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LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(9)

NORIO IWASET AND AKIRA KONO

ABSTRACT. We first give an upper bound of cat(E) the L-S category of a prin-
cipal G-bundle E for a connected compact group G with a characteristic map
a: 3V — G. Assume that there is a cone-decomposition {F; |0 < i < m} of
G in the sense of Ganea, that is compatible with multiplication. Then we have
cat(E) < Max(m+n,m+2) for n > 1, if a is compressible into Fy, C Fi, ~ G
with trivial higher Hopf invariant Hy (o) (see Iwase [10]). Second, we introduce
a new computable lower bound, Mwgt(X;F2), for cat(X). The two new esti-
mates imply cat(Spin(9)) = Mwgt(Spin(9); F2) = 8 > 6 = wgt(Spin(9); F2),
where wgt(—; R) is a category weight due to Rudyak and Strom.

INTRODUCTION

In this paper, we work in the category of connected CW-complexes and contin-
uous maps. The Lusternik-Schnirelmann category cat(X), L-S category for short,
is the least integer m such that there is a covering of X by (m+1) open subsets
each of which is contractible in X. Ganea introduced a stronger notion of L-S cat-
egory, Cat(X) the strong L-S category of X, which is equal to the cone-length by
Ganea [4], that is, the least integer m such that there is a set of cofibre sequences
{A; = X;_1 — X, }1<i<m with Xo = {*} and X,,, ~ X. Then by Ganea [4], we
have cat(X) < Cat(X) < cat(X)+1. Throughout this paper, we follow the nota-
tions in [12], which is based on [9, 10]: For a map f : S¥ — X, a homotopy set
of higher Hopf invariants H,,(f) = {[HZ,(f)]| o is a structure map of cat(X)<m}
(or its stabilisation H,, (f) = L Hy,(f)) is referred simply as a (stabilized) higher
Hopf invariant of f, which plays a crucial role in this paper.

A computable lower estimate is given by the classical cup-length. Here we give its
definition in a slightly general fashion, which is inspired by the proof of cat(Sp(2)) =
3 given in [14]:
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Definition 0.1 (I. [12]). (1) Let h be a multiplicative generalized cohomology.
cup(X;h) = Min {m >0 ’ V{vg, -+ ,Um € B*(X)} vov1- - Uy = O},

(2) cup(X) = Max {cup(X; h)

h is a multiplicative generalized
cohomology '

Then we have cup(X;h) < cup(X) < cat(X) for any multiplicative generalized
cohomology h. When h is the ordinary cohomology with a coefficient ring R, we

denote cup(X;h) by cup(X; R). This definition immediately implies the following.
Remark 0.2. cup(X) = Min {m >0 ’ AL X — AMFLX s stably tm‘m‘al} .

Let {pP¥ : E¥(QX)—PF1(QX); k>1} be the A,-structure of QX in the sense
of Stasheff [19] (see also Iwase-Mimura [13] for some more properties). The relation
between an A..-structure and a L-S category gives the key observation in [9, 10, 11]
to producing counter-examples to the Ganea conjecture on L-S category. On the
other hand, Rudyak [18] and Strom [20] introduced a homotopy theoretical version
of Fadell-Husseini’s category weight (see [3]), which can be described as follows, for

an element u € h*(X) and a generalized cohomology h:

wgt(u; h) = Min {m > 0| (ex)*(u) #0in A*(P™(QX)) },
(en)” = W*(X) — W*(P™(QX)) }

is a monomorphism

wet(X;h) = Min {m >0

where e:X denotes the map P™(QX) — P>(QX) ~ X. Then we easily see
(0.1) wet(X; h) = Max{wgt(u; h) |u € h*(X)}.

