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80 Introduction

A topological space FE is called a generalized Whitehead space (a GW space, for short)
if every generalized Whitehead product on FE is trivial.

The following are well known:

(0.1) E is a GW space if and only if for given maps f : XX — F and g : Y — E there
is an 'axial’ map H : ¥X x XY — F such that H|xx = f and H|gy = g.

(0.2) E is a GW space if and only if for a given space W, the homotopy set [SW, E] &
[W,QF] is an abelian group whose multiplication is given by the suspension structure or
the loop addition.

(0.3) E is a GW space if and only if the loop space QF of E is homotopy abelian, that
is,

pol ~p

where p : QF X QF — QF is the loop multiplication and T : QF x QF — QF x QF is
the switching map.

As is well known, a Hopf space always admits an axial map, and hence a Hopf space is a
GW space. In other words, the notion of a GW space is a generalization of that of a Hopf
space. For a sphere, however, the two notions are equivalent.

Let E be a (¢+n)-Poincaré complex whose cells are in dimensions 0, ¢, n and g+ n with
0 < g < n, for example, the total space of a spherical bundle (or fibration) over a sphere.
We call such a complex a Poincaré complex of type (q,n). The purpose of this paper is to
show

THEOREM. If a Poincaré complex E of type (q,n) is a GW space, then {q,n} C {1,3,7}
or (q,n) = (1,2), (2,4), (3,4) or (3,5).

The examples for these cases are as follows:

S? x S™ for {¢q,n} C {1,3,7},

L3*(m) (m > 1) for (¢,n) = (1,2),

CP(3) for (¢g,n) = (2,4),

S7 for (q,n) = (3,4),

SU(3) for (¢,n) = (3,5) and

Sp(2), or more generally, E,,, (m # 2 mod 4) for (¢,n) = (3,7). ( See [H-R] and [Z] for
further on E,,,)

This paper is organized as follows. In §1, we study a space whose cohomology is a
truncated polynomial algebra of height 3 on two generators. In §2, we study a GW space
whose cohomology is a truncated polynomial algebra of height 4 on one generator. In
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§63-5, we study a GW space whose cohomology is an exterior algebra on two generators.
In the last section §6, we prove the main theorem.

Throughout the paper, G stands for Q2E whose loop multiplication is denoted by pu.
The abbreviations H*(X) and K*(X) will be used for H*(X; Z(3)) and K*(X; Z(3)), resp.
H* and K* denotes the augmentation ideal. PH*(X;R) is the submodule of primitive
elements and QH*(X; R) is the quotient module of indecomposables for any coefficient
ring R. R{a,b,c,...} means that it is an R-module with generators a, b, c,....

§1 A stable GW space
Suppose that there is a space X satisfying

(1.1) H*(X;Z/2) 2 Z/2® v 41, 0n41] with g <n

where the right hand side is the polynomial algebra truncated at height 3 with 2 generators
Vg+1 and vy,1 of degree ¢ + 1 and n + 1, respectively.

Hence A = H*(X;Z/2) is a truncated polynomial algebra over the modulo 2 Steenrod
algebra A(2). Then from Theorem 2.1 of [Th1], it follows that ¢ = 2"—1 and n = 2" 42 —1
(r—1>s>0)orn=2"—1(t>r). Again from Theorem 1.4 of [T1], it follows that

(1.2) QA C Im SqinKer S¢7 it ('3 1) =1 mod 2
where QA* indicates the quotient module of indecomposables.

Furthermore if one replaces P, with our X in the argument given in § 4 of [Th2] and
the result [Th2, 4.5] due to Browder with the result (1.2) above which does not suppose
the existence of an H-structure, one can obtain
(1.3) g=1,3,7or 15;
if X has 2-torsion in its homology, then n is even and hence n = ¢ + 1 and so v,41 =

Sq'vgi1. In particular, if ¢ = 15, then n = 16 and Sqlvig = vi7.
If X has no 2-torsion in its homology, then we have

H*(X) = Z([g]) [U(g+1)/2> Vnt1) /2]
K*(X) = Z([‘;’]) [W(g41)/2: W(n+1)/2]-
Hence there is a ring isomorphism J : H*(X) — K*(X) given by
J(v;) =w;, fori=(¢+1)/2and (n+1)/2.

Now the Adams operation 1* decomposes through Hubbuck operations R%(k) for an
element J(z,), where z,, is in dimension n, as follows:
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where R"(k)(z,) increases dimension by h. The multiplicativity of Adams operations is
expressed by using Hubbuck operations as the following ”Cartan formula” (see [Hu]):

Ry(k)(v-v') =) Ry(k)(v) Ry(k)()

i+j=h
Set,

1

P" = R"(2) (the reduction mod 2 of P" is S¢*").

The relation 9312 = 9213 of Adams operations is expressed by using the Hubbuck oper-
ations as follows:

(1.4) (3" =P+ Y grigipiprmi =S 92 proigl,

i=1
Furthermore, the relation ¢?(x, ) = 22 mod 2 is interpreted as

L5 Pt i(z,) =0 mod 277! and
(15) P"(z,) =22 mod 2in H*(X).

Note that the above formula is independent of the choice of the splitting .J.

Following (1.3), we check the cases ¢ = 15, 7, 3 and 1, one by one.

Consider the case ¢ = 15; by (1.3) one has n = 16 and Sq'vig = v17 . By (1.2) one has
vi7 € Im Sq8, since (ggl) = 1 mod 2; but it contradicts H?(X; Z/2) = 0. Thus q # 15.

Consider the case ¢ = 7 and n = 7+ 2% with s < 2: If s = 0, then Sq'vg = vg. By (1.2)
vg € Im Sq*, since (521) = 1 mod 2, but it contradicts H°(X;Z/2) = 0.

If s =1, then n = 9 and vip € Im Sq¢*, since (621) = 1 mod 2; but it contradicts
HS(X;Z/2) = 0.

Thus s = 2 and then n = 11. We have

H*(X) 2 7,35 [04, 0],
K*(X) 2 Z3}[wa, we),

since the homology of X is free of 2 torsion. It follows from (1.4) and (1.5) that P°% =0
implies R? = 2P? mod 4, and hence we obtain

2P°P?(7,) = R*P*(04) mod 4,
202 = R*P*(0y) mod 4.
Also from R? = 2P2? mod 4, P*(94) = A\v? mod 4 where ()\,2) = 1, and the Cartan formula,

one obtains
0 # 202 = AR*(02) = A\ugR*(v4) mod 4.
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It is a contradiction, since the right hand side does not contribute 2v2.
Thus n # 7+ 2° with s < 2.
Consider the case ¢ = 7 and n = 2! — 1 with ¢ > 3: If ¢t = 3, then (q,n) = (7,7).
Ift = 4, then n = 15. We have

H*(X) 2 735 [4, Ts),
K*(X) = Z(3) [wy, ws).
Then by combining (1.4) with P°% = P2°dd — () one obtains that
(1.6) 2P% = P*P* mod 4in H*(X).
From (1.5), it follows that

P4(178) = a4vg, with a € Z(z),
P%(vg) = v mod 2,
P*(v4) = 02 mod 2

=4

and hence
P*(74) = \02 +200g, where A =1 mod 2.

Then from (1.6), it follows that

202 = 2P%(7g) = P*P*(s) = aP*(t478) mod 4
= aP*(74)Ts = 2007  mod 4,
Hence af = 1 mod 2. By using (1.5), however, it follows from (1.6) that
0= 2P8%(14) = P*P*(vy) = P*(\0? + 2B0s) mod 4
= 2\04 P*(v4) + 28P*(vg) = 28P*(vs) = 200408 mod 4,

which contradicts a8 = 1 mod 2. Hence t # 4.
Ift > 5, we have
H*(X;7/2) = Z/2B)[54, tyi-1).

