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Abstract

It is known algebraically that any abelian group is a direct sum of a divisible group
and a reduced group (See Theorem 21.3 of [6]). In this paper, conditions to split
off rational parts in homotopy types from a given space are studied in terms of
a variant of Hurewicz map, say p : [S@,X | = Hn(X;Z) and generalised Gottlieb
groups. This yields decomposition theorems on rational homotopy types of Hopf
spaces, T-spaces and Gottlieb spaces, which has been known in various situations,
especially for spaces with finiteness conditions.
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Introduction

The Gottlieb group is introduced by Gottlieb [7,8] and the generalised Gottlieb
set is introduced by Varadarajan [19]. Dula and Gottlieb obtained a general
result on splitting a Hopf space off from a fibration as Theorem 1.3 of [5].

In this paper, we work in the category of spaces having homotopy types of CW
complexes with base points and pointed continuous maps. A relation f ~ g
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indicates a pointed homotopy relation of maps f and g and a relation X ~Y
indicates a homotopy equivalence relation of spaces X and Y. We also denote
by [X, Y] the set of pointed homotopy classes of maps from X to Y.

We adopt some more conventional notations: Xg stands for the rationalisation
of a space X, K(m,n) for the Eilenberg-Mac Lane space of type (m,n), G(V, X)
for the generalised Gottlieb subset of [V, X] and H, (X) for H,(X;Z). We in-
troduce a variant of Hurewicz map p : [Sg, X| — H,(X) by p(a) = a.([S"]®1)
for a € [Sg, X|, where a is the homomorphism given by a, : H,(S")®Q =
H,(Sg) — Hp(X). Our main result is described as follows:

Theorem 2.2. Let R = @A Q be a Q-vector space of dimension #A <
oo. Let X be 0-connected and R C p(G(Sg, X)) € Hn(X), n > 2. Then X

decomposes as
X ~Y x K(R,n).

Theorem 2.2 gives unified proof to the splitting phenomena on rational G-
space, T-space and Hopf space without assuming any finiteness conditions,
which are proved under various situations by a number of authors: Scheerer [17]
obtained decomposition theorems of rational Hopf spaces without assuming
the finite type assumptions. Oprea [16] obtained decomposition theorems by
using minimal model method in rational homotopy theory. Aguadé [2] obtained
a decomposition theorems on rational T-spaces of finite type.

1 Preliminaries

We regard the one point union XVY of spaces X and Y as a subspace X x*U
xxY of the product space X XY with the inclusion map j : XVY — X xY. For
any collection of a finitely or infinitely many spaces X, (A € A), we denote the
wedge sum (or one point union) by \V,ca Xy and the direct sum (or weak prod-
uct) by @ea Xo = {(xx) € [Tnea Xo | 1 = % except for finitely many A}.
Then we have Vycp Xa C @yen X, where @ycp X is a dense subset of the
product space [] cp X and has the weak topology with respect to finite prod-
ucts of X’s.

Let X, be the James reduced product space of a 0-connected space X of finite
type, so that X, ~ Q(XX) by James [11]. Then X, is a nice CW approxi-
mation of a space 2XX to work in the category of spaces having homotopy
types of CW complexes.

We apply rationalisation or Q-localisation to any 0-connected nilpotent spaces
or any nilpotent groups (see [4], [10] or [14] for the precise definition of the



rationalisation of a space or a nilpotent group). The rationalisation {g : X —
Xg, or simply Xg does exist for such spaces X such that {g induces the
following isomorphisms:

m™(Xg) =21 (X)®Q and H,(Xg) = H,(X)®Q

for any integer n > 1, where G®Q denotes the rationalisation of a nilpotent
group G (cf. [4], [10] or [14]). Moreover the universality of rationalisation yields
a bijection

(g : [Xo, Yol = [X, Y

for any such spaces X and Y. The rationalisation enjoys the following fact.

Fact 1.1 (1) Sg"*' ~ K(Q,2m + 1) for any integer m > 0.
(2) QSZ"H) ~ (QS*™)g ~ K(Q,2m) for any integer m > 1.
(3) (Xoo)o = (Xg)oo for X a 0-connected nilpotent space of finite type.

Proof. (1) and (2) are well-known. We give here a brief explanation for
(3): The suspension functor ¥ and the loop functor € enjoys the proper-
ties X(Xg) ~ (X¥X)g for any O-connected space X and Q(Xg) ~ (2X)g
for any 1-connected space X. Then it follows that (Xy)g ~ (2(XX))g ~
Q(S(Xg)) = (Xg). o

We state two propositions to be used in the proof of the main theorem.

Proposition 1.2 Let X be a 0-connected space of finite type and f : X —Y
amap. If f € G(X,Y), then there is an extension f : Xoo — Y of f such that
feG(Xx,Y).

