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Implications of the Ganea Condition
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Abstract Suppose the spaces X and X x A have the same Lusternik-
Schnirelmann category: cat(X x A) = cat(X). Then there is a strict
inequality cat(X x (A x B)) < cat(X) + cat(A x B) for every space B,
provided the connectivity of A is large enough (depending only on X).
This is applied to give a partial verification of a conjecture of Iwase on the
category of products of spaces with spheres.
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Introduction

The product formula cat(X x Y) < cat(X) + cat(Y) [1] is one of the most
basic relations of Lusternik-Schnirelmann category. Taking Y = S”, it implies
that cat(X x S") < cat(X) + 1 for any » > 0. In [5], Ganea asked whether
the inequality can ever be strict in this special case. The study of the ‘Ganea
condition’ cat(X x S") = cat(X)+1 has been, and remains, a formidable chal-
lenge to all techniques for the calculation of Lusternik-Schnirelmann category.
In fact, it was only recently that techniques were developed which were pow-
erful enough to identify a space which does not satisfy the Ganea condition [8]
(see also [9, 12]). It is still not well understood exactly which spaces X do
not satisfy the Ganea condition, although it has been conjectured that they are
precisely those spaces for which cat(X) is not equal to the related invariant
Qcat(X) (see [14, 17]).

Since the failure of the Ganea condition appears to be a strange property for
a space to have, it is reasonable to expect that such failure would have useful
and interesting implications. In this paper we explore some of the implications
of the equation cat(X x A) = cat(X) for general spaces A, and for A = S" in
particular.
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A brief look at the method of the paper [8] will help to put our results into
proper perspective. The new techniques begin with the following question: if
Y = X Uy e the cone on f: S* — X, then how can we tell if cat(Y) >
cat(X)? It is shown (see [9, Thm. 5.2] and [12, Thm. 3.6]) that, if ¢ > dim(X),
then cat(Y) = cat(X) + 1 if and only if a certain Hopf invariant H,(f) (which
is a set of homotopy classes) does not contain the trivial map *. It is also
shown [9, Thm. 3.8] that if * € X"H,(f), then cat(Y x S") < cat(X)+1. Thus
Y does not satisfy Ganea’s condition if x ¢ Hs(f), but there is at least one
h € Hs(f) such that X"h ~ .

Of course, if ¥"h ~ %, then X" T'h ~ x as well, and this suggests the following
conjecture (formulated in [8, Conj. 1.4]):
CONJECTURE If cat(X x S7) = cat(X), then cat(X x S™H1) = cat(X).
In this paper we prove that this conjecture is true, provided r is large enough.
Theorem 1 Suppose X is a (¢ — 1)-connected space and let r > dim(X) —
c-cat(X) + 2. If cat(X x S™) = cat(X), then

cat(X x S") = cat(X)

forall t > r.

The conjecture remains open for small values of r.

Our main result is much more general: it shows how the equation cat(X x A) =
cat(X) governs the Lusternik-Schnirelmann category of products of X with a
vast collection of other spaces.

Theorem 2 Let X be a (¢c—1)-connected space and let A be (r—1)-connected
with r > dim(X) — ¢ cat(X) + 2. If cat(X x A) = cat(X) then

cat(X x (A x B)) < cat(X) + cat(A x B)

for every space B.

When A is a suspension, the half-smash product decomposes as A x B ~
AV (AN B) (see, for example [12, Lem. 5.9]), so we obtain the following.

Corollary Under the conditions of Theorem 2, if A is a suspension, then
cat(X x (AN B)) = cat(X)

for every space B.
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Our partial verification of the conjecture is an immediate consequence of this
corollary: it the special case A =S" and B = S'™".

Organization of the paper. In Section 1 we recall the necessary background
information on homotopy pushouts, cone length and Lusternik-Schnirelmann
category. We introduce an auxiliary space and establish its important properties
in Section 2. The proof of Theorem 2 is presented in Section 3.

1 Preliminaries

In this paper all spaces are based and have the pointed homotopy type of CW
complexes; maps and homotopies are also pointed. We denote by * the one
point space and any nullhomotopic map. Much of our exposition uses the
language of homotopy pushouts; we refer to [11] for the definitions and basic
properties.

1.1 Homotopy Pushouts

We begin by recalling some basic facts about homotopy pushout squares. We
call a sequence A — B — C' a cofiber sequence if the associated square

]

is a homotopy pushout square. The space C' is called the cofiber of the map
f. One special case that we use frequently is the half-smash product A x B,
which is the cofiber of the inclusion B — A x B.

Finally, we recall the following result on products and homotopy pushouts.

Proposition 3 Let X be any space. Consider the squares

A——B XxA——=XxB
I |
C——D Xx(C——=X xD.

If the first square is a homotopy pushout, then so is the second.