We remark that wgt(u; h) = s if and only if u represents a non-zero class in E2*
of bar spectral sequence {(E** d*)|r > 1} converging to h*(X) with E3* =
Ext}k;(knx)(h*7h*). When h is the ordinary cohomology with a coefficient ring R,
we denote wgt(X;h) by wgt(X; R). In this paper, we introduce new computable

invariants as follows:

Definition 0.3. Let h be a generalized cohomology: A homomorphism ¢ : h*(X) —
h*(Y') is called a h-morphism if it preserves the actions of all (unstable) cohomology

operations on h*.

Definition 0.4 (I. [12]). Let h be a generalized cohomology and X a space. A

module weight Mwgt(X;h) of X with respect to h is defined as follows:

There is an h-morphism ¢ : h*(P™(QX)) —>}
X

. — 3 >
Mwgt(X; h) = Min {m_O h*(X), which is a left homotopy inverse of (e;,)*.




LUSTERNIK-SCHNIRELMANN CATEGORY OF Spin(9) 3

When & is the ordinary cohomology with coefficients in a ring R, we denote
Mwgt(X;h) by Mwgt(X; R). These invariants satisfy the following inequalities:
cup(X; R) < wgt(X; R) <Mwgt(X; R) < cat(X).
Similar to the above definition of cup(X), we define the following invariants:
Definition 0.5 (I [12]). (1) wgt(X) = Max { wat(X; ) | 8 @ generalized
’ cohomology
(2) Mwgt(X) = Max{Mwgt(X;h)|h is a generalized cohomology }

Remark 0.6. Let rcat(—) be Rudyak’s stable L-S category, which is denoted as
r(—) in [18]. Then we have cup(X) < wgt(X) = rcat(X) < Mwgt(X) < cat(X).

Let us denote by Z®*) the k-skeleton of a CW complex Z. To give an upper-
bound for L-S category of the total space of a fibre bundle F' — E — B, we need a
refinement of results of Varadarajan [21] and Hardie [6], and corresponding result

for strong category of Ganea [4]:

Theorem 0.7 (|21, 6, 4]). (1) cat(E)+1 < (cat(F)+1)-(cat(B)+1)
(2) Cat(E)+1 < (Cat(F)+1)-(Cat(B)+1).

In [16], Iwase-Mimura-Nishimoto gave such a refinement in the case when the
base space B is non-simply connected. But in this paper, we give another refinement
in the case when the fibre bundle is a principal bundle over a double suspension

space: Let G be a compact Lie group with a cone-decomposition of length m:
(m cofibre sequences) K; 2 F_; < F;, i>1,

with Fy = {*} and F; = F,,, ~ G, i > m. Then we obtain o}, : F}, — P*QF}, for all
k < m as a right homotopy inverse of ey : P*QF, — P*QF, ~ F, by induction

on k > 1. Thus we have the following commutative diagram:

{x} ¢ F, C .. c F,
| -
{x} —— PlOF ¢ . C P™QOF,,
{x} C F, C .. F,.,

where egooy, ~ 1, for all £ < m.
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Theorem 0.8. Let G — E — X2V be a principal bundle with characteristic map
a: A=YV — G. Then we have cat(E) < Max(m+n,m+2) forn > 1, if
(1) « is compressible into F,, C F,, ~ G,
(2) Hi" (o) =0 and
(3) the restriction of the multiplication p : GXG — G to FyxF, C F,xF,, ~
GxG is compressible into Fj i, C Fpp ~ G, j20 as pjn : FjxF, — Fji,

such that pijn|r,_ xF, = tj—1,n-

Remark 0.9. If we choose n = m+1, then the assumptions (1) through (3) above
are automatically satisfied. Thus we always have Cat(E) < 2 Cat(G)+1 which is a

special case of Ganea’s theorem (see Theorem 0.7 (2)).
For Spin(9), we first observe the following result.

Theorem 0.10. Mwgt(Spin(9);F2) > 8 > 6 = wgt(Spin(9); Fa).
These results imply the following result.

Theorem 0.11. cat(Spin(9)) = Mwgt(Spin(9);F2) = 8.

