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Abstract. Let G be a compact connected Lie group and p : E →
ΣA be a principal G-bundle with a characteristic map α : A → G,
where A = ΣA0 for some A0. Let {Ki→Fi−1↪→Fi | 1 ≤ i ≤ m} with
F0={∗}, F1=ΣK1 and Fm'G be a cone-decomposition of G of length
m and F ′1 = ΣK ′1 ⊂ F1 with K ′1 ⊂ K1 which satisfy FiF

′
1 ⊂ Fi+1 up to

homotopy for all i. Then we have cat(E) ≤ m+1, under some suitable
conditions, which is used to determine cat(SO(10)). A similar result is
obtained by Kono and the first author [9] to determine cat(Spin(9)),
while the result in [9] can not assert cat(E) ≤ m+1.

1. Introduction

Throughout the paper, we work in the homotopy category of based CW -

complexes, and often identify a map with its homotopy class.

The Lusternik-Schnirelmann category of a connected space X, denoted

by cat(X), is the least integer n such that there is an open covering {Ui | 0≤
i ≤ n} of X with each Ui contractible in X. If no such integer exists, we

write cat(X) =∞. Let R be a commutative ring with unit. The cup-length

of X w.r.t. R, denoted by cup(X;R), is the supremum of all non-negative

integers k such that there is a non-zero k-fold cup product in the ordinary

reduced cohomology H̃∗(X;R).

In 1967, Ganea introduced in [3] a strong category Cat(X) by modifying

Fox’s strong category (see Fox [2]), which is characterized as follows: for a

connected space X, Cat(X) is 0 if X is contractible and, otherwise, is equal

to the smallest integer n such that there is a series of cofibre sequences

{Ki → Fi−1 ↪→ Fi | 1 ≤ i ≤ m} with F0 = {∗} and Fm ' X (a cone-

decomposition of length m). Cat(X) is often called the cone-length of X.

The following theorem is well-known.

Theorem 1.1 (Ganea [3]). cup(X;R) ≤ cat(X) ≤ Cat(X).

In 1968, Berstein and Hilton [1] gave a criterion for cat(Cf ) = 2 in terms

of their Hopf invariant H1(f) ∈ [ΣX,ΩΣY ∗ΩΣY ] for a map f : ΣX → ΣY ,
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where A∗B denotes the join of spaces A and B. In addition, its higher

version Hm is used to disprove the Ganea conjecture (see Iwase [6, 8]).

We summarize here known L-S categories of special orthogonal groups:

since SO(2) = S1, SO(3) = RP 3 and SO(4) = RP 3×S3, we know

cat(SO(2)) = 1, cat(SO(3)) = 3 and cat(SO(4)) = 4.

In 1999, James and Singhof [12] gave the first non-trivial result.

cat(SO(5)) = 8.

In 2005, Mimura, Nishimoto and the first author [11] gave an alternative

proof of cat(SO(5)) = 8 and determine cat(SO(n)) up to n=9 as follows.

cat(SO(6)) = 9, cat(SO(7)) = 11, cat(SO(8)) = 12 and cat(SO(9)) = 20.

Let G ↪→ E → ΣA be a principal bundle with a characteristic map

α : A → G, where A is a suspension space and G is a connected compact

Lie group with a cone-decomposition of length m, i.e., there is a series of

cofibre sequences {Ki→ Fi−1 ↪→ Fi | 1≤ i≤m} with F0 = {∗}, F1 ' ΣK1

and Fm ' G. Then the multiplication of G is, up to homotopy, a map µ :

Fm×Fm → Fm, since G ' Fm. The main result of this paper is as follows.

Theorem 1.2. Let F ′1 = ΣK ′1, where K ′1 is a connected subspace of K1 so

that F ′1 is simply-connected, and let µ|Fi×F ′1 : Fi × F ′1 → Fm be compressible

into Fi+1 ⊂ Fm as µi,1 : Fi × F ′1 → Fi+1, 1≤ i<m, such that µi,1|Fi−1×F ′1 ∼
µi−1,1 in Fi+1. Then the following three conditions imply cat(E) ≤ m+1.

(1) α is compressible into F ′1,

(2) H1(α) = 0 in [A,ΩF ′1∗ΩF ′1],

(3) Km = S`−1 with m≥3 and `≥3.

Remark. Under the conditions in Theorem 1.2, [9, Theorem 0.8] does not

imply cat(E) ≤ m+1, but only does cat(E) ≤ m+2, since its key lemma [9,

Lemma 1.1] can not properly manage the case when imα ⊂ F1.

Theorem 1.2 yields the following result on L-S category of SO(10).

Theorem 5.1. cat(SO(10)) = cup(SO(10);F2) = 21.

All these results on cat(SO(n)) with n≤10 support the “folk conjecture”.

Conjecture 1. cat(SO(n)) = cup(SO(n);F2).

