N Se=p*(Si-1) N Sy=Ker (pi+1)*3; N 5.

Hence (pi+1)*! 5,5, is monomorphic. So far we have:

1 K¥PY)=K¥u,...,u]®S,,

2) (pkH)*(KE("“][ul,...,ul])=0,

3)  (pi+1)¥ls, is monomorphic.
Consequently (B), ., is satisfied. It is clear by Lemma 3.5 that Coker (pi+1)*=
Coker d, is torsion free. On the other hand K*(P¥*1) has no torsion. Let x;,...,
x, be A, -primitive elements in K'(X), and {u;} be elements such that
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3t (u)=s*(xp), 1Sj<1 Using naturality and injectivity of the Chern
character on K*(P*), Theorem 4.1 implies (C),,;. The following short exact
sequence is valid :

4.1 0 — Coker (py4 )* —> K*(P**1) — Ker (py+,)* — 0
Moreover, by the above observation,
Coker (py. )V* 2 Ky [uq,..., 4],
Ker (P )* S Kafutg sy, 0 0oty () = 5%(x ), 1SjSH@Sys 1.
Therefore we obtain an isomorphism (A4), , ‘- Q.E.D.

PrOOF of THEOREM A. Going back to the definition of {u;}, it is readily
seen that the isomorphism (4), of Proposition 4.2 preserves multiplication.
This completes the proof of Theorem A. Q.E.D.

§5. Proof of Theorem B

We first assume that the spectral sequence collapses. Proposition 2.5
implies that Ker {d,: E} 1=K X)-»>KX)=E?}'} is the module of primitive
elements previously denoted by P. Since E}l=...~EL! we get d(P)=0 for
all r. This means that primitive elements are A,-primitive. Conversely assume
that d,(P)=0 for r<n—1. It follows from Theorem A that;

Im ((¢,—)*---¢¥)=1m (¢, ) * = K% "uy,..., u],
for k<n, r<k—1, and
Ker ((¢x—p)*--(¢k= )*) N Sy =Ker (¢,_1)* N S;_,.
Hence we obtain
Kerd, =(0,-) 7" ((¢x—y 4 1)*+(¢— ) *(Ker p¥))
= (07 (Im (¢x-, 4 )*)=Ker d,,
and
Im d, = pF(((¢k-rs )* (4= )*) " (IM 5, _,))
= pie(Ker ((¢x-)*+(¢x-1)%))
=p¥(Ker (¢, )¥*)=Im d,.
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This completes the proof of Theorem B. Q.E.D.

PrOOF of COROLLARY. The proof of Proposition 3.6 and Theorem 4.1,
allow us to calculate the E,-term of the Stasheff spectral sequence. We get the
following

E>2k,* = K&'H'l][ul,..., ul]@sn .
Since every u; is of even total degree, we get

d(u)=0, 2<r<n-2, 1<j<I. Q.E.D.
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