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§1. Introduction
Throughout the paper we work in the category of spaces having
the homotopy tvpe of 1-connected CW-complexes with base point.

Let us recall some notions introduced by Stasheff {31.

Definition, An An—structure on a space X consists of a

sequence of quasi-fibraticns p; ¢ gt = Pi"1;

X=E ¢ B ... < "

Bq Jpz lpﬁ {commutative)
v

*:PO{:EJC.., CPn—1CPn

1

147 ana P! = sx.

with B' contractible in E

Stasheff then defines a special complex K{(i) such that

(1) K(2) = %, k(1) v 1472

(homeomorphic),

{2) the.boundary BK{L) of K{i} 1s the union of i(i-1}/2-1
faces Kk(r,s} for 2 $r, ;1 £k £, r+s5 = i+1, where each
face Kk(r,s) is affine homeomorphic te K(r}XK({s) by the map
'ak(r,s) : K(r¥xrK{s) —)Kk{r,s), a face operator,

{3} it has degeneracy operators Sj t K{(i) -» K{i-1) for 1 < bl

< i,

Definition. An An—form on ¥ consists of a family of maps

my K(i)xxt -+ % for 1

[

jocd

such that
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(1) m, is a multiplication with unit, mz(*,e,x) = m,(x,%,e) = x,
(2)  m (G (x,s) (P, T); Xqpenss¥y)

= mrip:X1;---,Xkuq,mS(G;XK,...,xk+SN1),xk+s,...,xi},
{3) mi(I;x1,...,xj_1,*,xj+1,...,xi)

= mi(s‘(3};x1,...,x.‘1,xj+1,...,xi}.

J J

Definition. The pair (X,{mj}) is called an An—space“

Definition. If there exist m, for any 1, we call {mi} an

A qform and (¥,{m,}) an A -space.

Remarx. 1) A space ls an A, -space iff it is an H-space.
2) For 1 = 3,_K3 = I the unit interval. The second

condition (2) says that m2u{Idxm2} Q{mzu(m2x1d), i.e. x({yz) r—~—
{(xviz. Thusg m3 is an associating homotopy {so that o, is a
homotopy associative multiplicationd.

3) Any associative H-space sdmits n-forms for anv n

M ATIRyreeerX ) = Xpaaux,

so that it is an A ;space.

4) In the complex Ki’ the symmetries are lost, because we do
not assume strict associativity for the H-space. The faces are

in the one to one correspondence with the variation of the (non-

commutative) product and there are no inessential faces.
One of the main results by Stasheff in [S] is

Theorem. A space X nas an An~form 1ff it admits an A -

structure.

In the process of the proof he defined a space Di such that

there exists a relative homeomorphism Gk+1 H (Dk,Ek} -+ (Pk,Pk_1)



satisfying
(1) o1 ¢ g% < p¥
Gk—W P Gk {commutative)
pk-1 _ pi=1 .~ pk
I QR o DU S 3 . '
{(2) {CE",E") ™~ (D,E™) (homotopy equivalence).
Notation {Convention}, When we want to express the original

space X explicitly {or to avoid ambiguity) we write:

BN (x), "

-1 n 4 X
{X), D (X}, Phe My etc.
It is guite natural to ask a functorial definition of an An—
structure and An~form i.e. a definition of amap £ : X %Y to
be an An—map between Anwspaces X and Y, which preserve, up to

homotopy, An—structures of ¥ and ¥.

Before we give an explicit definition of an An—map, we state

its fundamental properties:

P1) A map homotOpic“to an An-map is an An—map.

P2} A composition of An—maps is an A -map.

P3) An Anmhomomorphism is an An~map.

F4) The lccalization map is an An—map° The localization of an

An—map lLs an An4map.
P5) If a homotopy egulivalence is an Aﬂ—map, g0 is its homotopy

inverse.

B6) The homotopy fibre of an An—map admits an An—structure.
P7) The pull-back of two Anmmaps admits an nn—structure.
P8) A map is an Az—map, A,-map or A_-map iff it is an H-map, an
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H-map preserving homotopy associativity or a loop map,
respectively.

P9} Let X be an An-spaca and G a monoid. Amap f : ¥ -+ G
is an A -map iff its adjoint ad(f) : SX - BG is extendable
over PT(X}.

F10) Suppose that an An-space X dominates an An_1—5pace Y,
namely, there are maps f : X Y, g : Y X such that fog

351y. 1If one of them is_an An_T—map, Y has an Anuform.

Historical remarks. 1) Stasheff [S] defined an An—

homomorphism between A -spaces X and Y iff £ commutes
strictly with Anwforms [X,{mi}} and {Y,{ni}) : f°mi =
nio[1KXfX...xf) {a map homotopic to an An—homomorphism is not
necessarily an Anmhomomorphism].

2) When the target space admits an Agsstructure, he defined
an An—form.

3) He also described a parametric complex for n = 4 giving
an A,-form of a map but did not give a unified construction of such
complexes for all n.

4) Zabrodsky [21] defined an An—map for n ¢ 3 and
mentioned the possibility for general n (but did not give an

explicit definiticn}.

The paper is organized as follows: In Section 2 we define a
parameter complex J(i}. Then the notions, A -form and A -
structure of a map, are defined by making use of the complex in
Section 3. In Section 4 we give an outline of the proofs of the
fundamental properties P1) ~DP10). In Section 5 we give some
applications. In the last section,; Section 6, we yeneralize the

Zabrodsky theorem [Z1]1 and [Z2].