Let us explain the method we employ in this paper. To study L-S cate-

gory, we must understand Ganea’s criterion of L-S category as a basic idea,

given in terms of a fibre-cofibre construction in [3]: let X be a connected
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space. Then there is a fibre sequence FnX ↪→ GnX → X, natural with

respect to X, such that cat(X)≤n if and only if the fibration GnX → X

has a cross-section.

However, four years before [3], a more understandable description of the

fibre sequence Fn(X) ↪→ Gn(X) → X was already published by Stasheff

[15]: following [6, 7, 8], we may replace the inclusion FnX ↪→ GnX with the

fibration pΩX
n : En+1ΩX → P nΩX associated with the A∞ structure of ΩX

the based loop space of X in the sense of Stasheff, where En+1ΩX has the

homotopy type of (ΩX)∗(n+1) the n+1-fold join of ΩX and P nΩX satisfies

P 0ΩX = ∗, P 1ΩX = ΣΩX and P∞ΩX ' X. Let ιΩXm,n : PmΩX ↪→ P nΩX

be the canonical inclusion, for m≤n, and eX∞ : P∞ΩX ' X be the natural

equivalence. Then the fibration GnX → X may be replaced with the map

eXn = eX∞◦ιΩXn,∞ : P nΩX → X, where eX1 : ΣΩX → X equals the evaluation.

Thus, we may restate Ganea’s criterion as below: let X be a connected

space. Then cat(X)≤n if and only if eXn : P nΩX → X has a right homotopy

inverse. It is the reason why we use A∞-structures to determine L-S category.

In this paper, instead of using [9, Lemma 1.1], we show Proposition 2.4,

Lemma 3.3 and Lemma 4.4. It is a key process to obtain Theorem 1.2. In

Sections 2 and 3, we construct a structure map associated to a given cone-

decomposition. In Section 4, we introduce a map λ̂ from F̂m+1 = Pm
m×ΣΩF ′1

to Pm+1ΩFm, which is the main tool to construct a complex D of Cat(D) ≤
m+1 dominating E. Finally in Section 5, we prove Theorem 5.1.

2. Structure Map Associated With Cone-Decomposition

In this section, we generalize the following well-known fact to a proposi-

tion for filtered spaces and maps.

Fact 2.1. Let K
a→ A ↪→ C(a), L

b→ B ↪→ C(b) be cofibre sequences with

canonical co-pairings ν : C(a)→ C(a) ∨ ΣK and ν̂ : C(b)→ C(b) ∨ ΣL. If

there are maps f : A→ B and f 0 : K → L such that f◦a = b◦f 0, then they

induce a map f ′ : C(a)→ C(b) satisfying (f ′ ∨ Σf 0)◦ν = ν̂◦f ′.

Definition 2.2. A space X with a series of subspaces {Xn;n≥0},

{∗} = X0 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ⊂ X,

is called a space filtered by {Xn;n≥0} and denoted by (X, {Xn}). We also

denote by iXm,n : Xm ↪→ Xn, m<n the canonical inclusion.

Definition 2.3. Let X and Y be spaces filtered by {Xn} and {Yn}, respec-

tively. A map f : X → Y is a filtered map if f(Xn) ⊂ Yn for all n.
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Proposition 2.4. Let X and Y be filtered by {Xn} and {Yn}, respectively,

and f : X → Y be a filtered map. If {Xn} is a cone-decomposition of X,

i.e, there is a series of cofibre sequences {Kn
hn−→ Xn−1

iXn−1,n

↪−→ Xn |n≥1} with

X0 = ∗, then there exist families of maps {f̂n : Xn → P nΩYn |n≥ 0} and

{f̂ 0
n : Kn → EnΩYn |n≥0} such that they satisfy two conditions as follows.

(1) The following diagram is commutative.

Kn
hn //

f̂0
n

��

Xn−1
� �

iXn−1,n //

f̂n−1
��

Xn

f̂n

��

f |Xn

��

P n−1ΩYn−1� _

Pn−1ΩiYn−1,n
��

EnΩYn
pΩYn
n−1

// P n−1ΩYn
� �

ιΩYn
n−1,n

// P nΩYn
eYnn

// Yn

(2) We denote by f ′n = (P n−1ΩiYn−1,n◦f̂n−1) ∪ C(f̂ 0
n) : Xn → P nΩYn the

induced map from the commutativity of the left square in (1). Then

the middle square in (1) with f̂n replaced with f ′n is commutative.

The difference of f̂n and f ′n is given by a map δfn : ΣKn → P n−1ΩYn

composed with the inclusion ιΩYnn−1,n : P n−1ΩYn ↪→ P nΩYn, n≥1.

Proof. First of all, we put f̂0 = ∗ the trivial map.

