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Abstract. The problem 10 posed by Tudor Ganea is known as the Ganea conjecture on
a co-H-space, a space with co-H-structure. Many efforts are devoted to show the Ganea
conjecture under additional assumptions on the given co-H-structure. In this paper, we
show a homological property of co-H-spaces in a slightly general situation. As a corollary,
we get the Ganea conjecture for spaces up to (homological) dimension 3.

1. Introduction

In this paper we work in the category of connected CW complexes with base points.

A connected CW complex X is called a co-H-space when the homotopy set [X,Y ] has a

multiplication with two-sided unit which is natural with respect to Y , where we denote by

[K,L] the set of homotopy classes of base point preserving mappings from K to L. We

call the natural multiplication the co-H-structure. Ganea’s problem 10 is as follows: Does a

connected space with co-H-structure have the homotopy type of a one-point-sum of a wedge

sum of circles and a simply connected space?

It is known by S. Eilenberg and T. Ganea [5] that if a co-H-space X is paracompact and

normal, Bπ1(X) has the homotopy type of a wedge sum of circles, say B. Thus we have two

mappings i : B → X and j : X → B, where i induces an isomorphism of the fundamental

groups and j is the classifying mapping of the universal covering τ : X̃ → X. Clearly, we

may choose the mappings so that ji ≅ 1X , the identity, and hence, B is a retract of X up

to homotopy.

Under the assumption, we have the cofibre c : X → C of i : B → X. Then c : X → C

has a homotopy splitting (see Theorem 3.3). By using the co-H-structure, one can easily

get a canonical homology equivalence X → B ∨ C which induces also an isomorphism of

fundamental groups. These properties, however, would not guarantee that the two spaces

have the same homotopy type (see G.W. Whitehead [16] pp.183-184).

Berstein and Dror [2] showed that the conjecture is true provided that the co-action

induced from the co-H-structure is associative. Hilton, Mislin and Roitberg [9] showed
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that the conjecture is true provided that the co-H-structure gives a natural algebraic loop

structure on the homotopy sets [X, ]. In addition, we can easily see that two conditions

given by the above authors are valid for all co-H-spaces if the Ganea’s conjecture is true.

Our approach is completely different. In this paper, we use the existence of the co-H-

structure for a co-H-space X of up to dimension 3 to deform the homotopy splitting: C → X

to get a homotopy equivalence B ∨ C → X under the light of a theorem of Seshadri, Cohn

and Bass on algebras. To proceed further, we need to exclude the Whitehead products from

the boundary of the cells.

We should give a comment on the work of Dr. Komatsu on the theory of links [11]. In

the proof of [11], we can find out an argument which gives a proof of Ganea’s conjecture for

co-H-spaces whose cohomology is concentrated in one dimension other than 1, using Fox’s

free differential calculus.

We thank M.G. Barratt and Takao Matumoto for their helpful comments on our earlier

study of this subject.

2. Main Theorem

A co-paring introduced by Oda [12] is a mapping from a space A to a space B ∨C, whose

projections to B and C are called its co-axes. Let us introduce a notion of co-action: a

co-action of B under A along f : A → B is a co-pairing µ : A → B ∨ A with co-axes f and

the identity 1A.

Our main theorem is as follows:

Theorem 2.1. Let X be a finite CW complex and j : X → B the classifying mapping of

the universal covering τ : X̃ → X. If there exists a co-action of B under X along j, then

H∗(X̃; Z) ∼= Zπ ⊗ H∗(X; Z), π = π1(X) for ∗ > 1.

Corollary 2.2. Let X be a finite co-H-space. If H∗(X; Z) is concentrated in dimensions 1,

n and n + 1 with 1 < n, then X splits into a one-point sum of S1’s, Sn’s, Sn+1’s, Sn(m)’s

and Sn+1(m′)’s, where we denote by Sk(ℓ) the Moore space Sk ∪ℓιk ek+1.

Hence, the Ganea conjecture is true for complexes whose homology is concentrated in

dimensions ≤ 3.

The key lemma of the theorem is based on the work done by Seshadri [15], Cohn [3] and

Bass [1], that every finitely generated projective A-module is free when A is a fir, a free ideal

ring.
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The algebraic version of the Ganea conjecture could be described as follows.

Conjecture 2.3. Let A be an algebra over a principal ideal domain R. If an A-module P

is a direct summand of an induced A-module A⊗R M from an R-module M , then P itself is

induced.