Then from the main result of [A], it follows that

t—1

qut = Zizo Sq2i\Ill~

modulo the total indeterminacy which is in the image of Sq¢* with 2¢ > i > 0. Now the
formula gives a contradiction. In fact, the left hand side gives Sq2tv2t % 0 mod 2 while
the right hand side and the total indeterminacy are trivial, since

H*' 2 (X)=0 fori<t—1.
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It is a contradiction.

Thus (q,n) = (7,7), provided that ¢ = 7.

Consider the case ¢ = 3 and n = 3 + 2° with s < 1: If s = 0, then n = 4 and Sqlvy =
vs. We have vs € I'm Sq? by (1.2), since (452) = 1 mod 2. This contradicts H?(X; Z/2)
= 0. Hence s = 1 and then n = 5 and (¢q,n) = (3,5). Moreover we have vg € Im Sq® by
(1.2), since (552) =1 mod 2.

Consider the case ¢ = 3 and n = 2! — 1 with ¢t > 2: If ¢t = 2, then (¢,n) = (3,3).

If t = 3, then (¢,n) = (3,7).

If t > 4, then we will be led to a contradiction as in the case (¢ = 7 and n = 2 — 1 with
t>5).

Thus (¢,n) = (3,3), (3,5) or (3,7), provided that ¢ = 3.

Consider the case ¢ = 1 and n = 1 + 2° with s < 0: We have s = 0 and hence (¢,n) =
(1,2). Moreover by (1.3), Sqlvs = v3.

Consider the case ¢ = 1 and n = 28 — 1 with ¢ > 1: If ¢ = 1, then (¢,n) = (1,1).

If t = 2, then (¢,n) = (1,3).

If t = 3, then (¢,n) = (1,7).

If ¢t > 4, then we will be led to a contradiction as in the case (¢ = 7 and n = 2 — 1 with
t>5).

Thus (¢,n) = (1,1), (1,2), (1,3) or (1,7), provided that ¢ = 1.

Therefore we have shown

PrROPOSITION 1.7. If there is a space X such that
H*(X;7/2) = Z/Q[B] [Vg+15 Vnt1]

with ¢ < n, then {¢,n} C {1,3,7} or (¢,n) = (1,2) or (3,5). Moreover if (q,n) = (1,2),
then Sqlvy = wv3; if (q,n) = (3,5), then Sq*vy = vg.

To apply this, we introduce the following notion.
DEFINITION. E ~ §9U, e"™ U et is said to be stable if n < 2q.
we get,

COROLLARY 1.8. Let E be a Poincaré complex of type (q,n). If E is a stable GW space,
then {q,n} C {1,3,7} or (¢,n) = (1,2), (3,4) or (3,5).

Proof. By the hypotheses, ¢ > 1 or @ = 0. Let @ be the subspace S?U e" of E. Then,
from the hypotheses, it follows that () is desuspendable and the mod 2 cohomology of F
is an exterior algebra except the case when n = ¢ + 1 and a = mu4, m odd.

(Case 1: n = g+ 1 and a = muy, m odd). E has the homotopy type of a (2¢ + 1)-sphere
at 2. Hence by the theorem of Adams [A], ¢ = 1 or 3. Thus (¢,n) = (1,2) or (3,4).

(Case 2: The mod 2 cohomology of E is an exterior algebra). There exists an axial map
o @ x Q — E with axis the inclusion Q < FE. Let Q(2) be the mapping cone of the
Hopf construction of p. From a direct computation using [Th3], we obtain that the mod
2 cohomology of @(2) is the polynomial algebra truncated at height 3 on the generators
in dimensions g + 1 and n + 1. Hence {¢q,n} € {1,3,7} or (¢,n) = (3,5). This implies the
corollary. QED.



2 A GW space whose cohomology is a truncated polynomial algebra
Let E be a Poincaré complex of type (¢g,n) with GW space structure such that H*(E; Q)
= Q[zq]/(x3). In this section, we will show

PROPOSITION 2.1. If a GW space E satisfies the above condition, then ¢ = 2 and H*(E)
> Z(a)[wa]/(23)-

The remainder of this section is devoted to proving the proposition.

By the assumption on the cohomology ring, ¢q is even. It is easy to see that

H*(E; Z(2)) = Zia){2q, Tag, T34}

2 . . .
where Ty = aTaq and x422q = w3 With a € Z(9). So we have

E ~, S74, e24 | egq, a € qu_l(Sq)
Since F is a GW space, the Whitehead product of the inclusion ¢ : S? — FE vanishes, and
hence 4,[tq, tq] = 0 where ¢ € m,(S?) is the class of the identity. For dimensional reasons
ix[tq, Lq] 18 already trivial in mo,_1 (ERY) = my,_1(S7U, €2?). Denoting by F the homotopy

fibre of i, there is a map f : S29~! — E such that i o f ~ [14, 4] where i : F — S is the
inclusion of the homotopy fibre. On the other hand,

F  ~y S*' U (higher dimensional cells)

so that i |g2s—1 = . If one compresses f to the lowest dimensinal cell S?¢~1, one obtains
[tgstq] = o f, where f = Aigg_1 : S?¢71 — §2¢~1 with X\ € Z. Thus one obtains [14,t4] =
Aa. Taking the Hopf invariants of the both sides, one has 2 = AH («), whence a = £ H(«)
= +1 or £2.

LEMMA 2.2. H(a) = £1 and hence q = 2, 4 or 8.

Proof. Suppose H(a) = £2 so that a = £2, a = [14,44] and Xa = 0. This assumption
leads us to a contradiction. Now the (2¢)-skeleton of G has the following cell decomposition:

G4l ~y  SIT1 Y e242y 271,

[tg—1,tq—1]
Thus putting Q = X(GP2%), we have

Q =~ (STvS*TY) U, e,
where @ is in ma,_1(S?V §%241).

PROPOSITION 2.3. @ corresponds to (o, 21241 ) under the isomorphism ma,—1(S7Vv.S?171)
= maq—1(S7) ® maq-1(S%17H).

Proof. By calculating the cohomology Serre spectral sequence associated with the path
fibration G — PFE — F, one obtains

HTHG) —Z(z),
HI™WI(@Q) = forl1 <j<gqg-1,
H*T71(@) %Z/2.
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Hence the composite map pac is homotopic to £2t54_1, where p, indicates the projection
to the second factor. Moreover the natural inclusion Ay : @ — XG — P*°G ~ FE induces
the following commutative diagram.

G2q-1 %, gay g2a-1
qu_1J( J/{Lq,*}
g2a-1 _* g4

Here both the ¢ — 1 and the 2¢g — 1 dimensional generators in H*(G) are transgressive and
therefore A\; induces a surjection of cohomology groups in dimensions < 2¢. Hence py« is
homotopic to a, where p; indicates the projection to the first factor. QED.

Let us recall that () is a suspended space and F is a GW space. Hence there exists an
axial map

p:QxQ —FE

with axis A;. So the Hopf construction of p gives rise to a map
H(p):XQNQ~Q*Q — XE.
One can see that () satisfies
¥Q o~y (STH vV S§%) Ugy 20T

By combining Proposition 2.3 with Y« = 0, one obtains that ¥& corresponds to (0,+2t24)
under the isomorphism my, (S v §29) 22 7, (S91) @ 75,(5%7). Hence we obtain

YQ o~ XBSTVEIMZ,
where X M2 = §24=1 U,,, €29, Thus we obtain
SQAQ ~p  XN(STV M)A (STV M),
which contains $(M?? A M??). We denote by H(u) the restriction of H(u) to the sub-

complex L (M22 A M?7) and by Q(2) the mapping cone of H(u). Then we have an exact
sequence associated with it:

. & - .
e HTH(S(M?2 A M?9); Z/2) — H*(Q(2); Z/2) — H*(SE; Z/2) — - - -
For dimensional reasons, the sequence splits and we have
H*(Q(2); Z/2) & Z/2{vg41, v3g41,03¢41} © Im 8,

Im o >~ H*(S(M?1 A M?9); Z/2)