Next, we show the proposition by induction on n ≥ 1. When n = 1,

we put f̂ 0
1 = ad(f |X1) and f̂1 = Σ ad(f |X1) = f ′1 to obtain the following

commutative diagram:

K1
//

f̂0
1
��

∗ //

f̂0

��

ΣK1

f̂1

��

f |X1

##
ΩY1

// ∗ // ΣΩY1
� �

e
Y1
1

// Y1.

Then (1) is clear and (2) is trivial in this case.

When n = k > 1, suppose we have already obtained {f̂i} and {f̂ 0
i } for

i < k, which satisfies the conditions (1) and (2).

Firstly, we define f̂ 0
k : Kk → EkΩYk as follows: the homotopy class of a

map P k−1ΩiYk−1,k◦f̂k−1◦hk : Kk → P k−1ΩYk can be described as

hk∗(P
k−1ΩiYk−1,k◦f̂k−1) ∈ [Kk, Yk] with P k−1ΩiYk−1,k◦f̂k−1 ∈ [Xk−1, Yk]

in the following ladder of exact sequences induced from a fibre sequence

EkΩYk → P k−1ΩYk → Yk:
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[Xk−1, E
kΩYk] [Xk−1, P

k−1ΩYk] [Xk−1, Yk]

[Kk, E
kΩYk] [Kk, P

k−1ΩYk] [Kk, Yk].
��

h∗k

//
p

ΩYk
k−1∗

��

h∗k

//
e
Yk
k−1∗

��

h∗k

//
p

ΩYk
k−1∗ //

e
Yk
k−1∗

Since we know that the naturality of eZk−1 at Z implies eYkk−1◦P k−1ΩiYk−1,k

= iYk−1,k◦e
Yk−1

k−1 , that the induction hypothesis implies e
Yk−1

k−1 ◦f̂k−1 = f |Xk−1

and that the naturality of iZk−1,k at Z implies iYk−1,k◦f |Xk−1
= f |Xk

◦iXk−1,k,

we obtain eYkk−1∗(P
k−1ΩiYk−1,k◦f̂k−1) = iYk−1,k◦e

Yk−1

k−1 ◦f̂k−1 = f |Xk
◦iXk−1,k ∈

[Xk−1, Yk]. On the other hand, since Kk → Xk−1 ↪→ Xk is a cofibre se-

quence, we obtain

eYkk−1∗(h
∗
k(P

k−1ΩiYk−1,k◦f̂k−1)) = [f |Xk
◦iXk−1,k◦hk] = 0.

Thus we have eYkk−1∗(P
k−1ΩiYk−1,k◦f̂k−1◦hk) = 0 and there exists a map f̂ 0

k :

Kk → EkΩYk such that pΩYk
k−1∗(f̂

0
k ) = P k−1ΩiYk−1,k◦f̂k−1◦hk, which implies

the commutativity of the left square in (1).

Secondly, let f ′k : Xk → P kΩYk be the map induced from the commuta-

tivity of the left square in (1). By the induction hypothesis, we have

(iXk−1,k)
∗(eYkk ◦f ′k) = [eYkk ◦f ′k◦iXk−1,k] = [eYkk ◦ιΩYkk−1,k◦P k−1ΩiYk−1,k◦f̂k−1]

= [iYk−1,k◦e
Yk−1

k−1 ◦f̂k−1] = [iYk−1,k◦f |Xk−1
] = [f |Xk

◦iXk−1,k] = (iXk−1,k)
∗(f |Xk

).

By a standard argument of homotopy theory on a cofibre sequence Kk →
Xk−1 ↪→ Xk (see Hilton [5] or Oda [13]), there is a map δf,0k : ΣKk → Yk

such that

f |Xk
= ∇Yk◦(eYkk ◦f ′k ∨ δf,0k )◦νk,

where ∇Y : Y ∨ Y → Y denotes the folding map for a space Y and νk :

Xk → Xk ∨ ΣKk denotes the canonical co-pairing.

Let δfk = ιΩYk1,k−1◦Σ ad(δf,0k ) : ΣKk → ΣΩYk ↪→ P k−1ΩYk. Since eYk1 =

eYkk−1◦ιΩYk1,k−1, we have δf,0k = eYk1 ◦Σad(δf,0k ) = eYkk−1◦δfk . Hence, we obtain f̂k =

∇PkΩYk◦(f ′k ∨ ιΩYkk−1,k◦δfk )◦νk satisfies the condition (2).

Thirdly, by using the above homotopy relations, we obtain the following.

f |Xk
= ∇Yk◦(eYkk ◦f ′k ∨ eYkk−1◦δfk )◦νk
= eYkk ◦∇PkΩYk◦(f ′k ∨ ιΩYkk−1,k◦δfk )◦νk = eYkk ◦f̂k.

This implies the commutativity of the right triangle in (1).