1. PROOF OF THEOREM 0.8

From now on, we work in the homotopy category, and so we do not distinguish
G and F,,. Let G — E — X2V be a principal bundle with characteristic map
a: A=YV — G. The assumptions (1) and (3) in Theorem 0.8 allows us to construct
a filtration {Ex }o<k<n+m Of E: By using the James-Whitehead decomposition (see
Theorem 1.15 of Whitehead [22]), we have

E=GU, GxCA, 9 =po(lgxa): GxA— G.

Firstly, we define two filtrations of E as follows:

E, = { F, k<n,

Frp Uy Froon_1xCA, n <k <m+n,
E| = { B, k <mn,

Fp Uy, ., Fr_nxCA, n <k < m+n,

where 1 = pjno(axl): FjxA — Fj, and E = E], ,,, which immediately imply
that cat(E) = cat(E., ,,,).

m—+n
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By using the assumption (3), we obtain the following cofibre sequences, similarly

to the arguments given in [16]:
Kyy1 — Ex — Egqq, for 0 < k <n,
Ki1V (Kip_pxA) = Ey, — Ej41, for n <k < m+n,
Ky_n*A — E, — Ep,

Similarly to the arguments given in [15, 16], we obtain

(1.1) cat(Ey) < k and cat(E}) < k+1 for any k > n,

by induction on k. The following lemma can be deduced in a similar but easier

manner to the main theorem of [11], using HJ"(a) = 0, the assumption (2):

Lemma 1.1. cat(F/

in) < J4n forall j >0 and n > 2.

Lemma 1.1 and (1.1) imply cat(E) = cat(E!

m—+n

) < Max(m+n, m+2), and hence
we are left to show Lemma 1.1.

Proof of Lemma 1.1. We define a map 1/;]- as follows:
1/3j = 0j4nojno(e;xa) : PjQijA — Pj+"QFj+n.
Then we have @/}jo(ajxl) = 0j4n0ljno(ejxa)o(o;x1) ~ ojppop;no(lxa) =
0j+n0%; and eHnozﬁj = €j1n00j1nOl;jno(ejxa) ~ pjnolejxa) = 1hjo(e;x1).
Thus the following diagram is commutative up to homotopy:

pr 1 wj

(1.2) F FjxA

Fjin
O'ji ijll \Lafrn
pry ’Z’J'

PJQFJ o PJQF]XA —— Pj+7lQFj+n

ejJ/ erl\L J/ejur"
T

Fj Phy FjXA FjJrn

bj

Therefore, the space E]’-Jrn = Fj1n Uy, FjxCA is dominated by PItrQOF; L, Ud?j

PIQF;xCA. Since o satisfies HZ"(«) = 0, we have the following commutative

diagram up to homotopy:

A4Q>Fm

Zadal ll'fn

YQF, > P"QF,,
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where ada : V' — QF,, is the adjoint map of a : A=YV — F,. Thus o,oa is

compressible into XQF,,, and hence we have

V5 ~ 0j4nOhjno(1X (enoon))o(e;xa) ~ 0jinop;no(ej X en)o(1X (onoa))

~ 0j4notjno(ejxen)o(1xSad @) = ¥ | pigr, xzar, o(1xSad a),

where ¢} = 0j4nop;no(ejxey). Since Cat(P'QF;xX0F,) < i+1, we have that

¥
following cone-decomposition of P/T"QF;,,, U b PIQF;xCA:

PiQF;xx0F, can be compressible into Pi‘HQFjJrn for ¢ < j. This yields the

QFj1n — {¥} = P'QF; 1,
E*QF; VA — P*QF;,, — P?*QF;,UCA,
E2QOF; VE'QFxA — PHIQF;,,UP~IQF;xCA
— P2QF; ,UPQF;xCA, 0<i<j,

EITQF; ., — P7YTIQF L UPIQF; xCA
‘—>Pj+iQFj+nUPjQFjXCA, 2<1<n,

for any j > 0 and n > 2. This implies Cat(P/T"QF; ., Uy, PIQF;xCA) < j+n
for all j > 0 and n > 2, and hence cat(E’,,,) = cat(Fj, U F;xCA) < j+n for all
j>0and n > 2. O

This completes the proof of Theorem 0.8.