2 7 /2{x2q-1 @ Tag—1,T2q—1 @ Tagq, T2q ® Tag—1,T2q @ T2q}
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From [Th3], it follows that
U§q+1 = 057 (22q ® 2q) # 0

and hence 0 # Sq2q+1vzq+1. Let us recall the Adem relation
~1 q
Sqqsqu-l — Sq2q+1 + (g - 2) Sq2q5q1 + .+ <(2)>Srq3q/2—i—ISrQQ/27

for q even. For j with 1 < j < ¢/2, we have

deg Sq?vagi1 =2+ j+1< 3¢+ 1< 4q,
which implies S¢7va,11 = 0 and hence Sq?+1vy,41 # 0. The Adem relation Sq4+1 = SqtSq4
(¢ even) implies that Sq?vzq4+1 # 0 and therefore Sq9vyq41 = v344+1. Hence Sq1v3q+1 #0

where deg Sq'vzg11 = 3¢+ 2 < 4q. Thus 3¢ + 2 = 4q and hence ¢ = 2.
Even when ¢ = 2, one has

SQ1U3q+1 = 0X"(22g—1 ® Tag—1)

and hence
0=5¢"Sq" v34+1
= 65*Sq" (w2g-1 ® T24-1)
= 52*(172(1 Q@ Tog—1 + T2g—1 X aqu)
# 0
which is a contradiction. This implies that Y« # 0. Thus H(«a) = +1 and hence ¢ = 2, 4
or 8. QED.

According to [Tol, [tq,t4] = 2c holds only when ¢ = 2. Thus we have H*(E) =
Z2)[wa]/ ().
REMARK. H*(CP3) 2 Z9)[x2]/(23).

63 A GW space whose cohomology is an exterior algebra
Throughout the section let E be a Poincaré complex of type (¢,n) with GW space
structure such that
H*(E) =Nxg,z,), 1<qg<n

If ¢ = 1, then the GW space structure inherits the universal covering space E of E,
which has the homotopy type of S™. Let us recall that a sphere is a GW space if and only
if it is an H-space. Hence n = 3 or 7.

We will prove that both ¢ and n are odd integers, even when ¢ > 1.

First we show

(3.1) q is odd.
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Consider the cohomology Serre spectral sequence with Z(5) coefficients associated with
the path fibration G — PE — E. Since the element z, € H?(F) is in the image of the
transgression, we have 0 # o*z, € H7'(G) = Z(y), where 0* : H*(E) — H*1(G) is the
cohomology suspension. So u,_1 = 0*x, is transgressive, and hence is primitive. Thus the
element X*u,_; € HI(XG) is extendable to P2G and the extension is given by the image
of 4, under the induced map of the composite map

s : P2G < P®G ~ E

since o*x, is represented by a loop map whose delooping is given by z,. Hence we obtain

Now we recall that the element :ig is given by ig = £ X" (ug—1 ® ug—1) where 9y is
the operation given in [Th2]. So it follows from the triviality of Z2 that ug_1 ® ug_1 is in
the image of pu* = pu* — pf — p3 :

=t —pi—ps: H*(G) = H*(G) @ H*(G).

So the relation (0.1) implies that the element w,_1 ® uy—1 is T*-invariant where T is the
switching map. On the other hand, T*(uq—1 ® ug—1) = —ug—1 ® ug—1 if ¢ is even. Hence
it cannot be T*-invariant, since it is a generator of H20~)(GAG) = HI"Y(G) @ HT1(G)
and not of order 2. Thus ¢ have to be odd.

Next we show

(3.2) n is odd.

Suppose that n is even. Then n — 1 is odd and is not divisible by ¢ — 1, which is known
to be even. It follows that u,_1 = o*z, is non trivial and indecomposable. As in the
case with ¢, the element Y*u, _; is extendable over P2G. Denoting by 7, the extended

element, we have
2 =0 in H*(P*G).

It means that the element u,_1 ®u,,_1 is in the image of p*. On the other hand w,,_1®u,_1
belongs to H2"~2(G AG), which contains the direct summand H"~1(G)® H"1(G) = Z(y)
generated by u,,_1 ® u,_1, which implies that u,,_1 @ u,_1 € Im p*; it is a contradiction.
This implies that n is odd.

Thus we have shown

PROPOSITION 3.3. If E is a GW space with H*(E) = A(x4,xy), then both q and n are
odd. If in addition ¢ = 1, thenn = 3 or 7.

In the remainder of this section, we assume that ¢ > 1. Since ¢ and n are odd, we may
assume that ¢ +1 < n.

Now we choose an inclusion map j : S? — FE such that j*z, is a generator of H?(S)
Z(9) (since we do not assume that S? — E — S™ is a fibration in this section). Denote by

~

9



F the homotopy fibre of j, that is, F' — S? — FE is a Serre fibration). Then by the Serre

spectral sequence one sees
H*(F) = H*(QS9)

Similarly the Serre spectral sequence of the fibration 259 — G — F' collapses and hence
(3.4) H*(G) =2 H*(QSY) @ H*(2S™) as modules,
in particular
(3.4%) H*(G) =2 H*(QS?) forx <n—1.
Here a system of ring generators of H*(257) is given by

(3.5) Ug—1 = V1Ug—1, V2Ug—1 -+, VjUg—1; --+s

where j > 1 and uy—1 = o*z4.
One obtains from (3.4) the following extension of bicommutative biassociative Hopf

algebras:
Zy — H*(QS"™) — H*(G) — H*(Q2S7) = Z 9

PrOPOSITION 3.6. The following is a commutative diagram of the exact sequences:
0

l

0 s PH*(QS™;Z2/2) — QH*(QS™; Z/2)

J J

0 — P(Z/2(€H*(G; 2/2))) — PH*(G;2/2) —— QH*(G;Z/2)

l l

0 — PH*(QS92/2) — QH*(QS% Z/2)

J

0

where the element u,_1 (and u,—1) the modulo 2 reduction of u,_1 (and ug—1, resp.)
generates PH*(QS™; Z/2) = Z/2 (and PH*(Q59;Z/2) = Z/2, resp.).

It follows from (3.5) that the first non-trivial relation can occur in degree n — 1 only
when there is a non-negative integer r such that

n—1=2""(qg-1).
Then the relation is
(3.7) U1 = (Yarilg_1)?

where w, is the modulo 2 reduction of uy for £ = ¢ — 1 and n — 1. Thus it follows that n
= 1 mod 4.
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THEOREM 3.8. (i) If n = 1 mod 4, then Z,, = Sq¢* 7, and (g,n) = (3,5),
(ii)) ¢ = 3 mod 4,
where x, is the modulo 2 reduction of x, for { = q and n.

The remainder of this section will be devoted to proving this theorem. First in the
general situation, we will construct a space and compute its cohomology ring. The cell
structure of the n-skeleton of G is as follows:

G~y (QSHMyenL

Thus putting Q = 2(G™), we have

[5=1
Q (\/ Si(q_l)H)Ue"
1=1
=]
2Q o~ (/) SR yentt

=1

The module QH*(F) is mapped injectively into H*(Q) by the induced homomorphism of
the canonical inclusion

AM:Q CXGC PG ~E.

In fact, as was already seen, PH*(G) = Z(9){tg—1,Un—1} With u; transgressive, and A]
gives rise to the cohomology suspension. Thus we obtain

Im (3A1)" = Zo){vg41, vn1}
which is a direct summand of H*(XQ). Hence we have
H*(2Q) = Im (XA\)* @ D,

where D is the module generated by elements v;u,—1 with ¢ > 2. Since () is a suspension
space, there exists an axial map

h:Q xQ—FE

with axis A;. So the Hopf construction of p gives rise to a map
H(p):XQNQ~Q*Q — XE.

We denote by QQ(2) the mapping cone of H(u), so that we have a cofibre sequence

(3.9) SE L Q(2) = 2Q A Q.