We do not know anything about the general case but for the case when R = Z, the ring

of integers, A is the group ring of a free group over Z and P is finitely generated.

From now on, we reserve the symbol X for a path-connected CW complex of finite type,

π for its fundamental group, j : X → Bπ the classifying mapping of the universal covering

τ : X̃ → X. Let us denote by Hq(−) the q-th (ordinary) integral homology group and by

πq(−) the q-th homotopy group for q ≥ 0.

3. Preliminaries

First, we recall the following well-known result (by Ganea [7]).

Fact 3.1. The following three conditions are equivalent for a CW complex W :

i) W is a co-H-space.

ii) LS-cat(W ) ≤ 1, i.e., there is a mapping W → W ∨W so that the composition with the

first and second projections W ∨ W → W are homotopic to the identity.

iii) The evaluation ΣΩW → W has a homotopy section.

Let us call a group a co-H-group if the group, say G, admits a homomorphism G → G ∗G

so that the compositions with the first and second projections G ∗G → G are the identity of

G, where we denote by G∗G the free product. Then the fundamental group of a co-H-space

is clearly a co-H-group. Let us recall the following

Proposition 3.2. (Kan [10], Eilenberg-Ganea [5]) For G a (discrete) group, the following

four conditions are equivalent.

i) The classifying space BG is a co-H-space.

ii) G is a co-H-group.

iii) G is a free group.

iv) BG has the homotopy type of a wedge sum of circles.

Proof. By Van Kampen’s Theorem, BG ∨ BG has the homotopy type of B(G ∗ G). Hence,

i) is equivalent with ii). And also iii) is equivalent with iv), because BZ has the homotopy

type of a circle. Here, iv) implies i), since a circle is a co-H-space.
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So we are left to show that i) implies iii). It is obtained by Proposition 3 in [5], when

BG is paracompact and normal. Here, let us give another simple proof of the implication as

follows: Since BG is a co-H-space, ΣΩBG dominates BG by Fact 3.1. Since ΣΩBG ≅ ΣG

has the homotopy type of a wedge sum of circles, its fundamental group is a free group,

which could have infinitely many generators. Hence G is a subgroup of a free group, and is

itself a free group (see Crowell-Fox [4]). Thus i) implies iii) and this completes the proof of

the proposition. ¤

Hence by Proposition 3.2, the fundamental group π is a free group and the classifying

space Bπ has the homotopy type of a wedge sum of circles, say B, if there exists a co-action

of Bπ under X along j. From now on, we always assume the existence of such co-action and

denote by i : B → X a mapping representing the generators of the fundamental group of X

and by j : X → Bπ ≅ B the classifying mapping of the universal covering τ : X̃ → X, so

that ji is a homotopy equivalence. Hence we may assume that ji ≅ 1B. Let us denote by

X → C the mapping cone of i : B → X. Under the above notations, we have the following

Theorem 3.3. There is a natural mapping p : B ∨ D(X) → X with a (homotopy) section

s : X → B ∨ D(X), for some simply connected space D(X).

Proof. Let E be the homotopy pull-back of a mapping ∆j = (j × 1X)∆X : X → B × X and

the inclusion k : B ∨ X → B × X:

E
∆̂j−−−→ B ∨ X

p̂

y k

y
X −−−→

∆j

B × X

where E can be described as the set {(x, ℓB, ℓX) | ℓB : I → B, ℓX : I → X, ℓB(0) =

j(x), ℓX(0) = x, (ℓB(1), ℓX(1)) ∈ B ∨ X}.

We remark here that the presence of a co-action of B under X along j implies the existence

of the homotopy section of p̂.

We can find out subspaces E1, E2 and E0 in E as follows:

E1 ={(x, ℓB, ℓX) ∈ E | ℓX(1) = ∗} ⊃ {(x, c(j(x)), ℓX) ∈ E | ℓX(1) = ∗} ∼= F 1X ,(3.1)

E2 ={(x, ℓB, ℓX) ∈ E | ℓB(1) = ∗} ⊃ {(x, ℓB, c(x)) ∈ E | ℓB(1) = ∗} ∼= F j and(3.2)

E0 ={(x, ℓB, ℓX) ∈ E | ℓB(1) = ∗, ℓX(1) = ∗} = F∆j(3.3)

where c(y) denotes the constant mapping at y and F f denotes the homotopy fibre of f . Then

we have E = E1 ∪ E2 and E1 ∩ E2 = E0. We can easily show that F 1X ≅ {∗} and F j ≅ X̃
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are deformation retracts of E1 and E2, respectively. Hence E has the homotopy type of the

push-out F 1X ∪ {I × E0} ∪ F j ≅ ∗ ∪ {I × E0} ∪ X̃, which is an unreduced mapping cone.