The details will appear somewhere.
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§2. The construction of complex J(i)
In this section we define a complex J(i} which will be needed

to define an An-map in the later section.

The definition of J{i)

The definition of J{i) is somewhat 'flexible'. Let n be
any positive integer, Note that the n-1 cell K(n+l) is
homeomorphic with a complex K(n+1) whose boundary is a PL-

manifeold as follows:

K(n+1) ¢ TT?zo[O'j]'

K(n+1) 3 (uo,.o.,un] if 1=0ui ¢ 3 and P u, = n,

Kk+1(r,s} I (uo,.,.,un) if (uk""'uk+s-1) & Ki{s).
From now on we identify X(n+1) with K(n+i) if there is no
misunderstanding.

The boundary of X{n+1) is the union of Kk+1(r,s)'s. The

face operators are described as
ak+1(r+1'5+1}{P’G} = (u0'°“'uk—1’VG'°°"Vs'uk'°“'ur)

for p = (uo,...,ur) in K{r+1) and ¢ = {VO,...,VS) in K(s+1}.
Now we define a complex J{(n+1} as follows:

J{n+1) ¢ TT?:0[0,2j+1],

Jin+1) D (uo,...,un) if Zj.l=0ui £ 23+1 and Z?:Oui = 2n+1

and face operators are given by
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5}“_1 (r+1,58+1)(P,0) =

{uO’“""uk—i’ZVG"“'zvs'uk"°°'ur)
where P: (uo,...,ur} in

Kis+1) and

J(r), r+s = n, and @ = (Vgrewnrvy)

OCE+135 s eyt ) TPy seeesf

)
—- t 1 1 -
= Pgreeesf)s Py o= “’i,o"""’i,ri*ui’
where ‘0 = (vi,(}"'”'vi,r.) in J(ri+‘|), 1:-{»3.“0+.”..4-:c:t =n and
1

(UO,”.,ut] in EK{t+1) (see Figure 1).

. ) T3 , K (4)
Figure 1: K(S)

J @) Lo %2;2,1) K232 K4 (3,2)
Kif?.,ﬁ)

7 (331,1.9)
. J(2; i, D .71(1;2]

@3 K (2,3)
J(2;1,2)

J D Ka(2,2)

Joi2,1) Kg(3.2)

Next we will show the relationship of J(n) with X(n).

For
any given real number a 2 0, we can define a complex J{a) as

follows:

J(a+1) ¢ TT_fil:O[o,jn} with n = [al,
Jla+1) > (Wgsovepuy)  if Za=0ui ¢ a-n+j and E:Oui = a;
and its face operators are given by
5_}{+1{b+1,5+1]{f3,6} = (uo'“”uk-‘f'VO'”"VS'uk’”"ur}

where P: (Ugsveesu ) in J(b), b+s = a, [bl =1, § = (Vgreeorvy)
in EK{s+1) and
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5(t+1 ;a0+1 e .o;at+1){TFP0:---r Pt}

= 1 ] [ 1 | -

= {PO,..., t}' Pi = (vi,o""’vi,ri+ui} and u; = ui(n+1 al,
where Pi = {vi,O"°"vi,ri) is in J(bi+1), [Di] = T biw[bi] =
a-l{al, t(n+1—a)+ao+...+at =a and (@ = (uO""’ut) is in K{t+1).

We denote the faces by Ek(r,s) which is the image of Sk(r,s)
and by 3(t+1;b0+1,...,bt+1) which is the image of

5(t+1;b0+1,...,bt+1). We call the last cones upper faces and

denote by 6L3}a+1), the union of all upper faces of J(a+1).
Remark. 1) The faces are all homeomorphisms if a is not
an integer.

2} J{n) is naturally equivalent to J(n+1/2) as complexes.

Under these notations, we have

Proposition 2.1. 1) K{n+1) 2 J(a} 2 K(n} for lal = n
> 1 and further J{a) = K{n) if a is an integer.

2) Let a be a non-integral real number and [al = [b] = n
> 1. Then there is a map f from J(a) to Ji(b) such that

a,b

fa,b°8{tia1----;at) = S(t?b“;...,bt},
- T ] . . T 1 .
fa'boak(a 18) = 4 (b ,s)o(fa.’b.xld),
where b' and bi are given by a'-b' = ai—bi = a-b. Moreover

the boundaries of J(a) and J(b) are equivalent as complexes, if

a and b are not integers and {al = [b] > 1.

3) Let a be a non-integral real number and [al = n > 1.

Then there is a projection ﬁ% : J{n} 2 K(n) such that

T e Hnil, . 1) = 14,

2o by (xes) = Jk(r,s}omrxld).
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Proof. 1) is clear by the above definitions of K{n)'s and
J(n)'s. We show 2). We have to show that there is a cellular
map fa B ¢ J(a) = J(b). Since J(a) 1is the union of the upper

r

a' ¢ a, it suffices to define the map on

faces 3+3(a'} for n

i~

the upper faces of J(a). We define the map by induction on n.
In the case n = 1, J(a) = J{b) = one point set and the map is
trivial, In general, we define fa,b by fa'b°§(t:a1,...,at) -
g(t;b1,,..,bt) on the upper faces and by the hypothesis. The

latter identity obtained by the relation of the face operators.

3) is obvious, because ¥ = f satisfies the reguired

a! n+l1/2,n
properties by 1}. This implies the proposition. Q.E,.D.