Proof This follows from Theorem 6.2 in [15]. O
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1.2 Cone Length and Category

A cone decomposition of a space Y is a diagram of the form

Lo Ly Ly
Yo Yy e Y1 Yy

in which Yy = *, each sequence L; — Y; — Y41 is a cofiber sequence, and
Y >~ Y'; the displayed cone decomposition has length k. The cone length of
Y, denoted cl(Y'), is defined by

0 ifY~x
cl(Y) =< oo if Y has no cone decomposition, and
k  if the shortest cone decomposition of Y has length k.

The Lusternik-Schnirelmann category of X may be defined in terms of the cone
length of X by the formula

cat(X) = inf{cl(Y) | X is a homotopy retract of Y}.

Berstein and Ganea proved this formula in [3, Prop.1.7] with cl(Y") replaced
by the strong category of Y'; the formula above follows from another result of
Ganea — strong category is equal to cone length [7]. It follows directly from
this definition that if X is a homotopy retract of Y, then cat(X) < cat(Y).
The reader may refer to [10] for a survey of Lusternik-Schnirelmann category.

The category of X can be defined in another way that is essential to our work.

Begin by defining the 0'" Ganea fibration sequence F(X) Go(X)2>X
to be the familiar path-loop fibration sequence Q(X)——=P(X)——=X . Given
the n'" Ganea fibration sequence

Fp(X)—=Gp(X)-25 X,

let Gpy1(X) = Go(X) U CF,(X) be the cofiber of p, and define p,,; :
Gr+1(X) — X by sending the cone to the base point of X. The (n + 1)
Ganea fibration pp41 : Gpy1(X) — X results from converting the map p,, ; to
a fibration. The following result is due to Ganea (cf. Svarc).

Theorem 4 For any space X,
(a) cl(Gn(X)) <mn,
(b) the map p, : G,(X) — X has a section if and only if cat(X) < n, and
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(¢) Fp(X)~ (QX))* ™) the (n+ 1)-fold join of QX with itself.

Proof Assertion (a) follows immediately from the construction. For parts (b)
and (c), see [6]; these results also appear, from a different point of view, in
[16]. O

2 An Auxilliary Space

Let én denote the homotopy pushout in the square

Gt (X))~ G 1(X) x A

| |

Gn(X) Gh.
The maps p, : Gp(X) — X and 14 : A — A piece together to give a map
pn : G, — X x A. The space GG, and the map p, play key roles in the
forthcoming constructions; this section is devoted to establishing some of their
properties.

2.1 Category Properties of én

We begin by estimating the category of Ghn.

Proposition 5 For any noncontractible A and n > 0, cat(Gy) < n+ cat(A).

Proof Let cat(fl) = k. The space A is a retract of a space A’ which has
cl(A") = k. Let G}, = Gp(X)UG,1(X) x A’; clearly Gy, is a homotopy retract
of G}, and so it suffices to show that cl(G]) < n+ k. Let

Lo Ly Ly
A6 All o A;q—l Ay,

be a cone decomposition of A’. According to a result of Baues [2] (see also [13,
Prop. 2.9]), there are cofiber sequences

F;_q1 Lj,14>GZ’(X) X A;‘—l U Gl_l(X) X A;HGZ(X) X A;
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Now let Wy = Git1(X)UU;pjs icn Gi(X) x A} C G, (with the understanding
that A} = A for all j > k) and observe that there are cofiber sequences

Fsv \/i+j:sfl,i<n71 Fix Lj ——= W, —— Wi
and since é% = Wy ik_1, we have the result. |

Next, we show that the map p,, : G, — X X A has one of the category-detecting
properties of p, : Gp(X x A) — X x A.

Proposition 6 If cat(X x A) = cat(X) = n, then p, has a homotopy section.

Proof We follow [4] (see also [8, Thm. 2.7]) and define
G (X xA) = ] Gi( G;(A).
i+j=n

There is a natural map h : é;@(X x A) — X x A induced by the Ganea fibrations
over X and A. According to [4, Thm.2.3], cat(X x A) = n if and only if h
has a homotopy section.

Each map Gi(X) x Gj(A) — X x A (with j > 0) factors through G;(X) x A
and these factorizations are compatible because p;11 extends p;. So h factors
as G/(X x A) — G — X x A. Thercfore, if cat(X x A) = n, then h, and
hence p,, has a section. |

2.2  Comparison of G, with G,(X) x A

Let j : Gy — Gn(X) x A denote the natural inclusion map.

Proposition 7 Assume that X is (¢ — 1)-connected and that A is (r — 1)-
connected. Then the homotopy fiber F of the map j is (nc+r — 2)-connected.

Proof There is a cofiber sequence

G LG (X) x A—=%F,_1(X) A A.