X
~

0E

*

Since E0 is the homotopy fibre of ∆j, we have the following exact sequence of homotopy

groups (sets).

· · · → π1(X) = π
∆→ π × π = π1(B × X) → π0(E0) → ∗.

Hence we have that the set π0(E0) is in one-to-one correspondence with the group π.

Therefore E0 is a topological sum
∐

ω∈π Eω
0 of connected component Eω

0 that corresponds

to ω. Then it follows that the unreduced mapping cone {∗} ∪ {I × E0} ∪ X̃ is naturally

homotopy equivalent to Σπ∨D(X), where D(X) is the reduced mapping cone of a mapping

from
∨

ω∈π Eω
0 to X̃. Since

∨
ω∈π Eω

0 is path-connected and X̃ is 1-connected, we obtain by

Van Kampen’s Theorem that D(X) is 1-connected and is natural with respect to X. Thus

E has the homotopy type of Σπ ∨ D(X), where Σπ is a wedge sum of circles.

X
~

0E

* ≅
X
~

*

0 CE

≅

*

���

D(X)

Using the projection p̂ : Σπ∨D(X) ≅ E → X, we can define p : B∨D(X) → X by p|B = i

and p|D(X) = p̂|D(X). Then by the definition of D(X), p is natural with respect to X up to

homotopy.

A restriction of p̂ to a circle gives an element of the fundamental group π1(X) ∼= π1(B),

and hence it factors through i : B → X. Thus the restriction of p̂ to Σπ factors through

i : B → X. Thus the mapping p̂ factors through p : B ∨ X̃ → X as p̂ =pk̂ for some mapping

k̂ : E ≅ Σπ ∨ D(X) → B ∨ X̃.

On the other hand, p̂ has a homotopy section ŝ, since X admits a co-action of B. By

putting s = k̂ŝ, we see that s is a homotopy section of p:
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X
ŝ−−−→ E

p̂−−−→ X

=

y k̂

y y=

X
s−−−→ B ∨ D(X)

p−−−→ X

This implies the theorem. ¤

By collapsing B in X and B ∨ D(X), we obtain the following

Corollary 3.4. C is a retract of D(X).

We fix the homotopy section s of p : B ∨ D(X) → X. Let µ0 be the composition (1B ∨

p)(µB ∨ 1D(X))s : X → B ∨X where µB is the canonical co-multiplication of B a wedge sum

of circles. Thus we have the following

Corollary 3.5. If there exists a co-action of B under X along j : X → B, then there is a

co-action µ0 : X → B ∨X, such that the induced homomorphism µ0∗ : π1(X) = π → π ∗ π =

π1(B ∨ X) is the standard (see Kan [10]) co-monoid structure of the free group π.

Let us consider the universal covering τ : X̃ → X.

Corollary 3.6. For q ≥ 2, there is a 1-connected finite complex Dq such that Hq(X̃) is a

direct summand of Zπ ⊗ Hq(Dq).

Proof. By Theorem 3.3, B ∨D(X) dominates X: ps = 1X . Since the (q +1)-skeleton X(q+1)

of X is a finite complex, the image s(X(q+1)) is in a finite subcomplex B ∨ Dq of B ∨ D(X)

with Dq 1-connected. On the other hand, ps|X(q+1) is homotopic to the canonical inclusion

X(q+1) → X. Since the universal cover B̃ ∨ Dq of B ∨Dq has the homotopy type of a wedge

sum of Dq’s indexed by π, Hq(X̃) is a direct summand of Hq(B̃ ∨ Dq) ∼= Zπ ⊗ Hq(Dq). ¤

4. PROOF OF THE MAIN THEOREM

Let us first consider the universal covering τ : X̃ → X. Then the fundamental group π =

〈Λ|〉 acts on X̃, and hence on H∗(X̃), as a deck transformation group. The following is a

generalization of Proposition 1.10 in [2].

Proposition 4.1.

H̃q(X̃)/π ∼= H̃q(C),

where we denote by H∗(X̃)/π the module Z ⊗Zπ H∗(X̃).
6



Proof. By Theorem 3.3, there is a homotopy section s of p which induces the following

commutative diagram up to homotopy.