Next, we define the degeneracies dj on Jin}. It suffices
to define degeneracies on ?+3[a). 2o we can define degeneracies
by the relation with the upper faces (d-3) below and obtain

Proposition 2.2. 7

The properties of J{i)

The complexes J(i} satisfy the following properties (2-a) ~

(2-2):

(2-a) J(1)y = 1*}, and J{i) for i > 2 is affine
homeomorphic with 1.

{2-b} The boundary DJ(i) of the complex J(i) is the
union of i(i—1)l2+21_1-1 faces

Jk(r,s) for 1 < Ed gry, 1 £r £ i-T, res = 141,

J(t;r1,...,rt) for 2 ¢t : 14, L > 1, Fite.odr, = 1,

(2-c}) Let r+s-1 = Ty4aa.ir, = i. The faces Jk{r,s) and
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J(t;r1,...,rt) of J({i) are affine and piecewise affine
homeomorphic with J(r)XK(s) and K(t)KJ[r1)x...xJ{rt)
respectively through éffine and piecewise affine homeomorphisms:

G (ris) ¢ J(x)XK(s) > J, (r,s),

AEsx, ooy K(£)%T(r )% ee kT (xy) D T(E50,,cmn,ry),
which are called face operators. The second face operators are
called upper face operators by virtue of this property. The face

operators satisfy the following four relations:

(e-1}) 5k(r,5+t—1} (Idx%(s,t})

= Oypg_q (x48=1,8) () (x,5)%1d)

J{r}XE{s)¥Kit) > J{r+s+t-2),

{e-2) 5k{r+s~1,t}°(@j(r,s)xld}
5j+5u1(r+t—1)“(5K(I,t)ﬂld)ﬂ(IdXT) for k < j
é%(r,s+t—1)o(Idxak_

¢%(r+t~1,S)o(ék_s+1(r,t)XIdJn{IdKT} for j+s ¢ k

(s,th) for 3 k < g+s

I~

J+1

JIr)®K{s}AK(t) » J{r+s+t-2),

2

(c-3) for given (r1,...,rt) with Z%rj =i and k, let j be

the index such that J:,|+...—t—rj_,I <k £ r1+...+rj. Then

Oy (i,8)0(dE5r  eenyry, )XTA)

= 5}t;r1,...,r P - T . o

j-1773 J+1
: K(t]xJ(r1)X...XJ(rt]KK{s) = J{i+s-1},

peeerr)o (1,8, L1 (T 8)X1)eT!

-1

where 12_,1 and TB are the identity maps of A =
K{t)XJ(rT}x.,,xJ(rj_1} and B = J(rj+1)x.,.XJ(rt} respectively,
i' = Lqtenetly g and T' : AXJ(rj}xBXK(s)-% AxJ(rj)xK(s]XB is the

map switching factors B and Ki(s},

(c-4) 3(t+u—1;r1,...,r (Bk(t,u)xxd)

t+u—1}°

"

- =11
= 5(t,r1,...,rk_1,1 'rk+u"°°'rt+uw1)°(1cﬂ
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mit
Uity seees T, IXIp)eT
H K(t)XK{u)XJ{r1)X...XJ(rt+u_1) 2 J(iy,
where 1 = r1+...+rt+u_1, i" o= TpteeetTy gy C = EK{tIxC' with 7

= J{r ) %...XJ(r D = J{ry  I¥...XJ(r anég T" :

k-1
R(EIXK{u)%C"XC"Y¥XD 2 K(L)XC'XK(u)XC"XD with o o=

J(rk}x..vXJ{rk+u_1] is the map switching factors K(u) and ',

(2-4d) The complexes J(i) have degeneracy operators dj

g, =»J. ., 1 ¢ 3 < i, satisfying the following three relations:

o
=1}
5
=
I
o ]
ol

(a-2) d“&(rs):d(ﬂst)%JJrﬁ)

J' 1(r 1 s)*(d %Id} for k < 73,
{

j(r 1 8-1 )°(Idﬁsk_j+1) for 3 ¢k < j+s, s > 2,

T, for j <k < j+s, 53 = 2,

)

5. (r=1,8)0 (a,

5 . 1xId) for J+s £ k,

(d-3} for given k and (ry,-..,r ) with Zara = i let 3 be

the index such that r1+..,+rj_1 <k ¢ r_|+...+rj and put i' =
r1+...+rj_1. Then
dk°§(t;r1,---,rt) H K(t)xJ{r1)x...XJ(rt) = J(t;ri,,..,rt}
5(t;r1r°'-irj_1rrj"‘i Jrj+1JT_IP‘Ir---frt)“(-]Ede“iﬁ"lF}
for x. > 2,
] =
= 5{t-1§r1;=-o:rj_3;fj precesrg)els,Xlg)og  for ry =1, t 23,

pr, for t© = 2, k = r, + 1 =1, 3 = 2,

pr, for t =2, k = ry =173 =1,
where E = E(t)xE' with E' = T(T )% o XTlry 400 F =
J(rj+1}x..,xJ(rt), G = E'AF, pr, 1is the projection to the t-th

factor and ' : ExJ(rj)xF - ExXF  is the natural proiection.
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{2-e) There is the map Qﬁ T K{i1) 2 J{i) satisfying the

following:

W20, (x,5) = § (r,s)e(w x1d),

LW *Id
K(r)iK(g) -3 T{r)xE{sg}
D (r,s) E’ 5{(r,5)
I{k(r,s) Jk(r,s}
a ) n
K{i) —————3 Jli)

dyetd; = W_qosy for 2 <3 g i-1,
Image &a = k/J{t;r1,...,rt),

where the union runs over all the upper faces of J(i}.