2. BAR SPECTRAL SEQUENCE

To calculate our module weight Mwgt(X; Fs) together with wgt(X; Fs), we need
to know the module structure of H*(P™(Spin(9));Fs) over the Steenrod algebra
modulo 2. By Borel [1], Bott [2], Ishitoya-Kono-Toda [7], Hamanaka-Kono [5] and

Kono-Kozima [17], the following are known:
H*(Spin(9); F2) = Fa[z3]/(23)@AF, (5, 27, 715),
S¢*xs = x5, Sqtws = xg, x; € H(Spin(9);Fy),
H,(28pin(9); F2) = Ap, (u2)®F2[ua, us, w10, u14],
g Sq? = ug, u105¢% = u2, u14Sq* = w10, ug € Ho(QASpin(9); Fy),

where we denote by Agr(a;,, - ,a;) the exterior algebra on a;,, - ,a;, over R.

t

We remark that the cohomology suspension of x5; 11 is non-trivially given by wg;
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for i = 1, 2, 3 and 7. To determine H*(P™(Spin(9));F3), we have to study the
bar spectral sequence (E;*, d**) converging to H*(Spin(9);F2):

EP' = H*H(P*(QSpin(9)), P*~ 1 (QSpin(9)); F2) = H'(/\ QSpin(9); F2),
D = [+ (P*(QSpin(9)); Fy),
Ey* ~ EXt;}j(QSpin(g);Fz)(]F27FQ) = Fylz1,2]@AR, (21,4, T1,6, 1,10, T1,14)

E%* =~ H*(Spin(9);Fy) = Faolw1,2]/ (21 2)®AR, (21,4, T1,6, T1,14),

where 219, 1.4, 21,6 and 1,14 are permanent cycles by [17]. Therefore, there is
only one differential d,(z1,10) (@ > 2) which is possibly non-trivial, and we have
Ep* = Ey" and E,\| = E3*. Since x3 is of height 4 in H*(Spin(9);F2), we have

da(21,10) = 21 5, and hence a = 3. Thus we have the following:

d,« =0ifr 7é 3, dg(l‘LZ‘) =0ifq 7é 10, d3($1710) = x‘ig,
Ey* = B3 2 Folz 2| OAF, (21,4, 71,6, T1,10, T1,14),

Ey" = B3R 2 For 0]/ (2] 2) @Ak, (1,4, 71,6, T1,14)-

By truncating the above computations with the same differential d,- to the spectral
sequence for P™(Spin(9)) of Stasheff’s type (similar to the computation in [8]), we

are lead to the following proposition, and we leave the details to the reader.

Proposition 2.1. Let A = Fa[x3]/(23)®Ar, (x5, 27, 715). Then for m > 0, we have

A[O] %"F27 me: 0,
H*(P™(Spin(9)); Fa) = ¢ A @ 2y, AU g S, if3>m>1,
Al @ gy (Al /A=) @ S, ifm> 4

as modules, where A™ (m > 0) denotes the quotient module A/D™(A) of A
by the submodule D™ (A) C A generated by all the products of m+1 elements
in positive dimensions, x11-(Am=H/AM=4) (m > 4) denotes a submodule cor-
responding to a submodule in Falxs]/(x3)®@Ar, (x5, 77,711, 215) and S, satisfies

S, -H*(P™(Spin(9)); F2) = 0 and S,,

Pm=1(Spin(9)) = 0.