The elements =4, x,, € H*(E) are primitive with respect to p in the sense of Thomas,
since H°4(Q A Q) = 0. Hence we have

p*(z;)) =0 for i = ¢q,n,

P (xqxi) = A2q @ AjTp — A2, @ Aj2y.
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So the image of j* induced by the inclusion j : ¥E < @Q(2) are given by
Im j* =2 Zo{X g, X" 20 }.

Also the image and the kernel of § induced by the collapsing map Q(2) — LQ A XQ =
¥4 (G A GIMY s given by

Im 6 2 6(5)* Z){ui ®ujsi,j=q—1orn—1} @ S,,

(3.10) .
Ker 6§ = (X%)" Z@y{ug-1 @ tUn_1 — tUn_1 @ ug_1}

where Sy = §(D® H*(2Q)) @ 6(H*(2Q)® D). Therefore by (3.9), we obtain the following
short exact sequence :

0—Imd— H*(Q(2)) — Zo{X g, X xn} — 0

Thus denoting by v;y; the extension of ¥*x; over (2), i = ¢ and n, we obtain the
following ring isomorphisms by virtue of [Th3]:

H*(Q(2)) 2 Z3)[vg41, vn11] @ Sa,
H*(Q(2)) - S2 =0

(3.11)

where v;11 - vj41 = 0(2*)* (ui—1 @ uj_1)
Remark that these results are independent of the choice of v441 and vy ;.

PROPOSITION 3.12. (1) Q(2) has no torsion and hence Sq*H*(Q(2); Z/2) = 0

(2) A@2)(Z/2{Vg+1,Un41}) C Z/20[0g11, Tn1] & (S2 ® Z/2)

(3) A2)(Im § ® Z/2) C I'm 6 ® Z/2, where ¥y is the modulo 2 reduction of v, for £ =
g+ 1 andn+ 1.

The following two propositions imply Theorem 3.8.
PROPOSITION 3.13. Ifn = 1 mod 4, then &, = Sq*z, and (q¢,n) = (3,5)

Proof. By (3.11), H*(Q(2); Z/2) has a direct summand Z/2B1[3,,1, 0y, 41], where @y is
the modulo 2 reduction of vy for £ = g+ 1 and n+ 1. If n = 4m + 1 for some m > 1, we
have

~2 4m+2
0% 041 = Sq T 1

where Sq¢*™t2 = Sq¢?Sq¢*™ + Sq'Sq*™Sqt.

So we have that 92, € I'm S¢?, since S¢' = 0 on H*(Q(2); Z/2). Hence we have 02,
= 0(5*)* (Up—1 ® tUn—1) € S¢® Im §, where 1, is the modulo 2 reduction of uy, £ = q + 1
and n + 1, for dimensional reasons.

Hence we obtain that @,_; ® t,—1 € Im Sq¢? in H* (G["] A Gl Z/2) modulo the kernel
of d ® Z/2.

By (3.10), we have Z/2{t,-1 ® tp—1} N Ker § = 0, which implies that t,_1 & @,_1
€ Im Sq®>. Thus we obtain that @,_, € Im Sq¢® in H*(G!"; Z/2). There are two cases:
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If u,,_1 is decomposable, we have u,_1 = ('yj&q_l)2 for some 7 > 0 by Proposition 3.6,
and 50 yoriig_1 € Im Sq¢. This relation holds in H*((2S9)™; Z/2), since deg varity_1 <
n — 1. This contradicts that €257 is a bouquet of spheres. Thus u,,_1 is indecomposable.
Therefore there exists a non-negative integer r such that Sq¢?vyartig—1 = Up_1.

Comparing the degrees of both sides, we have 2+ 2"(¢ — 1) = n — 1 = 4m, whence one
has r = 0, since ¢ — 1 is even by Proposition 3.3. This implies that Sq2&q_1 = Up_1 # 0
and hence n = ¢+ 2 > 4 and @ ~3 S?Ue". Then the mod 2 cohomology of Q(2) satisfies
the condition given in §1. Hence from Corollary 1.8, it follows that (¢,n) = (¢,q + 2) have
to be (3,5).

PROPOSITION 3.14. ¢ = 3 mod 4.

Proof. Similarly we have 92, # 0 in H*(Q(2); Z/2). If ¢ = 1 mod 4, then one has #2,,
€ Im Sq®. Also deg 07,, —2 = 2q = 2 mod 4. If n = 1 mod 4, then ¢ = 3 # 1 mod 4,
which is a contradiction. So n = 3 mod 4, whence 2q # n + 1. Thus, one has that ﬁg 41
€ Sq? Im 6. By an argument similar to that given in the proof of Proposition 3.13, we
obtain that @, ;1 ® U,_1 € I'm Sq¢? in H*(G" A GI"); Z/2). This implies that @,_1 € I'm
Sq¢* in H* (GI") while GI™ is (¢ — 2) connected. It is a contradiction and completes the
proof of the proposition. QED.
§4 Unstable GW spaces

Let E be a GW space such that H*(E; Z/2) = Az, ©,) with 1 < ¢ < n.

PROPOSITION 4.1. E has the homotopy type of SU e™ Lﬂ)e"+q where o € m,_1(S?) and
63

,8 € Wn_q_l(Sq U Sn)

DEFINITION. E ~ S?U, e™ U et is said to be unstable if 2q < n.

By Proposition 3.3, we have that both ¢ and n are odd integers. So 2q < n, if E is
unstable.
We will show

THEOREM 4.2. If the above E is an unstable GW space, then (q,n) is one of the following:
(1,3), (1,7), (3,7), (3,11) or (7,15).

The remainder of the section is devoted to proving the theorem.

Let j : S — FE be the inclusion of the bottom sphere S?. Consider the map {j,j} :
S1v S1 — E. We have that the Whitehead product [j, j] is homotopic to zero, as E is
a GW space. Hence the map {j,j} is extendable over S? x S? — E. By the assumption
that 2¢ < n, the image of u is compressible into S? so that S? is an H-space, whence ¢ =
1, 3 or 7 by the theorem of Adams [A].

[The case ¢ = 1] The universal covering space E of E is easily seen to be a GW space
having the same homotopy type as S™, which then becomes an H-space. Again by the
theorem of [A], n = 1, 3 or 7. Omitting the case n = 1, we have (¢,n) = (1,3) or (1,7).
[The case ¢ = 3 or 7) Put e = 1 or 3 according as ¢ =3 or 7, i.e. € = %(q—l). If n =1 mod
4, we obtain, by Theorem 3.8, that (¢,n) = (3,5), which contradicts n > 2¢. Hence n = 3
mod 4. If the element u,,_; = o*x, of PH" 1(E; Z/2) is decomposable in H*(QFE; Z/2),
then by Proposition 3.6 it is in the image of £ : H*(QF; Z/2) — H*(QQE; Z/2), which is
impossible by the fact that n—1 = 2 mod 4. Thus u,,_1 is indecomposable in H*(QFE; Z/2).

13



PROPOSITION 4.3. If Sq? is non-trivial on H*(QFE; Z/2), then n = 2'72¢ + 3 for some i >
0.

Proof. Put uy_1 = 0*z4 and u,_1 = 0*x,. Let w € H*(QFE; Z/2) be an element of the
lowest degree such that Sq?w # 0. Then Sgw is primitive, and so Sgw = Ug—1 OF Up_1. It
follows from HI73(QF; Z/2) = 0, that Sq?w = u,,_1. Thus w is a generater of lower degree
than n — 1, whence one can express it as w = 'yéﬂuq_l for some ¢ > 0 (, since y1uqg—1 =
Ug—1 is not mapped to u,—1 by Sq?). Comparing the degrees we have 2+t1(qg — 1) + 2 =
n —1, and so n = 2T1e + 3 for some i > 0.

PROPOSITION 4.4. If Sq®> = 0 on H*(QF; Z/2), then Sq* = 0 on H*(QE; Z/2) for any i
> 0.