83, An A -map, an A_-action and an A_-equivariant map

In this section we ilntroduce the notion of an An—map, an An—

action {see [N]) and an An—equivariant map.

An A -map
Let ¥ and Y be Anwspaces.
Definition. An An~structure of £ : X =Y consists of a

sequence of maps {fE], {fi}, 1 £ k $&n such that

Y D _ D X
Vho G0t = £000
FD
(D*x, EX%) —&-s 0Ky, £Fy)
X Y
Gk+1 ‘ 5k+'|
£F l
Ko k-t K k. k-1
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D D D P
2) L=yl £y = £ lpkyr £ niphye

We have already introduced parameter complexes J(i} for i

[

1 in the earlier section in order to define the notion "An~form"

of a map.

Let X and Y be A -spaces with A_-forms {M?, i < n}, {Mf, i
$ n} respectively.
Definition. An An—form of a based map f : X -» ¥ consists of

a family of maps {F, : J(i)¥X" = Y¥; i < n} satisfying

() F,oo=f
(2} P (G s) (£ ixy o xy)
. Xiws
a Fr(P’X1”"'xk—1’ms(d'xk""’xk+s—1}'Xk+s’“°"xi}

{3) Fitétt;ri"“"rt}{rFP1"‘“’f%};xi""’xi1
Y =T o -
= mtvt’rr1(Pi'X1""'Xr1)"°"Frt(Pt’Xr1+...+r +1"'”'Xi))

(4} Fi(g;x1,...,x

t-1

#
IR RN WE RN

- Fi_1(dj(X];x1,...,xj_1,xj+1,...,xi)

Definition. We call the pair (f,{Fi, i < n}} an An—map.

The pair {f,{Fi}) is called an A r-map if Fi exists for every i.

Theorem 3.1. A map admits an An—structure iff it has an An—

form.

{Outline of the proofl Firstly we remark that K(i) and the

upper faces in J(i+1) are homeomorphic and we can use the upper
faces of J(i+1} and dj instead of H{i} and Sj‘ Let f

have an An—form. We define an Anwstructure as follows:
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Definition. Fer 6 in K(i+1),ioi+1(6) =
. E ' i
§UEiT ooty T ) (TiPyrene,Py), we define £] : BN(X) > BY(Y), £ ¢
pY(x) % PY(y) ana f? : DYx) 5 dl(Y) as foliows:

E X K
(3.2.1)  £7 L7 (Sixy,000,% 1))
- ot .pf . £
—C(t_'l{/rfF (r—!)(P—]rx"f°'°rxr1);-“iF {rt_‘]){Pt_‘];
ro+ + IR T N
b x LR L
{3.2.2) fi_ifﬁi(dﬁxz;---:xi)l

¥ f . f .
= B, 4 (TF {r2}{f5,xr1+1,.,.,xr1+r2),...,F (DAY P

Xri+...+rt~2+1’“'“’qu+...+rt“1))

D X .
(3.2.3) finq{xitﬁ;xzrﬂﬂ-lxi)]

(o (mrfie, 1) (a, () e ) i, VP
C(t_‘l * r.l 1 F1 ,Xzfa..; r? Feow oy 1 Ft_,lr
. J Xr,|+...+rt“2+’l"""Xr?+..,+rt_,|”' 4 > 1
Y . £ .
Yo _{(T;F (r2)(P2,xr1+1,.,.,xr1+r2),-.»,r (re 1 MPp_qs
Xr1+...+rt_2+1’“'“'XI1+...+rtv1})’ r, = 1.

We leave the reader to check the well-definedness of thisg
definition. The converse is similar to the proof of Theorem 5 of

[s,I1. ' 0.E.D.

An An—action {IN1}

We introduce here the idea of higher homotopy {(right)} action.
A higher homotopy left action is defined similarly, so we omit it.
Let G be an A -space with A -structure {p? : Ei(G) > Pi_jiG}

for 1 ¢ n} and h a based map from G to a space W, where

Pl(G) is the G-projective i-space.
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Definition. An An—structure of a (right) action along the
map h : G W consists of a sequence of quasi-fibrations p? :
eh(h) 52171 (G) with fibre W and relative homeomorphisms ¢
(o' (n), EXn) ~ (»re), 2P7N@)), where E'(h) - W, and E(n)
and D'(h) are defined similarly to the definifion of E'(G) and

Di{G} respectively by the relative homeomorphisms

a§+j : (R{is2)xwxGt, gR(1+2xuxet Uk (i:2)xuxglil) o & n),5l )y,
H?+1 2 (K(i+2)xGY, K (ie2)xat U k(12 alt]) (o*(q),et(a)y,

and 6? is obtained by the projection.

Remark. 1) Dl(h) is nolt contractible in general.
2)  The fibre of p; is W.
3} Let h i H -G be a map between Ay-Spaces. If h is

an A_-map, E®(h) can be identified with the homotopy fibre of the
map Bh : BH & BG. Vie may write E™(h) by G/H, if further h

15 an injectiwve Am—homomorphism.

Let {n}, i ¢ n} be the A -form of G.