Finally, since νk is a co-pairing, we have

pr1◦νk◦iXk−1,k = 1Xk
◦iXk−1,k = iXk−1,k and pr2◦νk◦iXk−1,k = q◦iXk−1,k = ∗,
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where pr1 : Xk ∨ ΣKk → Xk and pr2 : Xk ∨ ΣKk → ΣKk are the first and

second projections, respectively. Then, we obtain the equation

f̂k◦iXk−1,k = ∇PkΩYk◦(f ′k ∨ ιΩYkk−1,k◦δfk )◦νk◦iXk−1,k

= f ′k◦iXk−1,k = ιΩYkk−1,k◦P k−1ΩiYk−1,k◦f̂k−1,

which implies the commutativity of the middle square in (1). This completes

the induction step for n = k, and we obtain the proposition for all n. �

Corollary 2.4.1. Let ν̂n : P nΩYn → P nΩYn∨ΣEnΩYn be the canonical co-

pairing. If Kn is a co-H-space, then the following diagram is commutative.

Xn
νn //

f̂n
��

Xn ∨ ΣKn

f̂n∨Σf̂0
n

��
P nΩYn

ν̂n // P nΩYn ∨ ΣEnΩYn.

Proof. Let P and E denotes P nΩYn and EnΩYn, respectively. By Proposi-

tion 2.4 (2), the difference of f̂n and f ′n is given by ιΩYnn−1,n◦δfn, and hence

(f̂n ∨ Σf̂ 0
n)◦νn = {(∇P◦(f ′n ∨ ιΩYnn−1,n◦δfn)◦νn) ∨ Σf̂ 0

n}◦νn
= (∇P ∨ 1ΣE)◦(f ′n ∨ ιΩYnn−1,n◦δfn ∨ Σf̂ 0

n)◦(νn ∨ 1ΣKn)◦νn.

Since Kn is a co-H-space, we have the following homotopy relations.

υn = T◦υn and (νn ∨ 1ΣKn)◦νn = (1Xn ∨υn)◦νn,

where υn : ΣKn → ΣKn ∨ ΣKn is the co-multiplication and T : ΣKn ∨
ΣKn → ΣKn ∨ ΣKn is a switching map. So we can proceed as follows:

(f̂n ∨ Σf̂ 0
n)◦νn = (∇P ∨ 1ΣE)◦(f ′n ∨ ιΩYnn−1,n◦δfn ∨ Σf̂ 0

n)◦(1Xn ∨υn)◦νn
= (∇P ∨ 1ΣE)◦(f ′n ∨ (ιΩYnn−1,n◦δfn ∨ Σf̂ 0

n))◦(1Xn ∨T◦υn)◦νn
= (∇P ∨ 1ΣE)◦{f ′n ∨ T ′◦(Σf̂ 0

n ∨ ιΩYnn−1,n◦δfn)}◦(νn ∨ 1ΣKn)◦νn
= (∇P ∨ 1ΣE)◦(1P ∨T ′)◦{(f ′n ∨ Σf̂ 0

n)◦νn ∨ ιΩYnn−1,n◦δfn}◦νn,

where T ′ : ΣE ∨ P → P ∨ ΣE is a switching map. Then we can easily

see that (∇P ∨ 1ΣE)◦(1P ∨T ′) = ∇P∨ΣE◦inΣE, where, for any space Y , we

denote by inΣE : Y ↪→ Y ∨ΣE the first inclusion. So we proceed as follows.

(f̂n ∨ Σf̂ 0
n)◦νn = ∇P∨ΣE◦inΣE◦{(f ′n ∨ Σf̂ 0

n)◦νn ∨ ιΩYnn−1,n◦δfn}◦νn
= ∇P∨ΣE◦{(f ′n ∨ Σf̂ 0

n)◦νn ∨ inΣE◦ιΩYnn−1,n◦δfn}◦νn.

Here, since the co-pairing ν̂n is associated to the cofibre sequence P n−1ΩYn
ιΩYn
n−1,n

↪−→ P nΩYn −→ ΣEnΩYn, we have the following equation up to homotopy:

ν̂n◦ιΩYnn−1,n = inΣE◦ιΩYnn−1,n : P n−1ΩYn ↪−→ P nΩYn ↪−→ P nΩYn ∨ ΣEnΩYn.
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Then by Theorem 2.1, we proceed further as follows:

(f̂n ∨ Σf̂ 0
n)◦νn = ∇P∨ΣE◦{(f ′n ∨ Σf̂ 0

n)◦νn ∨ ν̂n◦ιΩYnn−1,n◦δfn}◦νn
= ∇P∨ΣE◦(ν̂n◦f ′n ∨ ν̂n◦ιΩYnk−1,k◦δfn)◦νn
= ν̂n◦∇P◦(f ′n ∨ ιΩYnn−1,n◦δfn)◦νn = ν̂n◦fn.