Some more comments might be required to the second direct summand of the
above expressions of H*(P™(Spin(9));F2), m > 4. The multiplication with z1; is
a fancy notation to describe the module basis and not a usual product. However,

we may regard it is a partial product in the sense introduced in the next section.
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3. PARTIAL PRODUCTS

n

Since a diagonal map A = Q(AX) : QX — H QX = Q(H X) is a loop map,

it induces a map of projective spaces:
P(AZY) : Prax) — P[] X)),

such that el!” XOPm(AffX) ~ AXoeX. As is seen in the proof of Theorem 1.1 in

[9], there is a natural map

em:PTQ[X) - U Pr@X)x---xP"(QX)
i1+ t+in=m
C P"(QX)x .- xP™(QX)
such that (eXx - xeX)opX = ell" X Let AX™ = pXoPm(ADX), which we call
the n-th partial diagonal of X of height m, or simply a partial diagonal
Ar)l(,m . Pm(gx) N U Pil (QX)X . XPin (QX)
i1+ Fin=m
C P"(QX)x---xP™(QX)

such that (eX x---xeX)oAX™ ~ AXoeX  This partial diagonal also yields the
reduced version

A PX)— | PUQX)A---APT(QX)

n
i1 tin=m

C P"TMHHQX)A - APTTHQX)

such that (e, 1A /\efl_m_l)to’m ~ Zfoenxl, where ZRX : X — A" X de-
notes the reduced diagonal. Let us call Z:’m the n-th reduced partial diagonal of
X of height m, or simply a reduced partial diagonal.

As is well-known, the product of a multiplicative generalized cohomology h is

given by (reduced) diagonal, i.e.,
AR Un:(Z:)*(Ul(@@Un)EB*(X), for aly vy, - 7UTL€B*(X)5

where h denotes the reduced cohomology associated with h. So it is natural to
define a ‘partial’ product as the following way:

Definition 3.1. For any elements vy, -- ,v, € H*(XQX;Fy) which are restric-
tions of elements in H*(P™ "1 (QX);Fy), we define a partial product vy- - - - - U =

(AT (1@ - @vp) i H*(P™(QX); Fa).

n
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Remark 3.2. Since x1; can be extended to an element in H*(P3(QSpin(9)); Fa),

we have partial products x11-vy--- - Vp1 = (Zir_ﬁln(g)’m)*(xu@vl@'~«®vn_1) for
any elements vy, -+ ,v,—1 € H*(P*(QSpin(9)); Fa), m—2 < n < m. In the direct

sum decomposition of H*(P™(QSpin(9));Fs) given in Proposition 2.1, the direct

summand x1,-(AMm =1 /Am=4) is generated by such partial products.

4. PROOF OF THEOREM 0.10

We know z3xsz7215 and x11-237527 exist non-trivially in H*(P?(QSpin(9)); Fs)
but z11-z3r527 does not exist in H*(P?(QSpin(9)); F2) by Proposition 2.1. To
observe what happens on the element zi1-z3zs2z7 in H*(P¥(QSpin(9)); Fa), we

must recall the bar spectral sequence (E**, d%*):

QSpin(9 .
[(p§ PO (11-232527)] = ds (@ yz1 41 671,00) = £2] 214216 # 0 in E3",

where we denote by [3] the corresponding class in E3™* to an element 3 € E}"*. Thus
(pgSpi“(g))*(l‘g%wwu) #01in E?’* = f{*(/\9 QSpin(9); Fy), and hence x11-3w577
does not exist in H*(P?(QSpin(9)); Fy), but does in H*(P3(Q2Spin(9)); Fy).

By [17], we know Sq¢*(x11) = 215 in H*(P'(Spin(9)); Fy), and hence S¢*(x1,) =

x15 modulo S3 in H*(P3(Spin(9));Fy) for dimensional reasons. Thus we have

(4.1) Sq4(x11~x§x5x7) = x§x5x7x157 in H*(P7(QSpin(9));F2).

(4.2)  Sq*(z11-wirsar) = Tirszrars +w, w € Sgin H*(P¥(QSpin(9)); Fy).