Dzfinition. An An—form of a {right) action along h : ¢ - W

M

consists of a family of maps {Nf : K(i)xwyet™! > W; i < n}

satisfving
(1) N, = Id,
(2) N (0, (re8) (£,0) 1wig,, annsg))

1

G
= NI(P;w;ng-..;gj_1,ms(G;gj,...,g
(2)! Ni(aqtrfsltp.ﬁl;w;qzr...,gi}

j_t_s_-t:'rgj_t_si‘“‘l’gi)!

= Nrtp;NS(d:w;gzrnvn;gs}.gs+1f---,gi),
(3} RERCTALEPYEEER P IR FUCPRTRVL I

= Ni—‘l(s] (T):—W}g2r--n;gj__-] ’gj+'|'."'gi)'

G
(33! N (Ti* 50000090 = homy (e (Thigy,ravergy).



207

Definition. We call the pair (h,{Ni, i < nt) a (right) An—
action along h. The pair (h,{Ni}} is called a (right) A action
along h if N, exists for all i,

From a similar argument to [5,1], it follows

Theorem 3.3. An A -structure of an action along h is

eguivalent to an An—action along h.

An An—equivariant map
Let H and K be A -spaces and £ : H -~ K be an A -map with

the An—structure {ff, £ i ¢ nl. We assume that there are An~

structures of actions {p ?} on V =z2long h and {p?, di} on

W along k. Let F : W be a based map with Feh = kof.

Definition. An AP-structure of F : V>»>W along £

consists of a sequence of maps {F?}, i

~
[
(1

n  such that

P oh k D
1 EnG g = 050 Fy
i ry i
D (h) =z D7 {k}
h
Gi+1 l l 6?+1
i £ :
pl(H) ——— P*(X)
| D D, .
2) F = Filyr Fy Fn|D1{h).
no,
Let {N{, i ¢ n} (and {NE; i ¢ n}) be the A -action along h

.F'
(and along k, resp.) and {P;} the An—form of f.
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Definition, An Ap~form of the map F : V W consists of a

family of maps {Ri  J{ikvxaETT 5wy g ¢ n} satisfying

(1) R, = F
(2) Ry (35 (r,8) (R0 5vigy,nnrg,)
H

= Rr(P;V;gZ,., 19y ,ms{ﬁ;gj peeer9y L0 g ),gj+s, --19y)

()" R4 (2482 (P, 5vig,, 000 09,)
h

= R PING(OIVig e e g )T qre e i)
(3) Riéé(t:r1,---,rt)rt:ﬁ1-n-,Pt%:v:gz,---,qi)

= Ntft:Rrj{P1;v:gz,-.-,gr1}.Frztfbigr1+1r-=-:9r1+r2),-..

b

Frt‘Pt?qr1+...+r

t-1+1’.--’gi))

(4} Ri(K;vsquo.-,gjﬁ1.*,gj+T,---fgi)
= Ri—1 (dj (El/]' ;V;ngﬂ"ﬂ fgj_1 'gj+‘¥ l°"rgi)

£
{4y Ri(ﬁ;*:gz.-...gi} = koFi_1(d1{¥);92:«---gi)
Definition. We call the triple (P,f,{Ri, i < n}) an Anﬂ
equivariant map along f. The triple {F,f,{Ri}) ils called an 2_-

eguivariant map along £ if R, exists for all i,

By a same argument as above, we have

Theorem 3.4. An An—structure of a map along £ is

equivalent to an An—equivariant map along it.

§4. Fundamental properties

We indicate an outline of the proof of the properties.

P1) We deform the A -forms by the homotooy of maps.
P2} The composition of the Aq~structures gives the A -

structure of the composition of the An—maps.
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23) By using ﬂ%, we can define An—forms for an A -
homomorphism.

P4) As the localization functor is continuous (by [I3]), the
localization map is an An-homomorphism and the leocalization of an
ﬁn—map is again an An—map.

P5) Let {f,g9) be the homotopy egquivalence pair with f an
A_-map, given homotopies fe¢g ~ Id and gsf ~ Td. Through these
homotopies, we can define an An—form for o.

P7) The homotopy fibre of the An—structure of an hn—map

gives the An—structure of the homotopy fibre of the An-map.

Po6) This is a corollary of P7)
F8) We obtain this directly by the definition.
Pg) It suffices to show the existence of the An—structure

for a given map, if its adjoint has an extension to the X-
projective n-space. We can ceonstruct it by the homotopy
extension property of (Di(x),Ei(X}) and by the homotopy lifting
property of the principal fibration p? : Ei(X} i Pi_q(X).

P10) Using the A -form of f (or g}, we can define an n-

form for Y similarly teo the case when n = 2,

§5. Some applications

An An—primitive s@ace
Let X be an An~5pace of finite type such that
*
H (X;0Q) ':_:_ E(X1 1-°-;Kr) @P[Y»] [} “-,ys]
with deg(xi} = 2ni—1, n,

mg. Then as is well known,

$ ese <_n_ and dEg(yj) = 2mj' my £ «--

i~

2n, -1

x4 TTs * xWK(z,zmj).

Recall from [I2, Theorem B}
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{5.1) Let X be a finite CW-complex having an An—form. There
2n, -1
is a homotopy equivalence h X{O) Q{TTS(OT which is an An—1“

map.

Definition. An An—space X is Anuprimitive if h 1is an A -

Map.