It completes the proof of the corollary. �

3. Cone-Decomposition Associated with Projective Spaces

Let G be a compact Lie group of dimension ` with a cone-decomposition

of length m, that is, there is a series of cofibre sequences

(3.1) {Ki
hi−→ Fi−1 ↪−→ Fi | 1≤ i≤m}

with F0 = {∗} and Fm ' G. We also denote by iFi−1,i : Fi−1 ↪→ Fi the canon-

ical inclusion and by qFi−1,i : Fi → Fi/Fi−1 = ΣKi its successive quotient.

Lemma 3.1. If Km = S`−1 with m≥3 and `≥3, then we obtain

(1) (EmΩFm, E
mΩFm−1) is an `-connected pair.

(2) There exists an `-connected map φ̂S : Pm
m = PmΩFm−1 ∪ CS`−1 →

PmΩFm extending the inclusion PmΩFm−1 ↪→ PmΩFm.

Proof. Let qE : FE → EmΩFm−1, qP : FP → Pm−1ΩFm−1 and qF : FF →
Fm−1 be homotopy fibres of inclusion maps EmΩiFm−1,m, Pm−1ΩiFm−1,m and

iFm−1,m, respectively, which fit in with the following commutative diagram

of fibre sequences. Thus we obtain a fibre sequence FE → FP → FF :

FE

qE

��

// FP

qP
��

// FF

qF

��
EmΩFm−1� _

EmΩiFm−1,m

��

p
ΩFm−1
m−1 // Pm−1ΩFm−1� _

Pm−1ΩiFm−1,m
��

e
Fm−1
m−1 // Fm−1� _

iFm−1,m

��
EmΩFm

pΩFm
m−1 // Pm−1ΩFm

eFm
m−1 // Fm.

Firstly, since the pair (Fm, Fm−1) is (`−1)-connected, (ΩFm,ΩFm−1) is

(`−2)-connected and (EmΩFm, E
mΩFm−1) is (`+m−3)-connected. There-

fore, FF is (`−2)-connected and FE is (`+m−4)-connected. We remark that

FE is at least (`−1)-connected, since m ≥ 3, Then, by using the homotopy

exact sequence for the fibre sequence FE → FP → FF , we obtain

πk(FP ) ∼= πk(FF ), k ≤ `−1,

and hence FP is (`−2)-connected. Thus FP is 1-connected, since `≥ 3. By

a general version of Blakers-Massey Theorem (see [4, Corollary 16.27], for
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example) and the hypothesis that Km = S`−1, it follows that

π`−1(FP ) ∼= π`−1(FF ) ∼= π`(Fm, Fm−1) ∼= π`(ΣKm) ∼= π`(S
`) ∼= Z,

Thus, FP has the following homology decomposition, up to homotopy.

FP = (S`−1 ∨ S` ∨ · · · ∨ S`) ∪ (cells in dimension ≥ `+1).

Secondly, Pm−1ΩFm−1∪qP CFP is described as the homotopy pushout of

qP : FP → Pm−1ΩFm−1 and the trivial map ∗ : FP → {∗}. Then we obtain

(3.2)

Pm−1ΩFm−1 ∪qP CFP
Pm−1ΩFm−1×Pm−1ΩFm
∪Pm−1ΩFm×{∗}

HPB

Pm−1ΩFm Pm−1ΩFm×Pm−1ΩFm

��

φP

//

� _

��
//

∆

(see [6, Lemma 2.1], for example, with (X,A) = (Pm−1ΩFm, P
m−1ΩFm−1),

(Y,B) = (Pm−1ΩFm, {∗}) and Z = Pm−1ΩFm), where we denote by ∆ the

diagonal map. Thus there is a map φP : Pm−1ΩFm−1∪qP C(F)→ Pm−1ΩFm

as the left down arrow in the diagram (3.2). On the other hand, by the proof

of [6, Lemma 2.1], the subspace Pm−1ΩFm−1 ⊂ Pm−1ΩFm−1 ∪qP CFP can

be described as the pull-back of ∆ above and the inclusion map

Pm−1ΩiFm−1,m×1 : Pm−1ΩFm−1×Pm−1ΩFm ↪→ Pm−1ΩFm−1×Pm−1ΩFm,

and hence we obtain

φP |Pm−1ΩFm−1
= Pm−1ΩiFm−1,m : Pm−1ΩFm−1 ↪→ Pm−1ΩFm.

Thirdly, the homotopy fibre F0
P of φP is the homotopy pullback of the in-

clusion Pm−1ΩFm−1×Pm−1ΩFm∪Pm−1ΩFm×{∗} ↪→ Pm−1ΩFm×Pm−1ΩFm

and the trivial map {∗} → Pm−1ΩFm×Pm−1ΩFm. Then we obtain

FP×ΩPm−1ΩFm Pm−1ΩFm−1

HPO

FP F0
P

��

proj1

//
proj2

��
//

(see [6, Lemma 2.1], for example, with (X,A) = (Pm−1ΩFm, P
m−1ΩFm−1),

(Y,B) = (Pm−1ΩFm, {∗}) and Z = {∗}). Hence F0
P has the homotopy

type of the join FP∗ΩPm−1ΩFm which is (`−1)-connected. Thus φP is `-

connected.