Proof. We may assume that there is a map pu : ¥ x X — Y such that
plY x {x} =1y Y =Y and p[{x} x X = f: X —- Y. We put u; = p and,
for any n we define

= po(fn1 X 1x) Y X X"= (Y x X" Hx X Y xX =Y

by induction on n. Then we observe that u,, factors through Y x X™ — Y x X,
where X,, denotes the set of products of at most n elements of X in the James
reduced product space X, (cf. James [11]). Since X, has a weak topology
with respect to X,,, we have done. O

Proposition 1.3 Let ay : X\ — Z be a map for any A € A. If ay € G(X, Z)
for each X\ € A, then the map o : \/yxep Xo — Z defined by a| X\ = a : X —
Z can be extended to a map @ : @yep Xy — Z with @ € G(Byrep X, Z).

Proof. Since each X, has a homotopy type of a CW complex, we may assume
that there is a map uy : Z x X, — Z such that py[{*} x X, =ay : X, = Z



and py|Z x {x} =1z : Z — Z for each A € A. For any n and A, Ag, -+, A,
we define

g An = Hag © (Bage oy X 1x,, ) 1 2 X (X X X Xy x X)) — Z

by induction on n. For any index set A, we assume that A is totally-ordered.

Since @ycp Xy has a weak topology with respect to Xy, x---x Xy , Ad1,- -+, Ay
(n > 0), the collection of maps py, ... », defines a pairing p1 : Z X (Byep Xa) —
Z with axes (1z,@) (cf. [15]). O

2 Proof of the main result

Proposition 2.1 Let P be an idempotent endomorphism of H,(X), n > 2.
Suppose that R = im P C H,(X) is a rational vector space and is in imp.
Then we have maps o : S"(R) — X and f: X — K(R,n) such that

~

Boa~ iyt S"(R) — K(R,n), and
P = o (Ug,) " o Bt Ho(X) = Ho(K(R,n)) — Ha(S™(R)) — Ha(X),

where S™(R) denotes the Moore space of type (R,n) and (}, corresponds to the
identity element in Hom(R, R) = Hom(m, (S™(R)), m,(K(R,n))) = [S™(R), K(R,n)].

Proof. Let {p(ay)| A € A} be a basis of R = im P, and hence R = @, Q.
Since S™(R) = Ve Sg, we define o : S"(R) — X by its restrictions to all
factors:
a\% = Q) S(g — X.

Since a, is an isomorphism onto R C H,(X), we have its inverse ¢ : R —
H,(S™(R)) so that ¢oa, = idp,(sn(r)) and a,o¢ = idg. Now we define a
homomorphism s : H,(X) — im P = H,(S"(R)) by s = ¢oP: Since im « is
in the image of an idempotent endomorphism P, we have soa, = ¢oPoa, =
poay, = id. Also we have a,o0s = a,o0¢po P = P. Thus s satisfies the following
formulae:

Soa, = 1d : Hn(Sn(R>) - Hn(Sn<R))a
Qyos =P H,(X) — H,(X).

Let us recall that a induces the following commutative diagram:

S

X, K(R,n)] Hom(H,(X), H,(K(R,n))) (2.1)

. o
K

(R,n)]=—Hom(H,(S"(R)), H(K(R,n))),

IR

[S™(R),



where W and ¥’ are homomorphisms defined by taking the n-th homology
groups, and are isomorphisms by the universal coefficient theorem. Since ¥’
is an isomorphism, we define 3 to be the unique element W'~ (%, 05) so that

Bi = Ug,os.
Firstly by P = av, 05, we have P = a,05 = a0 (1,) "o 3.
Next we show Foa ~ 1. By the commutativity of the diagram (2.1), we have

U(a™(B)) = () o W'(B) = ()" (tguos) = thuosom = 15, = V(1)

Since V¥ is an isomorphism, we also have Soa = a*(8) ~ 1. O

Let us recall that G(Sg, X) C [Sg, X] 2, H,(X). In the following theorem,
we do not assume that X is rationalised nor that X is (n—1)-connected.

Theorem 2.2 Let R = @ cp Q be a Q-vector space of dimension #A <
0. Let X be 0-connected and R C p(G(Sg, X)) € Hy(X), n > 2. Then X
decomposes as

X ~Y x K(R,n).

Proof. Since a divisible submodule R is a direct summand of H,,(X), there is
an idempotent endomorphism P : H,,(X) — H,(X) with im P = R. We fix a
basis of R as {p(ax) |ax € G(Sg, X), A € A}

By Proposition 2.1, there are maps « : S"(R) — X, 8 : X — K(R,n) such
that

Boa ~ 1 S"(R) — K(R,n),
P=o,o(h,) 0B, : Hy(X) — Hy(K(R,n)) & H,(S"(R)) — H,(X).

Then we extend the map « onto K(R,n) O S"(R) as @ : K(R,n) — X by
dividing our arguments in two cases:

(Case 1) n is an odd positive integer > 1, namely, n = 2m+1 for some m > 1.
Then we have K(Q, 2m+1) ~ Sg"*", and hence by Proposition 1.3 we obtain
the desired map.