*
Definition. An element x in H (X:;Q) is A -primitive if
. . . * n N * * *
there is an element y in H (P X;0} such that s x = 12‘..tny,
§ - ; *
where Zi : pi-t C;Pi is a natural inclusion and s is the

suspension isomorphism.

*
Proposition 5.2. X 1is an Aq—primitive iff H (X;Q) is

generated by A ~primitive elements.

+5 = {fini -s5paces
Notation. o {finite A -sp }

m% = {finite A -primitive spaces}

By the definitions and by the above proposition we have the

inclusions
1 ]
(5.3) o, 20, 20 2 ... 2 0y 2 A 20 2 .-
amnpl Th h 87 is an example of Ol at
Exanple. e geven sphere D 2 B 9.

Recall that whether or not m? ;@ Glé is still open problem.

Let (X;{mi,iﬁn}} be a finite A -space. For the dimensional

reasons, we have
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Proposition 5.4, If, for any i ¢ r and any r-tuple {dj;

g % My © {1,...rh, 1 ¢ 3 ¢}, we have 2n; X (n-1) + Z;?ﬂiocj;

with !%j| = Zont—1) where € ranges over uj, then

(X,{mi,ién}) is in OIA.

Corollary 5.5. Let G{m} = sU{m} for d4d = 2, Spi(m) for d
= 4. If &{m-1) < dn, then G'{m) = (G{m),mn) is in ﬁt; for any
n-form m_. S0, PGt (m) is rationally eguivalent to PGim}.

Proposition 5.6 (Counter examples).

I If d{m-1} > 4n, then there is an n-form mé of G{m)

+ t . . '
such that {G{m),mn) is not in mﬂ

2) If m > 2n+1, then there is an n-form mé of

s¥xs% su(m) such that (S°xs>

] 4 . 1
xSU(m),mn} is not in ﬁln.
In the prcoof of these proposition we need the following facts.
Let [Y,{mi,ién}} be an Anwspace (n > 3).

. . _ _ iy . . )
Notation. éh(X,{mi}) = {rnn H KnXX <X 3 {mi, i <n and mn}

is an An—form of X}

Definition. For any n-forms mé and m; in B (X;img1),

m; ~ m; iff there is an n-form F{n) : JHCXH - X of the
1 n T

identity map 1X such that {mi°(nix1xx"'X1X)' i ¢<n and F{n}}

is an An—form of the identity 1X.

By the fundamental property P53}, we have

Proposition 5.7. The relation ~a is an eguivalence
n

relation,
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Lemma 5.8. an(x,{mi})/ r~a iz in the one to one

n
correspondence with ﬁbnh(x,{mi}).

{Outline of the proof) Since 1X is an An_1—homomorphism,

the obstruction for the existence of an n-form of 1X is deformed
to be the obstruction for the existence of the homotopy between two

n-forms m and m’.
n n

The latter cbstruction is classified hy the set

[SH_ZAXA...AX,X], So we have

Theorem 5.9. An[X,{mi}}f ~y ;:[SH_ZAXAp..AX|X]-
n
Localization and Zabrodsky's theorem
Zabrodsky constructs in [Z2] an example of a finite Ap_1—5pace

which does not have an Apuform for each prime p > 3. it seems,

however, that his construction needs more precise arguments,
Let || be the set of all primes and P be a subset of TT.

Pefinition. A space X or a map f admits a med P An—

form (or An~structure} iff XP or fP admits an An—form {or Anh

structure}.
Let [T = 1l,», (a finite partition).

Proposition 5.10. 1) ¥ is an Anuprimitive iff X is a

mod Pi An-primitive for all i,

2) f is an An—map iff £ 1is a mod Pi An—mag for all 1.
Proposition 5.11 (Mizing homotopy types) (see [MNT]). If Xi

are 220§1Pi A -space (1 2 1} such that (Xi}IOJ is A -equivalent to
i
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T S0y - Then there exists an A -space X such that X is

mod Pi An—homotopv equivalent to X,.

Proposition 5.12 (see [MNT]). In the category of connected
complexes,

1] X is an An~5pace iff X is an An—space mod Pi for
each i and the raticnalization XP _>X(0] induces an equivalent

i

A -structure on X .
n {0)

2) A map f between Bn—spaces is an An«map iff £ is an

A -map mod P, for each i and the rationalization of fP
n = i

induces an eqguivalent An—structure on f{O)'

Using these propositions, we have

Theorem 5.13 (Zzabrodsky). For every prime p 2 3 there

exists a finite CW-complex which admits an Ap_1—structure but no

A -structure.
p StIueture

§6. The sphere extension of a complex Lie group
A Lie group G often acts transitively on a sphere and is
regarded as a total space of the fibre bundle over the sphere [Bl.

Then the Lie group G is called a sphere extension of the isotropy

subgroup GO' Let us consider a new sphere extension G of GO
induced by a map £ on spheres. Then G is no longer a Lie
group, in general, Zabrodsky [2Z1 shows, however, that € is an

H-space, provided that the map degree deg(f) of £ 1is prime to

2. It is natural to ask when G 1is a group-like space, in cther
words, when it is an AB-space. If the bundle projection e : G
gén-1 were an A,-map, it would be trivial. But it is not true

in general. Y. Hemmi [H] shows the following
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*
Theorem, Let n be a positive integer not dividing 2-3

and let G be Uln), SU(n) or Sp(m) (n = 2m) acts on the odd

sphere gen-t, Then deg(f) is prime to 6, provided that G

is an A3—5pace.