X̃
τ−−−→ X

j−−−→ B

s̃

y s

y y=∨
ω∈π D(X)ω τ̃−−−→ B ∨ D(X)

τB−−−→ B

where τB is the first projection and τ and τ̃ is the universal covering up to homotopy.

The E1-terms of the Leray-Serre spectral sequence (see [16]) for the above fibrations j and

τB are isomorphic to the cellular chain complexes with the local coefficients in H∗(X̃) and

Zπ ⊗ H∗(X̃) given as

E1
0,v(j) = C0(B,Hv(X̃)) ∼= Hv(X̃),(4.1)

E1
0,v(τB) = C0(B, Zπ ⊗ Hv(D(X))) ∼= Zπ ⊗ Hv(D(X)),(4.2)

E1
1,v(j) = C1(B,Hv(X̃)) ∼=

∑
g∈Λ

〈g〉Hv(X̃),(4.3)

E1
1,v(τB) = C1(B, Zπ ⊗ Hv(D(X))) ∼=

∑
g∈Λ

〈g〉Zπ ⊗ Hv(D(X)),(4.4)

E1
u,v(j) = 0, unless 0 ≤ u ≤ 1,(4.5)

E1
u,v(τB) = 0, unless 0 ≤ u ≤ 1,(4.6)

where v ≥ 0, Λ the set of generators of π, and the first differentials d1(j) and d1(τB) : E1
1,v →

E1
0,v are given by the formulae

d1(j)(〈g〉x̃) = (g − 1)x̃(4.7)

d1(τB)(〈g〉w) = (g − 1)w(4.8)

where x̃ ∈ Hv(X̃), w ∈ Zπ ⊗ Hv(X̃) and g ∈ Λ. Since E1
u,v = 0 for u ≥ 2, the spectral

sequences collapse from the E2-terms.

By comparing with the E∞-term, we obtain that d1(τB) is injective. By Theorem 3.3, s

induces a split monomorphism of E1-terms, and hence d1(j) is also injective. Thus we obtain

the following equations:

E2
0,v(j) = Hv(X̃)/π, when v ≥ 0,(4.9)

E2
1,v(j) = Hv+1(B), when v ≥ 0,(4.10)

E2
u,v(j) = 0, unless 0 ≤ u ≤ 1 or v < 0.(4.11)

Since the spectral sequence for j collapses, this implies the proposition. ¤
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Remark 4.2. The above proof also shows that the augmentation ideal I of Zπ can be de-

scribed as the direct sum of (g − 1)Zπ’s indexed by g ∈ Λ, where each summand is the

injection image of Zπ.

Lemma 4.3. Let M be a Zπ-module which is a direct summand of an induced module from

a finitely generated Z-module. Then M is itself an induced Zπ-module.

Assuming Lemma 4.3, we obtain the following

Theorem 4.4. Let X be a connected CW complex of finite type. If X admits a co-action of

B along j, we have the following isomorphism of Zπ-modules:

H̃q(X̃) = Zπ ⊗ Gq as Zπ-modules,

where Gq is a submodule of H̃q(X̃) isomorphic to H̃q(C). And the covering projection is

equivalent to the canonical projection:

H̃q(X̃) = Zπ ⊗ Gq → {Zπ ⊗ Gq}/π ∼= Gq
∼= H̃q(C).

Proof. By Corollary 3.6, it follows that Hq(X̃) is a direct summand of an induced module

Zπ ⊗ Hq(Dq) from a finitely generated Z-module Hq(Dq). Then by Lemma 4.3 we obtain

that Hq(X̃) is isomorphic with Zπ ⊗ Gq as Zπ-modules for some Z-module Gq. Here the

module Gq is isomorphic with H̃q(C), by Proposition 4.1. The latter part is clear and this

completes the proof of the theorem. ¤

Since H∗(X) ∼= H∗(C) for ∗ > 1, Theorem 4.4 implies the main theorem. So we are left

to show Lemma 4.3. Firstly, let us consider the p-torsion part:

Proposition 4.5. Let p be a prime and Mp a Zπ-module which is a direct summand of an

induced module from a finitely generated p-torsion module Fp. Then Mp can be described as

a direct sum: Mp
∼= Mp[1] ⊕ Mp[2] ⊕ ... ⊕ Mp[h], where Mp[i] is an induced Zπ-module from

a free Z/piZ-module.