Proof. Suppose Sq* = ... = Sq¥ ' =0and S¢% # 0 on H*(QE; Z/2). By assumption,

we have 7 > 2. As in the proof of Proposition 4.3, one can conclude that

J .
Sq2 Y2i+t1Ug—1 = Up—1 for some 1 2 0,

(since y1ug—1 = u4—1 is not mapped to u,_1 by any squaring operation from the fact that
2(q — 1) < n —1). Comparing the degrees one has 2°71(q — 1)+ 27 = n — 1; it gives n — 1
= 0 mod 4 after reducing mod 4, since 7 > 2 and ¢ — 1 = 0 mod 2. This contradicts n =

3 mod 4. QED.
Quite similarly one obtains

ProrosiTiON 4.5. If u,—1 € Im Sq2j, then j = 1.

We will discuss the two cases, whether Sq? acts trivially or not, by using the methods
given in §3.

THEOREM 4.6. If Sq®> = 0 on H*(QE; Z/2), then (q,n) = (3,7).

Proof. It follows from Proposition 4.4 that any mod 2 Steenrod operations act trivially
on H*(QF;Z/2). Let Q(2) be as in §3, then we have

H*(Q(2); Z(2)) = Z3)[vg41,Vn 1] @ S5,

By (3.10), (3.11), Proposition 3.12 and Proposition 4.4, we get
PROPOSITION 4.7. IfvZ, € Im 0 in the algebra H*(Q(2);Z)) for some 6 € A(2) and if
Sq*> = 0on H*(QFE;Z/2) = 0, then 0 = Sq"*1.

Now we will examine the decomposition of qukH (k > 0) through secondary operations
on the space X = (Q(2), which is the main result in [A]. If n 4 1 is not a power of 2, then
by the Adem relation

0# vpyy =S¢ (vpg1) = Zaibi(vn—l—l)a 0<dega; <n-+1

(2

which contradicts Proposition 4.7.
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When n = 25t4 — 1, k > 0, there holds

0 # v,zH_l = Sq¢" M (vpy1) = Zaijfbij(vn+1), 0<degaj; <n+1
,J
modulo a;jxQ*"T274(i, j, k)(Q(2); Z/2) where 0 < (i, j, k) = deg a;jr < n+ 1. Thus the
element 11721_1_1 belongs to the image of a certain Steenrod operation a with 0 < deg a <
n + 1. This also contradicts Proposition 4.7. So, if n +1 = 2%, then k = 0,1,2 or 3.

The equation 2¢ = 4 +1 < n = 2¥ — 1 implies that n = 7 if ¢ = 3 and that n does not
exist if ¢ = 7. Thus Theorem 4.6 is proved. QED

THEOREM 4.8. If S¢*> # 0 on H*(QE; Z/2), then (q,n) = (3,7), (3,11) or (7,15).

Proof. It follows from Proposition 4.5 that n = 2¢72.¢ + 3 for some ¢ > 0. If i = 0, then
(g,n) = (3,7) or (7,15). We assume i > 1. Then n+ 1 = 2+2.¢c +4 = 4 mod 8. So by the
Adem relation we have

2i+2 e

— Sqn—l—l + Sq2i+2.g—|—28q2 + Sq2i+2.g—|—38q1
_ Sqn—l—l + Sq2+2i+2-esq2 + Sq?’quH%Sql

Sq4Sq

Again by (3.10), (3.11) and Proposition 3.12, we obtain
Sq*v,1 € 6(BH*H*(QS? A QST) C (XY H* (QE A QE),

since deg Sq?vp41 = 2 + deg vy 11 =4 + deg up—1 (=4 + 2%2.¢ + 2). Thus the folowing
conditions are necessary for Sq2+21+2'55q22}n+1 to contribute to v2,; = d(Z*)*(up—1 ®
un—1): There are elements 4; and g such that

Sq?vy 41 = 05*(iy ® fip) + other terms
Sq2+21+26(ﬁ1 ® Ug) = Up—1 @ Up—1 + other terms

However, we have deg @1 ® tia = 2 + 272 . ¢ since deg u,_1 = 2 + 212 .. Therefore

Sq2+2i+2'6(€_¢1 ® lp) = 4] ® g, which contradicts the indecomposability of wu,,_;. Thus,
since Sq2+21+2'55q2vn+1 does not contribute to U?H_l, one of elements Sq4Sq21+2'€vn+1 has
to do so in its place. Here we remark that

Sq2i+2€vn+1 elmé

So the following two cases can occur:

(1) Sq2i+2'6vn+1 = 5% (Ygir Ug—1 ® YainUg_1) + other terms
Sq4(fy2i1uq_1 ® Yaiz Ug—1) = Up—1 ® Up_1 + other terms
2i+2_6

(2) Sq Upg1 = )% (Y2i1 Ug—1 ® Up—1) + other terms

Sq4fy2~;1 Ug—1 = Up—1 + other terms
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But the latter case does not occur by Proposition 4.3. So we obtain
2it2¢ _ 3 . .

(a) Sq Unt1 = 057 (Yais Ug—1 ® Yoir Ug—1) + other terms

(b) Sq* iy Ug—1 = Up_1 + other terms

Comparing the degrees we obtain i; = i from (b). We also have vy, uq_1 € H*(QS7) C
H*(QE), as deg vaiuy_1 < n—1. Hence the element vo:u,_1 does not belong to the image
of any squaring operations on H* (QF; Z/2).

Now we divide the arguments into the two cases, ¢ = 1 and € = 3.

[The case ¢ = 3] The Adem relation

) ) ) 1+2
Sq2l+2€ = Sq2l+3+2 i = Z Sq2tat, a; € A(2)

t=0

implies that yaiug_1 ® Yaiug—1 € Sq2tat for some 0 < ¢t < i+ 2. On the other hand, one
can deduce from a;(vp41) € Im 6 that yyiug_1 ® Yeitg—1 € Im Sq2' in H*(QEAQE; Z/2)
for some ¢, which contradicts the fact that 7giu,—1 is not in the image of any squaring
operations. _

[The case ¢ = 1] If ¢ = 1, then (¢,n) = (3,11). Suppose i > 2. By [A] S¢* " is
decomposable through secondary operations, that is, the following holds

42 .
Sq® (Upg1) = Zaijq}ij('l)n+]_),0 < deg a;j < 2i+2
,J
modulo the total indeterminacy aiijziH*“*—l(iJ:k)(Q(2); Z/2),0 < (i, j, k) = deg aijr <
2142,
This leads us to a contradiction similarly to the case when ¢ = 3.
§5 The non-existence of types (3,11) and (7,15)

PROPOSITION 5.1.
(¢;n) # (3,11)

Proof. If (g,n) = (3,11), then E ~ S3U, e'! Ug e'4 where a € m19(S®) = Z/15. So F
~y (53 v S™) Ug e, Since Q@ = S® v S is desuspendable, the Whitehead product [4,1]
of the inclusion i : ) < E vanishes by assumption. So the map {i,i} : Q V Q — E is
extendable over () x ). We denote the extension by p: Q x Q — E. If we put Q(2) =
CH(y), the cofibre of the Hopf construction of x, then @Q(2) satisfies the condition of §1. It
gives a contradiction, and so (¢,n) # (3,11). QED

PROPOSITION 5.2.
(¢,n) # (7,15)
Proof. Suppose (¢,n) = (7,15) so that E ~5 S7 U, e'® U e?2. Then we have

A(J:?? 3315)
A(£77 615)-

6

12

H*(E)
K*(E)

1%

—_



The 15-skeleton of G = QF is given by

Gl ~, g6 Ul e] el Uelt.
Now we put Q = 2(GI®]); then
Q ~ (87 Vv S y ', where @& € m14(S” V S1?) =2 114(S7) @ m14(S?);
¥Q ~,y (8% v S Y el®.
The generators of H*(FE) and K*(E) are mapped monomorphically to H*(Q) and K*(Q),
respectively, by the induced homomorphism of the canonical inclusion A\; : Q C ¥G C

P>G ~ E. In fact, as was already seen, PH*(G) = Z9){ug, us} with u; trangressive, and
A} gives rise to the cohomology suspension. Thus we obtain

Im (BA1)* = Zgy{vs,vi6} € H*(XQ) = Z(2){vs, v14,V16},
Im (2/\1)* = Z(z){w4,w8} g K*(EQ) = Z(2){w4,w7,wg}.