We discuss the existence problem of a higher homotopy
associativity of G in this section. Firstly by a simple
computation of the action of the mod p Steenrod algebra A(p) on
the mod p cohomelogy algebra of the projective spaces, we have a

generalization of the above theoren.

Theorem 6.1. Let p be a prime number and n 3 pogitive

*
integer not dividing (p-1).p and let G be U(n), SU(n) or

Sp(m) (n = 2m) acting on the odd sphere g28°7, Then deg(f) is

prime to p, provided that 6 is a mod p Ap—space and f 1is a

mod p Ap—mag.

Corollary 6.2. Let n be prime to p!. Then deg(f) is

prime to p!, provided that G is an Ap~5pace and f is an Ap—

map.

(Outline of the proof)

Assuming that {deq(£), p) £ 1, we deduce a contradiction. By
the hypothesis on G and f, the map f induces a homomorphism F
between the spectral segquences Ek[E) and Ek(G) of the Stasheff
type. We remark that G and G have torsion free integral
cohomologies and Ek(E) has also a torsion fﬁee integral
cohomology for k < p. By comparing the spectral sequences, we

obtain

Proposition 6.3. G is A -primitive.
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k

Then the mod p cohomology of P*(G) is the direct sum of a

polynomial ring and a nilpotent ideal Sk (see {I2]}. Let R be
the quotient algebra of the mod p cohomology of Pk(al by the
ideal generated by the image of. ?$ and the nilpotent ideal Sk‘
By the hypothesis, R = %/pZlvl/(vP*') with deg(v) = 2n must be
an A(p)-algebra. On the other hand, by the Adem relation, we

have

p+1}

Lemma 6.4. ° Let R = Z/pZiv]/(v with deg(v) = 2n.

%
Then R ¢an not be an A({p}-algebra unless n divides (p-1}p .

It is a contradiction and the proof of Theorem 6.1 is completed.

Q.E.D.

Our main goal of this section is the following
Theorem 6.5. Let G he a compact complex Lie group complex-
linearly and transitively acting on the odd sphere gn-1, Then

~acting on the sphere and the map £

G is an A -space A

k k-1

covering f is an Ay -map, if the degree deg{f) of £ 4is prime to

ki, Moreover f ©preserves A -action in a homotopical sense

k=1

{see Section 3 and alsc [N)] for the definition of A —action).

k-1

Coroliary 6.6. Let n be a positive integer not dividing

% —
23 . Then G is a homotopy associative H-space iff deg(f) is

prime to 6.

Remark that the conclusion is equivalent to that G is an Aq—

space and f is an A, -map.

We use the following method: For the unitary group U(n-1),
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taking the equivariant localization of the base space SZn—1 and

the map £, we get an eguivariant Ay-space X and an equivariant

A -map F. By the obstruction theory for an Ay -space and an A~
map, Wwe can show that this space has a higher homotopy associative
equivariant structure for the total space G and the sphere map
has also a higher homotopy associative equivariant structure. We

often call the higher homotopy associative equivariant structure

the Ak—equivariant structure for some k.

Decomposition of the eguivariant An~action of U(n}

We work in the category of (strictly) U(n-1}-equivariant
spaces and maps. Let p be an odd prime and P the set of
primes 2 p. Recall that the unitary group U{n) acts complex
linearly and transitively on the odd sphere sen-1 e c".

SZn—1 is an eguivariant based space whose fixed point

Therefore
set by any subgroup H is always a sphere of odd dimension 2n(H)-
1; 2n-1 2 2n(H)-1 » Q. S0 we can consider the equivariant

Zn-1

localization X (and F) of 8 {and a map £ : 2n-1

s?2-1 5 g

continuously, resp.) (see [I3])}. Let cz(x} be the double
(associative) loop space of the double reduced suspension of X.
Then CZEX} is an equivariant A_-space by the first loop structure
of the double loop.

Recall that the unitary group Uln) is a left equivariant
group by the conjugate action of U(n-i)} and is also a right

egquivariant space by the product from the right. We dencte by

2n-1
(n—1?s

space Uin) and the left equivariant space S

the equivariant product of the right eguivariant
Zn-1

U(n)xu

Then o201

admits an eguivariant (strict) action of U(n) by the eguivariant

201 S2n-‘i

map from Ufn)x to

2n-1

U{n—1}s along the projection e :

On the other hand, X is equivariantly mod P

equivalent to SEH_;. Therefore U(n)xU(n_T)X is mod P

Uin) - 8
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equivariantly equivalent to U(n)xU(n_1)52n_1 and X admits an

A -action of U{n) (see [I1]1) by the equivariant A form, a tuple

- T ‘s X o .
of k-forms from KkXU(nJXU(n~1) XU(H'1)U(n] U(n_1}x to X

Proposition 6.7, There is an eguivariant homotopy action T

cf U(n) on X satisfying the following two conditions:

(1) The Ay action of U(n) on X 1is U(n-1)-equivariantly
equivalent to e'l(g) e T(g,x) in Cy(X) for x €X, g eU(n),

where e means the associative loop product,

(2} T{h,x) = hx, T(gh,x) = T(g,hx} and T(hg,x) = hT{g,x),
for xe X, g eUln), h € UB{n-1},

1] '

where e’ = jese, § 1is the inclusion of X into C2(X}.