(Case 2) n is an even positive integer, namely, n = 2m for some m > 1.
Since o, € G(Sg", X), the map a, : S§" — X can be extended to the James
reduced product space by Proposition 1.2, say,

Qo - (S(ém>oo B Xa Qy € G((S(ém)ooaX)7

)oo ~ (S2m)Q ~ (st2m) (Qs2m+1> Q(S2m+1)
K(Q,2m). Thus we have a, € G(K(Q,2m ) X). Hence

where we know (S3"

~ QK (Q,2m+1)



by Proposition 1.3, there is a map @ : K(R,2m) = @yep K(Q,2m) — X
extending a : S"(R) — X. Then we obtain So@ ~ idk(g,), since the identity
map id : K(R,n) — K(R,n) is the unique extension of /}, : S"(R) — K(R,n),
up to homotopy.

Thus in either case, we obtain a map @ € G(K (R, n), X) such that
foa ~id: K(R,n) — K(R,n).

Let Y be the homotopy fibre of § : X — K(R,n). Then by Theorem 1.3 of
Dula and Gottlieb [5], we obtain

XY x@PK(@Q,n) =Y x K(R,n).
AeA

This completes the proof of the theorem. a

3 Applications

A 0-connected space X is called a T-space if the fibration QX — X St X is
trivial in the sense of fibre homotopy type (Aguadé [2]). If X is a O-connected
Hopf space, then X is a T-space. Aguadé showed that 1-connected space X
of finite type is a rational T-space if and only if X has the same rational
homotopy type as a generalised Filenberg-Mac Lane space, i.e., a product of
(infinitely many) Eilenberg-Mac Lane spaces (Theorem 3.3 of [2]). Woo and
Yoon showed that a space X is a T-space if and only if G(XA4, X) = [EA, X]
for any space A by Theorem 2.2 of [20]. So, it might be more appropriate to
call such space a generalised G-space. Then we have the following result by
Theorem 2.2.

Theorem 3.1 Let R = @, Q be a finite or an infinite dimensional Q-
vector space. Let X be a 0-connected T-space and R C m,(X), n > 2. If
pIR: R — H,(X) is an injection and [Sg, X| = G(Sg, X ), then X decomposes
as
XY x@K(@Q,n) =Y x K(R,n), foraT-spaceY .
AEA

Proof. Firstly, we observe that (g is surjective: Let a be a generator of the

Q-vector space R C m,(X). Then we can use the telescope construction (cf.

Adams [1], Sullivan [18]) to obtain a map a : S — X such that aolgn ~

a: S" — X. Thus we can choose a Q-vector space It C [Sg, X] such that
o

R= R, and hence we have p(R) = p(R) = R. Then by Theorem 2.11 of [20]

and Theorem 2.2, we obtain the result. O



Theorem 3.1 implies the following result as a direct consequence.

Corollary 3.2 Letn > 2. Let R = @,cp Q be a finite or an infinite dimen-
sional Q-vector space and assume that R C m,(X). If X is (n — 1)-connected
T-space, then X splits as

XY x@PK@Qn) ~Y x K(R,n), foraT-spaceY.
AEA

A space X is called a G-space if G,,(X) = 7, (X) for all n (cf. [8]). As a special
case of Theorem 2.2, we have the following result for rational G-space. We
remark that m,(Xq) = G,(Xq) implies [Sg, Xo] = G(Sg, Xq) for any n.

Theorem 3.3 Let n > 2. Assume that a rational space Xq is an (n—1)-
connected G-space. If m,(Xq) = @xrea Q, a finite or an infinite dimensional
Q-vector space, then Xq decomposes as

Xo =~ Yo x P K(Q,n) = Yo x K(m,(Xg), n),
AEA

where Yy is an n-connected G-space.

Theorem 3.3 implies the following theorem (cf. [17]). For finite complexes or
finite Postnikov pieces, it is known by Haslam [9] and Mataga [13].

Theorem 3.4 If X is a 1-connected space, then the following are equivalent:
(1) Xgq is a G-space.

(2) Xgq is a T-space.

(3) Xoq is a Hopf space.

(4) Xgq has the homotopy type of a generalised Eilenberg-Mac Lane space.
Corollary 3.5 Any k-invariant of a 1-connected G-space is rationally trivial.

We remark that Corollary 3.5 doesn’t imply that a k-invariant of a 1-connected
G-space is of finite order. Now, H,(K(®xeaQ,2m+1); Q) is isomorphic to
an exterior alebra and H,(K(®xeaQ,2m); Q) is isomorphic to a polynomial

algebra as Hopf algebras. Thus we obtain a generalisation of Theorem 3.2 of
Borel [3]:

Corollary 3.6 Let X be a 1-connected rational G-space, i.e., a G-space in
the rational homotopy category. Then Xq is a Hopf space and the Hopf alge-
bra H*(X;Q) is isomorphic (as an algebra) to the tensor product of the dual
algebra of a polynomaial algebra on even degree generators and the dual algebra
of an exterior algebra on odd degree generators.



We remark that 7,(X)®Q may be infinite dimensional for each ¢ > 1, and
hence H,(X;Q) and its dual H%(X; Q) = Hom(H,(X;Q); Q) may be distinct
as Q-modules for each ¢ > 1. For example, the dual of an exterior algebra on

{a,} is not an exterior algebra on {a,}, in general, where @, is the dual to
ay (cf. [12]).
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