Then the Adams operation * in K*(XQ) is given by

YrRwy = k*wy + a(k)ws
(5.3) YrRwr = kK wy + b(k)ws

d)k’wg = kg’wg
Since () is a suspended space and since F is a GW space, there exists an axial map
p:QxQ—FE

with axis A;. We denote by Q(2) the mapping cone of the Hopf construction H (p) of the
map p so that we have a cofibre sequence

(5.4) SE <2 Q(2) —» £Q A TQ.

The elements z7, 15 € H*(FE) are primitive with respect to x in the sense of Thomas as
HYQAQ) = H¥(QA Q) = 0. Hence we have

p*(r;) =0 fori= 7,15,

pr(z7,15) = ANz @ Ajz1s — Ajz15 ® Ajzr
So the image of j* induced by the inclusion j: ¥E — Q(2) is given by
Im j* = Zoy{X" w7, X" w15},
Also the image of ¢ induced by the collapsing map Q(2) — XQ A XQ is given by
I'm 0 = Z(9){6(vs @ vg),0(vs ® v16) = d(v16 ® vs),0(v16 ® V16)} @ S
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where Sy = Z5){0(v8 ® v14),(v14 ® v8), 6(v14 ® v14),6(V14 ® V16), 0 (V16 @ V14) }-
Therefore by (5.4) we obtain the following short exact sequence:

0 Im & = H'(Q(2)) 2> Zy{S w7, S w19} — 0

Thus, denoting by v4 and vg the extensions over Q(2) of ¥*x7 and ¥ *x15, respectively, we
obtain the following ring isomorphisms by virtue of [Th3]:

H*(Q(2)) 2 Z(3)[04, 18] & S5,

(5.5) -
H*(Q(2))-Im é=0, Sy CImbé.

We remark that these results are independent of the choice of v4 and vg.
Similarly one obtains

K*(Q(2)) = Z(3) s, ws] © S
K*(Q(2)) S5 =0
(5-6)  ¢F(K*(Q(2)) - K*(Q(2))) € K*(Q(2)) - K*(Q(2))
Im 6% = Z(Z){(;K(w4 ®@ wy), 6% (wy ® wg) = 0% (wg @ wy), 6% (wg @ wg)} ® S&
Sy = Z(z){5K(w4 ® wr), 6% (wr @ wy), 6% (wr @ wr), 6% (wr @ ws), 6™ (ws ® wr)}
where the elements w4 and wg are the extensions over QQ(2) of X*¢; and ¥*{;5, respectively.
Furthermore, by (5.3) one obtains

PROPOSITION 5.7.

PR (wy @ wr) = k1K (wy @ wr) 4+ E*(K)0E (wy ® wg)
PF6E (wr @ wy) = k6K (wr ® wy) + k2b(E)0K (ws @ wy)
modulo CW filtration > 14.
Now (5.5) and (5.6) imply that K*(Q(2)) and H*(Q(2)) are isomorphic as rings. So we
define a ring isomorphism J : H*(Q(2)) — K*(Q(2)) by the following
J(Q_JZ)Z’II)Z for 2 = 4 and 8

0.8
(5:8) J(0(vej ® vg5)) = d(w; ® w;) fori,j = 4,7 or 8.

By virtue of these relations we introduce Hubbuck operations following [Hu]. Then one
obtains the following by using (1.5) as in the case (¢,n) = (7,15) in §1:

P8(tg) = o2 mod 2
P*(vg) = av4tg

(5.9) P
P*(vy) =05 mod 2
P*(v4) = A0} + 2047,
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where A, a, 8 € Z() and A = 1 mod 2. (Note that .J depends on the choice of w; and
hence, so do the exact values of P* and R*. But these relations do not depend on the
choice of J.)
Next, we will derive a contradiction from the relations of these Hubbuck operations.
The relations
H'(Q(2)) =0 fori= 10,12, 14, 18, 20, 26

and Proposition 5.7 imply the following

RY(vg) = P'(vg) = 0,P'(v4) = R (v4) = 0,

R%*(5g) = P%(93) = 0,P*(94) = R*(v4) = 0,

(5.10) P*(n4) = R*(4) = 0,
P®(wg) = 0,P°(1,) = 0,
P%(v4) = 0.

Further, by (1.4) together with (3% — 1) = 1 (by ignoring the odd multiple) one has
2P3(vg) + 2R P?(ug) + 22 R?* P (vg) + 2°R>(vg) = 22 P?R'(vg) + 2*P'R%*(v3) mod 2°
and hence by (5.10) one obtains the following
(5.11) 2P?(vg) + 2°R*(vg) =0 mod 2°.
In particular
(5.11%) P3(tg) =0 mod 2.
Also, (1.4) implies
4
(2*P* 4+ " 2'R'P*)(vy) = 2°PPRY (vg) + 2* P’ R*(v4)  mod 2°

i=1
and hence one obtains the following
(5.12) P*(v4) + R*(v4) =0 mod 2%

Moreover one obtains

PROPOSITION 5.13.
PS(vg) = 2°R%(vg) mod 2*

Proof. Equation (1.4) implies
6 . . .
2°P(vs) + > 2'R'PO7(vg) = 22 P°R* (vs) + 2 P*R?(vs) + 2°P°R*(vs)  mod 27
i=1
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Recall that P*(vg) € Z(5){v40s}, where we have

R?(0478) = R*(04)7s + R*(04) R () + 04R*(7s)
=0

and hence R2P*(vg) = 0. So by (5.10) and (5.11) the congruence equation above reduces
to
23 P (wg) + 2° R3R®(wg) + 2°R®(vg) = 2° PP R®*(vg) 'mod 27

where R*(Us) € Z(2){0(vs ® v14),0(v1a ® vg)}. Hence by (5.10) we have R*R?*(7g) =
P3R3(vg) = 0. Thus the congruence equation above reduces to

PS(vg) + 2°RS(v3) =0 mod 2*.

QED.

PROPOSITION 5.14.
2P%(7g) = R*P*(53) mod 4.

Proof. Equation (1.4) implies
5
2P7(vs) + Y _2'R'P"(v5) = 2°P°R' (vs) + 2*P°R?(vs) mod 2°
i=1
So by using (5.10), (5.11’) and Proposition 5.13 one obtains
2P (vg) + 2*RYR® (vg) + 2°R3P*(v3) =0 mod 2°,
where P*(ug) € Z(9){v4vs = 6(vs ® v16)} C H*(Q(2)) - H*(Q(2)), and hence
R*P*(1g) € Z2){R*(047s)}
By (5.10) and the Cartan formula we have
R?(047g) = U4 R* ()

with R3(T)g) € Sg.
So by (5.5) we have R3P*(#ig) = 0. Therefore we obtain

(5.15) 2P (vg) + 2*R'R%(vg) =0  mod 2°.
Also the equation (1.4) implies

5
(5.16) 2°P8(vg) + > 2'R'P* ¥ (vg) = 2°P" R (vs) + 2' P°R*(vs) 'mod 2°
=1
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Then by (5.10), (5.11’), Proposition 5.13 and (5.15), one obtains
(5.17) 25P8(vg) + 2*R*R' R (vg) + 2° R*R®(vg) 4+ 2*R*P*(v3) =0 mod 2°.
From (1.4), it follows that
2P + 2R' = 2°2R',  mod 2°
and hence P! = £R! mod 22. Also from (1.4), one has
2°P? + 2R'P' + 2°R* = 2°P'R' + 2'R*> 'mod 2°

Then it follows that
R'R' = 2R? mod 22

Hence
R'R'R%(vg) + 2R*R%(0g) =0 mod 2.