Proof. By the hypothesis, Mp is a direct summand of Zπ ⊗ Fp and Fp can be described as a

direct sum Fp[t] ⊕ Fp[t + 1] ⊕ ... ⊕ Fp[h], 1 ≤ t ≤ h, where Fp[i] is a free Z/piZ-module.

Let us introduce a notion of excess: excess(Fp) = 2h − t ≥ 1 if Fp[t] ̸= 0 and Fp[h] ̸= 0.

We show the theorem by induction on excess: Let k ≥ 1. By the induction hypothesis, we

may suppose that we are done in case when 2h − t ≤ k − 1. Firstly, let us assume that h =

t. Then Fp = Fp[h] is a free Z/phZ-module, Mp is a projective {Z/phZ}π-module. Hence by
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Bass [1], Cohn [3] or Seshadri [15], Mp is a free {Z/phZ}π-module. By putting Mp[h] = Mp,

we obtain the conclusion in this case.

Next assume that h > t, and hence k > h. We introduce Zπ-submodules of Mp

Mp(i) = {x ∈ Mp | pix = 0},(4.12)

Mp(i, j) = Mp(i)/{pjMp ∩ Mp(i)},(4.13)

and submodules of Fp

Fp(i) = {x ∈ Fp | pix = 0},(4.14)

Fp(i, j) = Fp(i)/{pjFp ∩ Fp(i)}.(4.15)

Then by the hypothesis, we have Mp(h) = Mp.

We have that {Z/piZ}π-modules Mp(i) and Mp(i, j) are direct summands of Zπ ⊗ Fp(i)

and Zπ ⊗ Fp(i, j).

Let us now consider the following commutative diagram:

ptMp −−−→ Mp
ρt−−−→ Mp/p

tMp = Mp ⊗ Z/ptZx x x
ptMp ∩ Mp(t) −−−→ Mp(t)

ρ′t−−−→ Mp(t)/{ptMp ∩ Mp(t)} = Mp(t, t)

where ρt and ρ′
t denote the canonical projections and all other lines denote the inclusions.

Let us recall that k = 2h − t > h under the hypothesis. Since Fp(t, t) is given as

Fp[t] ⊕ {pFp[t + 1]}/(pt) ⊕ ... ⊕ {ph−tFp[h]}/(pt) ∼=
∑t

i=max(1,2t−h) Fp(t, t)[i], we have that

excess(Fp(t, t)) ≤ 2t − (2t − h) = h < k and hence, by the induction hypothesis, that

Mp(t, t) admits a direct sum decomposition Mp(t, t) ∼=
∑t

i=1 Mp(t, t)[i] as Zπ-modules, where

Mp(t, t)[i] is a free {Z/piZ}π-module and hence an induced Zπ-module from a free Z/piZ-

module.

Since Mp(t) is also a {Z/ptZ}π-module, the canonical projection from Mp(t) to Mp(t, t)[t]

has a splitting st : Mp(t, t)[t] → Mp(t).

Let us define Mp[t] as the image st(Mp(t, t)[t]) ⊆ Mp(t) ⊆ Mp, which is an induced Zπ-

module from a free Z/ptZ-module. Then the image ρt(Mp[t]) is nothing but Mp(t, t)[t] in

Mp(t, t) ⊆ Mp/p
tMp, since Mp[t] is in Mp(t) and the restriction of ρt to Mp(t) coincides with

ρ′
t : Mp(t) → Mp(t, t). This implies that Mp[t] is a direct summand of Mp.
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Thus we obtain a direct sum decomposition Mp
∼= Mp[t] ⊕ M ′

p as Zπ-modules, where M ′
p

is the kernel of the projection from Mp to Mp[t]. On the other hand, we have a direct sum

decomposition Fp(h) ∼= Fp[t] ⊕ F ′
p, where F ′

p = Fp[t + 1] ⊕ ... ⊕ Fp[h].

By the definition of Mp[t], every generator in M ′
p has the order ≥ pt+1, because a generator

with the order pt has non-zero projection in Mp[t].

Let us recall that Mp is a direct summand of Zπ⊗Fp, and hence there is a retraction from

Zπ ⊗ Fp to M ′
p. Since an element in Fp[t] has the order < pt+1, the retraction restricted to

Zπ ⊗ Fp[t] is trivial after reduced modulo p. Hence the retraction restricted to Zπ ⊗ F ′
p has

to be a surjection after reduced modulo p, and hence is a surjection before reducing modulo

p. Thus M ′
p is a direct summand of Zπ ⊗ F ′

p, where excess(F ′
p) ≤ h− 1 + h− t = k − 1 < k.