Finally, let qS = qP |S`−1 : S`−1 → Pm−1ΩFm−1. Then the inclusion

j : Pm−1ΩFm−1 ∪qS CS`−1 ↪→ Pm−1ΩFm−1 ∪qP CFP is `-connected, since

Pm−1ΩFm−1∪qPCFP = Pm−1ΩFm−1∪qSCS`−1∪(cells in dimension ≥ `+1).



L-S CATEGORY OF SO(10) 9

Then the composition φS = φP◦j : (Pm−1ΩFm−1 ∪qS CS`−1, Pm−1ΩFm−1)

↪→ (Pm−1ΩFm, P
m−1ΩFm−1) of `-connected maps is again `-connected.

Since m ≥ 3, the pair (EmΩFm, E
mΩFm−1) is `-connected, which im-

plies (1). Thus, the inclusion Pm−1ΩFm ∪ C(EmΩFm−1) ↪→ Pm−1ΩFm ∪
C(EmΩFm) is `-connected, and we obtain an `-connected map

φ̂S : PmΩFm−1 ∪ CS`−1 = Pm−1ΩFm−1 ∪qS CS`−1 ∪
p

ΩFm−1
m−1

C(EmΩFm−1)

→ Pm−1ΩFm ∪ C(EmΩFm−1) ↪→ Pm−1ΩFm ∪ C(EmΩFm) = PmΩFm,

which implies (2). It completes the proof of Lemma 3.1. �

From now on, we assume Km = S`−1 with m≥ 3 and `≥ 3. Thus, by

Lemma 3.1, we may assume that Pm
m = PmΩFm−1 ∪ CS`−1 ⊂ PmΩFm

such that (PmΩFm, P
m
m ) is `-connected. In this section, we define cone-

decompositions of Fm×F ′1, Pm
m and Pm

m×ΣΩF ′1.

Firstly, we give a cone-decomposition of Fm×F ′1 of lengthm+1 as follows.

(3.3) {Km,1
i

wm,1
i−→ Fm,1

i−1 ↪−→ Fm,1
i | 1≤ i≤m+1} with Fm,1

m+1 = Fm×F ′1,
where Km,1

i , Fm,1
i−1 and wm,1i (1≤ i≤m+1) are defined by

Km,1
1 = K1 ∨K ′1, Fm,1

0 = {∗}, wm,11 = ∗ : Km,1
1 → Fm,1

0 ,
Km,1
i = Ki ∨ (Ki−1∗K ′1), Fm,1

i−1 = Fi−1×{∗} ∪ Fi−2×F ′1,
wm,1i |Ki

= incl◦(hi×∗) : Ki → Fi−1 = Fi−1×{∗} ⊂ Fm,1
i−1 ,

wm,1i |Ki−1∗K′1 = [χi−1,Σ 1K′1 ]r

: Ki−1∗K ′1 → Fi−1×{∗} ∪ Fi−2×ΣK ′1 = Fm,1
i−1 ,

i≥2,

in which Km+1 = {∗}, incl is the canonical inclusion and [χi,Σ 1K′1 ]r is

the relative Whitehead product of the characteristic map χi : (CKi, Ki)→
(Fi, Fi−1) and the suspension of the identity map Σ 1K′1 : ΣK ′1 → ΣK ′1.

Secondly, a cone-decomposition of Pm
m of length m is given as follows.

ΩFm−1 → {∗} ↪→ ΣΩFm−1,
...

EiΩFm−1 → P i−1ΩFm−1 ↪→ P iΩFm−1,
...

EmΩFm−1 ∨Km → Pm−1ΩFm−1 ↪→ Pm
m .

1≤ i<m,

Finally, a cone-decomposition of Pm
m×ΣΩF ′1 of length m+1 is given as

follows.

(3.4) {Êi ŵi−→ F̂i−1 ↪→ F̂i | 1≤ i≤m+1} with F̂m+1 = Pm
m×ΣΩF ′1,

where Êi+1, F̂i and ŵi+1, 0≤ i≤m are defined by

Ê1 = ΩFm−1 ∨ ΩF ′1, F̂0 = {∗}, ŵ1 = ∗ : Ê1 → F̂0,
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Êi+1 = Ei+1ΩFm−1 ∨ {EiΩFm−1∗ΩF ′1},
F̂i = P iΩFm−1×{∗} ∪ P i−1ΩFm−1×ΣΩF ′1,