Substituting this into (5.17) one obtains
25 P8 (vg) + 2*R*P*(v3) =0  mod 2°.

QED.

PROPOSITION 5.18.
R*P*(54) =0 mod 4 or else,

B=0 mod 2 where 3 is as in (5.9).

Proof. Equation (1.4) implies
5
2°P%(04) + Y 2'R'P(0s) = 2°P"RY(04) + 2'POR*(04)  mod 2°
i=1
So by (1.5) and (5.10) one obtains
(5.19) 22R'P7(74) + 2*R*P*(T,) =0 mod 2°
Furthermore (1.4) implies
5
2P7(v4) + Y _2'R'P" (v4) = 22 PR (v4) + 2*PPR*(v4) mod 2°
i=1
So by (5.10) one obtains
(5.20) 2P"(v4) + 2°R3*P*(v4) =0 mod 2°

21



Recall from (5.9) that
P*(vy) = \vj + 2008

So by (5.10) one has
R3P*(v4) = 26R>(vs).
Suppose (3 # 0 mod 2. Then by substituting (1.5) into (5.20), one has P7(74) = 0 mod
4 and hence
(5.21) 22R3P*(04) =0 mod 2°,
so 22BR3(vg) = 0 mod 2°. Thus
(5.22) R*(vg) =0 mod 2.
Then it follows from (5.11) that
P3(vg) = 22R3*(vg) =0  mod 2°
So by rechoosing the ring isomorphism .J appropriately (or, in other words, rechoosing

the extension wg = J(vg) appropriately) one obtains the following (due to [Hu])

LEMMA 5.23. One can choose the ring isomorphism J to satisfy P3(vs) = 0, if 8 # 0 mod
2.

Proof. If P3(vg) # 0, we can choose v1; € H*2(Q(2)) so that P3(vg) = 23v1;. The
element wg = ws + vwyy with v = ﬁ, where w1, = J(011), is an extension of X*{ys.
Then from J, we define a new ring isomorphism J' : H*(Q(2)) — K*(Q(2)) by setting

J'(vg) = wg, J'(v4) = 104
JI((S(UQi %9 U2j>) = 6K(w,~ %9 wj).

Then one obtains the following formula modulo higher filtration > 11.

(vs)) =2 28J(vg) +28J(v11) mod (higher filtration > 11)
Y2(J(011)) = 2" J(011) mod (higher filtration > 11)
"(T8)) = ¢*(J (Ts) + VJ(UH))
Y (J(Ts)) + vip* (J(T11))
= 28J(1_) ) + 28 J(vll) + 20 J(011) mod (higher filtration > 11)
(B3) + (22v 4+ 1)J(911)) mod (higher filtration > 11)
(Us).

Thus P3 (vs) = 0 (Note that the operation P3, with respect to J' is different from P3
= P3% with respect to J). The operations P}, and RY, satisfy all the formulae given above

~ 28(
=287
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for the ones with respect to the general '.J’. So, we may consider the ring isomorphism .J
to satisfy P3 = 0. QED.
Hence from (5.11), (5.21) and (5.20), it follows that

R3(ts) =0 mod 23,

R3P*(54) =0 mod 2%,

2P"(54) =0 mod 25.
Substituting them into (5.19) one obtains

21R*P*(04) =0 mod 2°

That is, if 3 #Z 0 mod 2, then R*P*(v4) = 0 mod 4. QED.
Now these two propositions, Proposition 5.14 and 5.18, give us a contradiction.
By Proposition 5.14, we have the following equation mod 4.

0 # 207 = R*P*(Ts)
R4 (05174’1_18)
= aR*(74)0s + a4 R*(7)

(5.24)

by (5.10) and the Cartan formula, where R*(7g) € I'm § and hence 5, R*(7g) = 0 by (5.5).
Furthermore, using (5.10), one obtains the following from (1.4):

24P*(vy) + 2*R*(04) =0 mod 2°
which implies
(5.25) R*Y(14) = —P*(v4) = —\02 — 2B7s  mod 4.
Hence from (5.24), it follows that
0 # 202 = —2afv; mod 4.
Then it follows that
(5.26) af =1 mod?2; in particular, =1 mod 2.
Since B # 0 mod 2, Proposition 5.18 implies

0 = R*P*(v4) = R* (M2 + 207s)

(5.27) = 2 U4 R* (v4) + 2BR* (vs)

by (5.10) and the Cartan formula.
Here, by (5.25), we have
2004 R*(04) =0 mod 4.
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Also by (1.4) using (5.10) and Lemma 5.23 we have
24P*(vg) + 2*R*(vg) =0 mod 2°

and hence
R4(178) = —P4(’l_)8) = —QU47g mod 4.

Substituting them into (5.27) we obtain
0 = R*P*(14) = —200,47s,

which contradicts (5.26).

Thus we have shown that there exists no Poincaré complex with GW space structure
whose cohomology ring is an exterior algebra of type (7,15). QED.
§6. Proof of the main theorem

Let E be a Poincaré complex of type (¢,n). One may assume that E has a cell structure
STU, €™ U et with a € m,_1(S7).

[The case n = ¢q.] Then E has a cell structure S?V S U e??. We define an inclusion ¢
: (Q — FE by the canonical inclusion S?V S? C FE. Since () is desuspendable, there is an
axial map p : @ X Q — E with axis ¢ by the assumption. Denote by Q(2) the cofibre of
the Hopf construction H(u) : Q x Q — X E of the map pu. Then one has

H*(Q(2): 2/2) = Z/29 v, vn + 1]

and Sq'QH*(Q(2); Z/2) = 0. Then by Proposition 1.7 one has {q,n} C {1,3,7}.

[The case n = g+ 1.] Then E has a cell structure S¢U,,, e?tt Ue?dt! where mu € 7,(59)
=~ 7. If m is odd, then E ~5 S29t1. So inheriting a GW space structure from E, S(22q)+l
becomes a GW space and, into particular, S2¢t! becomes a Hopf space, whence ¢ = 1
or 3. Therefore (¢,n) = (1,2) or (3,4) and E ~ S3 or S7. If m is even and ¢ = 3, then
H*(E; Z/2) = N&q, &,). Putting @ = S7 Up,,, €971, we get a space Q(2) as in case when
n < q. Then one has

H*(Q(2): 2/2) = Z/28[v,11,0042]

Then Proposition 1.7 says that ¢ = 1, which is a contradiction. Hence (¢,n) = (1,2) or
(3,4), and E ~5 S7 if ¢ = 3.

[The case ¢ +1 < n < 2¢.] Then E has a cell structure S? U, €™ U e"t? with « €
Trn—1(S7). By assumption, n < 2¢ and « is a suspended element, that is, @ = S? U, Ue"
is desuspendable. There is a map p : @ X Q@ — F since E is a GW space. Quite similarly
to the above cases, one can construct a space Q(2) satisfying

H*(Q(2); 2/2) = Z/2® g1, vp41]

From Proposition 1.7 it follows that (¢,n) = (3,5)

[The case n = 2q > 2.] Then E has a cell structure S? U, ™ U et with a € 7,_1(S9).
If ¢ is odd, one has H*(E; Z) = A(zy, x,,) which contradicts Proposition 3.3. Hence ¢ is
even. Take the bottom inclusion j : S — E. Then the map jo [1,¢] : S297! — F is null
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homotopic, since F is a GW space. For dimensional reasons there is a map A : §29-1 —
S524=1 such that the following diagram homotopy commutes:

[tqstq]

g2a-1 ", ga

Lol
s2-1 ", g

Thus [i4,t4] = A, where [14,¢4] is an element in the free part of my,_1(S?) and so is a.
Therefore we get

H*(E; Z) & Z[z,)/(x}) if A =2

> Z{xq,T2q, TqTaq}, 1‘3 =2my, ifA=1
So it follows from Proposition 2.1 that (¢,n) = (2,4). That is,
H*(E;Z) = H*(CP3; Z).