We inductively construct the k-form of the homotopy action of
Uln) on CZ(X) decomposed by the Ak_i—form of the homotopy action
T, We may assume that the first loop structure of the double
loop space cz{x) is equivariantly associative. We deform the

Akmform of the action in CZIXJ to be decomposed by the A ~form of

k

' given by T'{g,w){s) = T{g,w{s)).

The action on X of U(n) is homotopy equivalent to e'(g} e
T'{g)iw) for all w in C2{X). The key lemma of the main
theorem is described as follows:

Lemma 6.8, T is an Ap_1—action with a k-form NE :

kaU[n)X U{n)x 1))(-*)}{ of U{n} on X for k <

U(n-1)*"*U(n-1) U(n-
L

, o ) e’ | %
P and there is an Am action Nk : KkXU(n)¥U(n_1)... Uln-1)

U(n)xU(n_1)02(X)-é C,(X) of U{n} on CZIX] equivariantly

equivalent to the usual action of U{n} on X in C,(X}; for

given (§igy,...,9,_qiw) in kaTTk_&(n_1)U(n)xU{n-1}C2(X]' the

: e .
A -action Ny has the form:
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Proof. We construct inductively the A, -forms Ri and NE|
of the map j along the identity and the acticn along T'
respectively by the following formulae:

(1) B = 3(x),
(2) RL(F (2 8) (PuShiay vennygy_gi%)

= RPIGy ree e sy g 1Ty eenTy g 11Ty, gre e rGy yiK) s
(2)" BRUG,(r,8) (P0) 59y, ennsgy_qi%)

= Ri[ﬁ;g1,o..,gr_1;gr...gk_1xl,

(3) R}j{(J(t;q.--u,rtli’r;ﬂ,...,ﬁt);g1,-.”gk_1;><)
1
= Eé} E (Si+1““"’5t(f};g1”'“gr1'“"'gni_2+1”°9ni_1;
R%i(Pi;gni_1+1,,.a,gni))
o
@ Nt [T391°““gr1"“"gni‘2+1'°'gni_1;
R%t{FEant_1+1r---:gk—1FK}J' where n, = Iy + ... + Iy,
(4) Ri(b’;%,---agjq:*-gj+1r---:gk_1;x)
= Riq(dj(h’);%,...,gjq,qj+1,---,gk_1;x),
(4! Ri(?}g1,..,,gk_1;*) = el(g1“'"gk—1)'

{Outline of the proof of Theorem 6.5}

Since X is mod P egqguivariantly equivalent to 52n~1f we may
identify X with s°®'.  Recall that e : G »X is a fibration
and e' = jee 1 G $~C2{X). Let e be the induced fibration of
e by f and let £' = jeof, Then e¢f = fe@ and e'¢f = f'ee.

We prove Theorem 6.5 through the inverse process of Lemma 6.8.

Let Y = C,(X}XU{(n) and E = <f'»e,f> 1 G >¥ which we may assume -



219

to be an inclusion. Then Y 1is the A ~space with the following

Y
Akwform m,

¥ k T
{6.10} pr1omkVt;y1,...,yk) = 8, N (si+1...sktﬁ);g1,...,gi_1);xi},
Y
Pryem T3y renay¥y) = 9q...9, for Yy = (Xj,gj).

By using the eguivariant obstruction theory, we obtain that =)
is an Ak-space Ak—acting on ¥ and the map f aleong i preserves
Ak—actions by induction on Xk < p, namely,

s 41 G B _& .
Proposition 6.11. There are Ap‘1—§9:ms me B, Ny and

1 i — —
Ri of the space G, the map E, the action along e and the map

f' preserving action along the homomcrphism £ respectively

satisfving the following formulae:

(1) Rf (%3%) = j{x),

f'l —_— —
(2) R (@5 (xres) (PO igy,enrgy gi%)
fl _ _ a _ — — -
= RI (P;g1"""gj—l’ms(d;gj""'gj+s—1)'gj+s"°"gk—1;X)'
1 — —
() RE (5 (2,90 (0,6)355, 1 00n,Ty %)
k T E k-1
T
= R

£ . . . LT p .
(3} Rk (5(t,r1,...,rt){t,F1,...;Pt);g1;--ofgk_qvx)

(P81 e v sByp iNTT, s e By 3%

=-H th

=1 7' G — - .
= &Ny (Si+1"'st(T)'mr1{P‘|'g1"“'gr1)"'°'
£ — =
R- {P.ig peserd 1)
T, F&' ni_1+1 ny

7! G = - oE! - =
® N (’L‘;mr1(P1;g.|,...,gr1],..-,th(f)t;gnt_ﬂ,q,-..,gk‘_l,x}),
where n, = X.+a...+T.,
i 1 i
£ _ - — —
{4} Rk ({;g1f=-'!gj_1x*fgj+1r-°-fgk_1rx}
£ - - - -
= Rk—1{dj(¥]:g1'-..'gjv1'gj+l'-..'gk—}'x)’
1 _ — f — —
(4)' Ri ({;g1,...,gk_1:*) = e'°Fk_1(X;g1,...,gk‘1},
=] — — £, — —_ .
(5) pr1°FEla’;g1,-.-,gk) = R (59 s e r9y_qi%)

B - - T =
{6} pr2°Fk(x;g1""'gk) = gq"-gk for gj = (ingj]°
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f ) f
Remark. 1) The Akufor.m Rk gives the A.K-vforrn Rk of Ak-—

equivariant map f (along £} by using the eguivariant
compression thecry.

2) These homotopy actions are left homotopy actions.

This completes the proof of Theorem 6.5.
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