Therefore the homotopy fiber of j has the same connectivity as the space
QEF_1(X)NA) ~QQX)*™ * A), namely nc+r — 2. O

Corollary 8 Assume dim(Z) < nc+r—2 and let f,g: Z — Gn. Then f ~ g
if and only if jf ~ jg.

The proof is standard, and we omit it.
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2.3 New Sections from Old Ones

Suppose that cat(X) = cat(X x A) = n. By Proposition 6 there is a section
oc:X xA— G, of the map p, : G, — X x A. Define a new map o' : X —
Gr(X) by the diagram

X z Gn(X)

i1 TPH

X xA z G, — Gn(X) x A.

We need the following basic properties of o’.

Proposition 9 If cat(X x A) = cat(X) = n, then

(a) o' is a homotopy section of the projection p, : G,(X) — X, and
(b) if X is (¢ — 1)-connected and A is (r — 1)-connected with r >
dim(X) — nc+ 2, then the diagram

X 7 Ga(X)
i1l k
X x A z G

n

commutes up to homotopy.

Proof First consider the diagram

i1 k Tprl T n
v j pr
XxA——= Gy Gn(X)x A ; Gn(X)
\\\\\1‘;;2\\\\\\ Pnx1a lpn
T X xA o X.

The diagram of solid arrows is evidently commutative. Therefore, we have
pn oo’ ~pryolxyxaoi; ~ 1y, proving (a).

To prove (b) we have to show that two maps X — G, are homotopic. Since
dim(X) < nec + r — 2, it suffices by Corollary 8 to show that j o (g 0dy) =~
jo(koo'). Since proojo (o oiy) =~ * =~ pryojo(koo’), it remains to show
that pryojo(coiy) ~pryojo(koo’). But both of these maps are homotopic
to o’. ]
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3 Proof of the Main Theorem

Proof of Theorem 2 We have n = cat(X) = cat(X x A) by hypothesis.
It follows from Proposition 6 that there is a section ¢ : X x A — én of the
map pn : Gn — X x A. We then get the section ¢/ : X — Gn(X) that was
constructed and studied in Section 2.3.

Consider the following diagram and the induced sequence of maps on the ho-
motopy pushouts of the rows

(X x A) x B nxis X x B Pl X %
axlBle la/xlB la, i
~ kx1p pry homotopy
G x B~ Gl X) x B Cin(X) pushout P
ﬁnX1Bl lan1B lpn i
(X xA) x B nxls X x B Ph X Y.

Proposition 9 implies that the upper left square commutes up to homotopy.
Since i1 X 1p is a cofibration, we can apply homotopy extension and replace
themap o x1p: (X xA)x B — én x B with a homotopic map s which makes
that square strictly commute. All other squares are strictly commutative as
they stand.

Since the composites (p, x 15)o (¢’ x 1) and p, oo’ are the identity maps and
(pn X 1) 0 s is a homotopy equivalence, each vertical composite in the modified
diagram is a homotopy equivalence. Thus Y is a homotopy retract of P, and
consequently cat(Y) < cat(P).

The space Y is the homotopy pushout of the top row in the diagram, which is
the product of the homotopy pushout diagram

B *
AxB AxB

with the space X. Therefore Y ~ X x (A x B) by Proposition 3. Since Y is
a homotopy retract of P, it follows that

cat(X x (A x B)) < cat(P),

the proof will be complete once we establish that cat(P) < cat(X)+cat(AxB).
This is accomplished in Lemma 10, which is proved below. O
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Lemma 10 The space P constructed in the proof of Theorem 2 satisfies
cat(P) < cl(P) < cat(X) + cat(A x B).

Proof The space G, is defined by the homotopy pushout square

Gn-1(X) Gn(X)
l )
Gn1(X)x A G,.

Take the product of this square with the space B and adjoin the homotopy
pushout square that defines P to obtain the diagram

Gn-1(X) x B Gn(X) x B Gn(X)
Gn-1(X)x Ax B G, x B P
By [11, Lem. 13], the outer square
anl(X) x B Gn(X)

| |

Gn-1(X)x Ax B

is also a homotopy pushout square. The top map is the composite

pr
Gn-1(X) x B—5Gp_ 1 (X f—=Gn(X),
and so we have a new factorization into homotopy pushout squares:

pry

Gn-1(X)x B Gn-1(X) Gn(X)
Gn-1(X)x Ax B i ]Jé

To identify the space L, observe that the left square is simply the product of
the space G,,—1(X) with the homotopy pushout square

B *
Ax B A~ B.
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By Proposition 3, L ~ G,,—1(X) x (A x B). Hence the right-hand square is the
homotopy pushout square

Gn—l(X) Gn(X)

| |

Gn-1(X) x (A% B) P.

Therefore cl(P) < cat(X) + cat(A x B) by Proposition 5. O
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