[The case 2q < n.] Then E has the the homotopy type of S?U, e™ U edt™ with o €

Tn—1(S7). By Proposition 3.3, one has
H*(E; Z) 2 Ny, xy)

Hence from Theorem 4.2 and Proposition 5.1 and 5.2, it follows that (¢,n) = (1,3), (1,7)
or (3,7).

REMARK. When (q,n) = (3,7), the attaching element « of the 7-cell in E is of the form «
= Aw with A odd or A = 0 mod 4, where w is the Blakers-Massey element in 7s(S3).

In fact, if A is odd or A = 0 mod 4, the pullback by A from the principal bundle Sp(2) —
S7 is known to be a Hopf space and so it is a GW space. If A = 2 mod 4, « is desuspendable
at 2 and so is the space Q = (83 U, 67)(2). Then one can construct a space Q(2) from
which one can deduce a contradiction to the result of Sigrist-Suter [S-S] (since the result
in [S-S] is essentially a result localised at p = 2).

We would like to propose the following

CONJECTURE. If E is a I-connected finite GW space such that H*(F;Z) is an exterior
algebra on odd degree generators, then F is a Hopf space.

Appendix
Let E and B be connected CW complexes and consider a fibration

(A1) FS%ESB

with fibre F' a (not necessarily connected) CW complex. It gives rise to the following two
fibrations:

(A.2) OB L F 4 E,
(A.3) QEB QB L F



Now suppose that ¢ is null homotopic. It follows from (A.2) that ¢ has a right inverse s
: F — QB. So the homotopy exact sequence of (A.3) splits and we obtain

7« (QB) 2 1, (QF) ® m, (F),

where the above isomorphism is induced by the map h = po (Qr x s) : QF x F — QB
with g the loop multiplication of QB. Thus h is a homotopy equivalence, since (2B and
QF have the homotopy type of a CW complex. Hence we obtain

(A.4) h:QFE x F ~QB

Thus the following hold for any space W:

(A.5) 1 — [W,QF] g [W,QB] as groups,
(W, QB] = [W,QF] x [W,F] as sets.
Here we would like to introduce a notion of GW action. A GW action of F along 7 : E
— B is a map

(A.6) v:YQFE x $QB — B

with axes YQF — E 5 B and ¥QB — B, where a map ¥QX — X is the evaluating map.
Then we have

THEOREM A.7. If is null-homotopic in (A.1) and if B admits a GW action of E along
(see (A.6)), then the following three statements hold:

(i) E is a GW space and F' is an H-space.

(ii) If B is a GW space, then F' is a homotopy abelian H-space.

(iii) B is a GW space if and only if the Sameleson product < s,s > is trivial for a right
inverse s of q.

(iv) If there is an H-map s which is a right inverse of q and if F' is homotopy abelian,
then B is a GW space and (A.4) is an H-equivalence.

Proof. (i) By [O, Theorem 2.7], the image of Qm, of (A.5) is contained in the center of
[W.QG] =2 [XW,G] for any W, since a map from a suspension space to a space X can be
decomposed through the evaluating map >QX — X. Furthermore (7, is a monomorphism
by (A.5), and hence [W ,QG] is an abelian group for any W, which implies that E is a GW
space. Since F' is a retract of a loop space 2B, it is an H-space.

(i) Let us define the multiplication i of F' by putting 1 = gopo(sx s), where we denote
by wp the loop multiplication of Q2B. As u is homotopy abelian, so is .

(iii) First suppose that B is a GW space. Since X F' is a suspension space, the White-
head product [ad(s),ad(s)] is trivial for the adjoint map ad(s) : ¥F — B of s. Recall
that [ad(s),ad(s)] = tad < s,s >, where ad < s,s > denotes the adjoint of the Samelson
product of s. Thus we obtain ad < s,s > = .
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Conversely suppose that ad < s, s > = . For simplicity we write pu(x,y) = x -y. Then
by the homotopy associativity of u, we obtain the following homotopy.

Wz, y) - Mz,y) = (Qn(z) - s(y)) - (Qr(z) - 5(y))

The image of Qr, is contained in the center as is seen in (i), and so we obtain

s(y) - Qn(7) ~ Qn(7) - s(y).

Then from the homotopy commutativity, it follows that

h(z,y) - h(z,y) = (Qr(z) - (Qr(2) - 5(y))) - 5(y)
=~ (Qn(z) - Qn(2)) - (s(y) - 5(1))-

Recalling that the loop map Q= is an H-map, one has

(A.8)

Qm(z) - Qn(z) ~ Qn(x - T)

where we use the same symbol - to denote the loop multiplications of 2B and QF. Let us
recall that QF is homotopy abelian by (i), so that

Qr(z-z) ~ Qn(z - x).

Thus we obtain
Qn(z) - Qn(z) ~ Qn(z) - Qn(x).

From the hypothesis < s,s > = %, it follows that s(y)-s(7)-s(y)~-s()~! ~ *. Hence it
follows that

s(y)-s(y) = s(y)-s(y)-
Summing up we get
Wz, y) - h(z,y) = (Qr () - Qn(z)) - (s(y) - (1))
= h(ivg) ) h(a:,y),

that is,
po (hxh) =~ poT o (hxh).

Since h is a homotopy equivalence in (A.4), it then follows that
p =~ poT,

that is, Q2B is homotopy abelian. Thus B is a GW space.
(iv) Let s : F' — QB be an H-map which is a right inverse of q. Then the H-deviation
HD(s) of s satisfies HD(s) ~ %, where the H-deviation HD(s) : FAF — QB is given by

HD(s)(zAy) = s(x)-s(y)-s(z +y)
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where + denotes the multiplication of F'. It follows that

HD(s)(yAz) = s(y)-s(z)-s(y + =) 7"

Since F' is homotopy abelian, we have s(z + y) ~ s(y + z). Thus we have

HD(s)(wAy)-HD(s)(yAe) ™" == s(2)s(y) s(z +y) " sy +x)-s() " s(y) ™!
x)s(y)s(z) " s(y) 7

~ s()5(

=< 5,5 >(zN\y).

This implies that < s,s > ~ x, and hence B is a GW space by (iii). Further, by (A.8) we
have

o (hxh)((z,y), (Z,9) ~ h(z,y)-h(z,y)
~ (Qn(z) - Qn (7)) - (s(y)-5(9))

which by using the H-structure of maps s and Qm, changes up to homotopy as follows:

~ Qn(z - 2)s(y +7)
=h(z %,y +7).

This implies that A is an H-map and hence Q2B is H-equivalent to QF x F. QED.

COROLLARY A.9. (i) The standard lens space L(m) = S3/(Z/mZ) is a GW space for all
m > 1.
(ii) CP3 = S7/T" is a GW space.

Proof. (i) Put F = Z/mZ, E = S® and B = L(m). They satisfy the conditions of
Theorem A.7. So it suffices to show that s : FF — QF is an H-map. The H-deviation of s
is in the set [FAF,QF] = [FxF,E = [V,S},53] = ©,m1(S%) = 0. Hence HD(s) ~ *, that
is, s is an H-map. From (iv) of Theorem A.7, it follows that B = L(m) is a GW space.

(ii) Put F = T!, E = S” and B = CP3. They satisfy the conditions of Theorem A.7,
since CP? is a Whitehead space and XQCP3 has the homotopy type of a wedge sum of
spheres. The H-deviation of s : F' — QG is in the set [FAF,QFE] = 73(S7) = 0, whence s
is an H-map. From (iv) of Theorem A.7, it follows that B = CP3 is a GW space. QED.

REMARK. If we put F = T', E = S3 and B = S?, they also satisfy the conditions of
Theorem A.7, but a splitting s : F' — QB cannot be an H-map. In fact, its H-deviation is
the adjoint of the Hopf map n : S® — 82, and S? is not a GW space.
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