The equation (4.1) implies that any left inverse epimorphism of (e?pin(g))*

¢ H*(P7(QSpin(9)); Fy) — H*(Spin(9);Fy)

does not preserve the action of the modulo 2 Steenrod operations: if such a epimor-
phism ¢ did preserve the action of the modulo 2 Steenrod operations, the element
P(x3x507015) = 23577715 in H*(Spin(9); F2) should lie in the image of S¢*, since
x3xszras lies in the image of S¢* in H*(P7(QSpin(9)); Fy) by (4.1). Tt contradicts
to the fact that H32(Spin(9);F2) = 0. Thus we have Mwgt(Spin(9);Fy) > 8.

On the other hand, we can easily see that each generator of H*(Spin(9);Fq) =
Fo[z3]/(23)®AR, (75, 27, 215) has category weight 1, and hence by (0.1), we have
wgt(Spin(9); F2) = 6. This completes the proof of Theorem 0.10.
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5. PROOF OF THEOREM 0.11

By [15], we can easily see that Spin(7) admits a cone-decomposition which sat-
isfies the condition 3 in Theorem 0.8. Since x15 € H'%(Spin(7));Fz) is the modulo
2 reduction of a generator of H(Spin(7);Z) = Z, the image of the attaching
map « of the 15-cell corresponding to z15 must lie in Spin(?)(13) the 13-skeleton
of Spin(7), where Spin(7)(!3) is contained in F3(Spin(7)). To observe that the at-
taching map « satisfies the condition of Theorem 0.8 with n = 3, we need to show
that H3?(a) = 0. Then we obtain cat(Spin(9)) < Cat(Spin(7))+n = 54+3 =8 by
Theorem 0.8, while we know Mwgt(Spin(9); F3) > 8 by Theorem 0.10, and hence

cat(Spin(9)) = Mwgt(Spin(9);Fy) = 8.

Let o3 : F3(Spin(7)) — P3(QF;(Spin(7))) be the canonical structure map of
cat(F3(Spin(7))) = 3. Then we are left to show that H3*(«) = 0. By definition,

Hgs(a) . gl4 E4(QF3(Spin(7))),

where F3(Spin(7)) = G(QH) Uscpz SCP3U (higher cells > 8). Since QG;H) has the
homotopy type of CP? U (higher cells > 6), we know QF3(Spin(7)) has the homo-
topy type of CP3U (higher cells > 6). Thus we observe that E*(QF3(Spin(7))) has
the homotopy type of

Y3CP3AS?AS?AS? U B3 CP2ACP?ACP?ACP? U (higher cells > 15).

It is well-known that XCP? = XCP? U,, €, w3 : S5 — S2 C XCP?, and
hence we have Z3CP3AS2AS2AS? = X3CP?AS?AS2AS? Uy, e'?, since w, =
2u, for n > 5. An easy computation on the cohomology groups shows that
CP2ACP? has the homotopy type of (X2CP? Vv S5) uge®, 3 : S7 £ 8TvsT
Bravn gay g6 C X2CP? v S8, where p denotes the unique co-Hopf structure of
S7. Then we obtain, up to higher cells in dimension > 10, that [(X2CP? Vv S%) Ug
e8JACP? = (Z2CP2ACP? VESCP?) Uszgel? = (R2CP?ACP? Ugy, €'0) VESCP? =
(BACP? Usyg €0V 58) Uszpg €0 v B0CP? = B4CP? Uy, €' v CP? v X5CP2.
Hence we have, up to higher cells in dimension > 12, that [(£?CP? v S%) Ug
e8] (AZ2CP? Vv S8) = (B5CP?Us,, e'?) vEB8CP? v X8CP? vE8CP?. Thus we obtain
that E4(QF3(Spin(7))) = Z3CP3AS?AS?AS? U BS3CP2ACP?ACP2ACP? has the
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homotopy type of

Y3CP3ASZASAAS? U S3[(R2CP? v %) Ug e®]A(Z2CP? v S9)

U (22CP? v SO)A[(Z2CP? v S%) Ug €®] U (higher cells > 15),
= (EQ(CPQ U3V11 615 U2V11 615)

v ZtHep? v step? v £ CP? U (higher cells > 15)

= (2°CP?u,,, ) vEtcP? v 2CP? v £ CP? U (higher cells > 15).