ŵi+1|Ei+1ΩFm−1
: Ei+1ΩFm−1

p
ΩFm−1
i−−−−→ P iΩFm−1×{∗} ⊂ F̂i,

ŵi+1|EiΩFm−1∗ΩF ′1 = [χ′i, 1ΣΩF ′1
]r : EiΩFm−1∗ΩF ′1 → F̂i,

1≤ i<m−1,



Êm = {EmΩFm−1∨Km} ∨ {Em−1ΩFm−1∗ΩF ′1},
F̂m−1 = Pm−1ΩFm−1×{∗} ∪ Pm−2ΩFm−1×ΣΩF ′1,

ŵm|EmΩFm−1∨Km : EmΩFm−1 ∨Km

p′S−→ Pm−1ΩFm−1×{∗} ⊂ F̂m−1,

ŵm|Em−1ΩFm−1∗ΩF ′1 = [χ′m−1, 1ΣΩF ′1
]r : Em−1ΩFm−1∗ΩF ′1 → F̂m−1,

and


Êm+1 = {EmΩFm−1∨Km}∗ΩF ′1,
F̂m = Pm

m×{∗} ∪ Pm−1ΩFm−1×ΣΩF ′1,

ŵm+1 = [χ′m, 1ΣΩF ′1
]r : Êm+1 → F̂m,

in which p′S : EmΩFm−1∨Km → Pm−1ΩFm−1 is given by p′S|EmΩFm−1 =

p
ΩFm−1

m−1 and p′S|Km = qS, and χ′i is a relative homeomorphism given by{
χ′i : (CEiΩFm−1, E

iΩFm−1)→ (P iΩFm−1, P
i−1ΩFm−1), 1≤ i<m,

χ′m : (CE ′, E ′)→ (Pm
m , P

m−1ΩFm−1), E ′ = EmΩFm−1 ∨Km.

From now on, we denote by ιm,1i : Fm,1
i ↪→ Fm,1

i+1 and ι̂i : F̂i ↪→ F̂i+1 the

canonical inclusions. Let us denote 1m = 1Fm : Fm → Fm.

Definition 3.2. The identity 1m is filtered w.r.t. the filtration ∗ = F0 ⊂
F1 ⊂ · · · ⊂ Fm. Then by Proposition 2.4 for f =1m, we obtain σi = (̂1m)i :

Fi → P iΩFi for 1 ≤ i ≤ m and (̂1m)
0

j : Kj → EjΩFj for 1 ≤ j ≤ m. Let

gj = (̂1m)
0

j : Kj → EjΩFj for 1 ≤ j ≤m. We also obtain g′ = ad(1K′1) :

K ′1 → ΩΣK ′1 = ΩF ′1 and σ′ = Σg′ : F ′1 → ΣΩF ′1.

Since Km and Fm are of dimension `−1 and `, respectively, we may

assume that the images of gm and σm are in EmΩFm−1 and Pm
m , respectively.

Lemma 3.3. Let νm,1k : Fm,1
k → Fm,1

k ∨ ΣKm,1
k and ν̂k : F̂k → F̂k ∨ ΣK̂k be

the canonical co-pairings for 1≤k≤m+1, and σm,1m = σm×{∗} ∪ σm−1×σ′ :
Fm,1
m → F̂m. Then the following diagram is commutative.

Km,1
m+1

wm,1
m+1 //

gm∗g′
��

Fm,1
m

ιm,1
m //

σm,1
m
��

Fm,1
m+1

νm,1
m+1 //

σm×σ′
��

Fm,1
m+1 ∨ ΣKm,1

m+1

σm×σ′ ∨Σgm∗g′
��

Êm+1

ŵm+1 // F̂m
ι̂m // F̂m+1

ν̂m+1 // F̂m+1 ∨ ΣÊm+1.
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As a preparation for showing Lemma 3.3, let us recall the definition of

mapping cone C(h) of a given map h : X → Z and its related spaces.

CX =
[0, 1]×X
{0}×X , C(h) = Z q CX/ ∼, CX 3 1∧x ∼ h(x) ∈ Z, x ∈ X,

C≤ 1
2
X = {t∧x ∈ CX | t ≤ 1

2
} ≈ CX (natural homeo),

C≥ 1
2
(h) = {t∧x ∈ C(h) | t ≥ 1

2
},

C≥ 1
2
(h)

{1
2
}×X ≈ C(h) (natural homeo),

where t∧x denotes the element in CX or C(h), whose representative in

[0, 1]×X is (t, x). Then we obtain the following propositions.

Proposition 3.4. Let K
a→ A ↪→ C(a) and L

b→ B ↪→ C(b) be cofibre

sequences and let νa : C(a) → C(a) ∨ ΣK, νb : C(b) → C(b) ∨ ΣL and

ν = ν(a, b) : C(a)×C(b)→ C(a)×C(b)∨ΣK∗L be the canonical co-pairings.

(1) ν is given by the following composition, natural w.r.t. a and b.