By the induction hypothesis, we have a direct sum decomposition of M ′
p:

M ′
p
∼= Mp[t + 1] ⊕ Mp[t + 2] ⊕ ... ⊕ Mp[h], as Zπ-modules,

where Mp[i] is an induced Zπ-module from a free Z/piZ-module for t + 1 ≤ i ≤ h. Thus we

obtain a direct sum decomposition of Mp: Mp
∼= Mp[t] ⊕ Mp[t + 1] ⊕ ... ⊕ Mp[h] as desired.

This completes the proof of the proposition. ¤

Now let us prove Lemma 4.3.

Proof. Let us assume that M is a direct summand of Zπ⊗F , F a Z-module. Then M/torsion

is a direct summand of Zπ ⊗ {F/torsion}.

Since F/torsion is a free Z-module, the free part of M is a projective Zπ-module, and

hence is free by Bass [1]. Thus we have the following isomorphism of Zπ-modules:

M/torsion ∼= Zπ ⊗ M0, M0 is a free Z-module.

To proceed, let us consider the p-torsion part Mp and Fp of M and F , respectively:

M ∼= M0 ⊕
∑

p: all primes

Mp(4.16)

F ∼= F0 ⊕
∑

p: all primes

Fp(4.17)

Since Fp is finitely generated, Mp satisfies the hypothesis of Proposition 4.5. Thus Mp is

also an induced Zπ-module from a finitely generated p-torsion module. ¤
10



5. THE PROOF OF COROLLARY 2.2

Let us assume that B is a subspace of X. Then πq(X,B) is isomorphic with πq(X̃, B̃).

By the assumption, the Hurewicz homomorphism πn(X̃, B̃) → Hn(X̃, B̃) = Hn(X̃) is an iso-

morphism. Hence by Theorem 2.1, πn(X,B) ∼= Zπ⊗Hn(X), where Hn(X) can be described

as a direct sum of cyclic groups ΣaZea ⊕ ΣbZ/mbZfb. Let αa : Sn → X and βb : Sn → X be

mappings corresponding to ea and fb.

Then mbfb = 0 implies that βb is extendable to the Moore space Sn(mb) = Sn ∪mb
en+1,

say γb : Sn(mb) → X. Hence we have a mapping φ1 : Xn = B ∨
∨

a Sn
a ∨

∨
b Sn(mb) → X,

which induces clearly an isomorphism of homology groups of the universal coverings up to

dimension n. Thus φ1 is (n)-connective.

Let us assume that Xn is a subspace of X. Then πq(X,Xn) is isomorphic with πq(X̃, X̃n).

By the assumption, the Hurewicz homomorphism πn+1(X̃, X̃n) → Hn+1(X̃, X̃n) = Hn+1(X̃)

is an isomorphism. Hence by Theorem 2.1, πn+1(X,Xn) ∼= Zπ ⊗ Hn+1(X), where Hn+1(X)

can be described as a direct sum of cyclic groups Σa′Ze′a′ ⊕ Σb′Z/m′
b′Zf ′

b′ . Let α′
a′ ∈

πn+1(X,Xn) and β′
b′ ∈ πn+1(X,Xn) be mappings corresponding to e′a′ and f ′

b′ .

Let us consider the following exact sequence:

· · · → πn+1(X) → πn+1(X,Xn)
∂→ πn(Xn) → πn(X) → · · ·

Here, by the theorem of Hurewicz, both the modules πn(Xn) and πn(X) are isomorphic with

Hn(X̃), and hence, the above homomorphism ∂ is trivial. So, we may assume that α′
a′ and

β′
b′ are mappings from Sn+1 to X.

Then m′
b′f

′
b′ = 0 implies that βb′ is extendable to the Moore space Sn+1(m′

b′) = Sn+1 ∪m′
b′

en+2, say γ′
b′ : Sn+1(m′

b′) → X. Hence we have a mapping φ2 : Xn+1 = Xn ∨
∨

a′ Sn+1
a′ ∨∨

b′ S
n+1(m′

b′) = B ∨
∨

a Sn
a ∨

∨
b Sn(mb)∨

∨
a′ Sn+1

a′ ∨
∨

b′ S
n+1(m′

b′) → X, which induces a

homology equivalence of the universal coverings. Thus φ2 is a homotopy equivalence, which

completes the proof of the corollary.
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