Then an elementary computation shows that mi4(E4(Q2F3(Spin(7)))) = 0, and

hence H3®(a) = 0. This completes the proof of Theorem 0.11.

6. ACKNOWLEDGEMENTS

The authors thank the University of Aberdeen for its hospitality during their

stay in Aberdeen.

REFERENCES

[1] A. Borel, Sur I’homologie et la cohomologie des groupes de Lie compacts connezes (French),

Amer. J. Math. 76 (1954), 273-342.

[2] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[3] E. Fadell and S. Husseini, Category weight and Steenrod operations, Papers in honor of Jos

Adem (Spanish), Bol. Soc. Mat. Mexicana 37 (1992), 151-161.

[4] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois. J. Math. 11 (1967),

417-427.

[5] H. Hamanaka and A. Kono, Homotopy-commutativity in spinor groups, J. Math. Kyoto Univ.

(6]

40 (2000), 389-405.
K. A. Hardie, A note on fibrations and category, Michigan Math. J. 17, (1970), 351-352.

[7] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structure of mod 2 cohomology of simple

Lie groups, Publ. Res. Inst. Math. Sci. 12 (1976/77), 141-167.

N. Iwase, On the K-ring structure of X-projective n-space, Mem. Fac. Sci. Kyushu Univ.
Ser. A Math., 38 (1984), 285-297.

N. Iwase, Ganea’s conjecture on Lusternik-Schnirelmann category, Bull. London Math. Soc.,
30 (1998), 623-634.

N. Iwase, Aco-method in Lusternik-Schnirelmann category, Topology 41 (2002), 695-723.
N. Iwase, Lusternik-Schnirelmann category of a sphere-bundle over a sphere, Topology 42
(2003), 701-713.

N. Iwase, The Ganea conjecture and recent developments on the Lusternik-Schnirelmann
category (Japanese), Stigaku 56 (2004), 281-296.

N. Iwase and M. Mimura, Higher homotopy associativity, Algebraic Topology (Arcata, 1986),
193-220, Lecture Notes in Math. 1370, Springer, Berlin, 1989.

N. Iwase, M. Mimura, L-S categories of simply-connected compact simple Lie groups of low
rank, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), 199—
212, Progr. Math., 215, Birkh&user, Basel, 2004.

N. Iwase, M. Mimura, T. Nishimoto, On the cellular decomposition and the Lusternik-
Schnirelmann category of Spin(7), Topology Appl., 133 (2003), 1-14.

N. Iwase, M. Mimura, T. Nishimoto, L-S categories of non-simply-connected compact simple
Lie groups, Topology Appl. 150 (2005), 111-123.

A. Kono nd K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math.
Soc. Japan 45 (1993), 495-510.



12 IWASE AND KONO

[18] Y. B. Rudyak, On category weight and its applications, Topology 38 (1999), 37-55.

[19] J. D. Stasheff, Homotopy associativity of H-spaces, I, II, Trans. Amer. Math. Soc. 108 (1963),
275-292, 293-312.

[20] J. Strom, Essential category weight and phantom maps, Cohomological methods in homotopy
theory (Bellaterra, 1998), 409-415, Progr. Math., 196, Birkhauser, Basel, 2001.

[21] K. Varadarajan, On fibrations and category, Math. Z. 88 (1965), 267—-273.

[22] G. W. Whitehead, “Elements of Homotopy Theory”, Graduate Texts in Mathematics, 61,
Springer Verlag, Berlin, 1978.

E-mail address, Iwase: iwase@math.kyushu-u.ac.jp
E-mail address, Kono: kono@kusm.kyoto-u.ac.jp
(Iwase) FacuLTYy OF MATHEMATICS, KYUSHU UNIVERSITY, FUKUOKA 810-8560, JAPAN

(Kono) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KyoTo UNIVERSITY, KYOTO
607-8502, JAPAN