C(a)×C(b)

νa×νb−−−→ C(a)×C(b) ∪
C(a)

C(a)×ΣL ∪
C(b)

ΣK×C(b) ∪
ΣK∨ΣL

ΣK×ΣL

Φ−→ C(a)×C(b) ∨ ΣK×ΣL/(ΣK ∨ ΣL)
≈−→ C(a)×C(b) ∨ Σ(K∗L),

where Φ is given by Φ|C(a)×ΣL = proj1, Φ|ΣK×C(b) = proj2 and

Φ|ΣK×ΣL = (callpsing) : ΣK × ΣL� ΣK×ΣL/(ΣK∨ΣL).

(2) Let K ′
a′→ A′ ↪→ C(a′) and L′

b′→ B′ ↪→ C(b′) be cofibre sequences and

ν̂ = ν(a′, b′) : C(a′)×C(b′)→ C(a′)×C(b′) ∨ Σ(K ′∗L′). If f 0 : K →
K ′, f : A → A′, g0 : L → L′ and g : B → B′ satisfy f◦a = a′◦f 0

and g◦b = b′◦g0, then (f, f 0) and (g, g0) induce f ′ : C(a) → C(a′)

and g′ : C(b)→ C(b′) as in Theorem 2.1, which satisfy ν̂◦(f ′×g′) =

(f ′×g′ ∨ Σ(f 0∗g0))◦ν : C(a)×C(b)→ C(a′)×C(b′) ∨ Σ(K ′∗L′).

Figure 1

Proof. Firstly, we define a homeomorphism

α̂ : (C(K∗L), K∗L) ≈ (CK×CL,CK×L ∪K×CL)

by α̂(t∧(s∧x, y)) = ((ts)∧x, t∧y) and α̂(t∧(x, s∧y)) = (t∧x, (ts)∧y) for

(x, y) ∈ K×L and s, t ∈ [0, 1] (see Figure 2).
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CK×L

K×CL

C(K∗L)

1
2
∧(K∗L)

α̂

CK×CL
CK×L

K×CL

α̂(1
2
∧(K∗L))

Figure 1

1

Figure 2

Since C([χa, χb]) = C(a)×B∪A×C(b)∪[χa,χb]C(K∗L) and C(a)×C(b) =

(C(a)×B ∪ A×C(b)) ∪[χa,χb] CK×CL, α̂ induces a homeomorphism α :

C([χa, χb]) ≈ C(a)×C(b). Thus the canonical co-pairing ν is given by

ν : C(a)×C(b)→ C(a)×C(b)

α({C≤ 1
2
(K∗L)}) ∨

α(C≤ 1
2
(K∗L))

α({1
2
}×(K∗L))

.

Since we can easily see that α(C≤ 1
2
(K∗L))/α({1

2
}×(K∗L)) ≈ Σ(K∗L) and

C(a)×C(b)/α({C≤ 1
2
(K∗L)}) = C(a)×C(b)/C≤ 1

2
K×C≤ 1

2
L, ν is given as

ν : C(a)×C(b)→ C(a)×C(b)

C≤ 1
2
K×C≤ 1

2
L
∨ Σ(K∗L).

Since C≤ 1
2
X is contractible, the inclusion (C(a), {∗})×(C(b), {∗}) ↪→

(C(a), C≤ 1
2
K)×(C(b), C≤ 1

2
L) is homotopy equivalence, and so is the inclu-

sion C(a)×{∗} ∪ {∗}×C(b) ↪→ C(a)×C≤ 1
2
L ∪ C≤ 1

2
K×C(b).

Hence, the following collapsing map is a homotopy equivalence.

C(a)×C≤ 1
2
L ∪ C≤ 1

2
K×C(b)

C≤ 1
2
K×C≤ 1

2
L

−→
C≥ 1

2
(a)

{1
2
}×K ∨

C≥ 1
2
(b)

{1
2
}×L ≈ C(a) ∨ C(b).

Finally, since C≤ 1
2
K×C≤ 1

2
L = α({C≤ 1

2
(K∗L)}), by taking push-out of

this collapsing with the inclusion

C(a)×C≤ 1
2
L ∪

C≤ 1
2
K×C(b)

C≤ 1
2
K×C≤ 1

2
L
↪→ C(a)×C(b)

α({C≤ 1
2
(K∗L)}) ,

we obtain a homotopy equivalence:

C(a)×C(b)

α({C≤ 1
2
(K∗L)}) →

C≥ 1
2
(a)

{1
2
}×K ×

C≥ 1
2
(b)

{1
2
}×L ≈ C(a)×C(b)

Therefore, ν is homotopic to the map ν̂ which is given by

ν̂(s∧x, t∧y) =



(s∧x, t∧y) ∈
C≥ 1

2
(a)

{ 1
2
}×K ×

C≥ 1
2

(b)

{ 1
2
}×L , s, t ≥ 1

2
,

(∗, t∧y) ∈ {∗} ×
C≥ 1

2
(b)

{ 1
2
}×L , s ≤ 1

2
, t ≥ 1

2
,

(s∧x, ∗) ∈
C≥ 1

2
(a)

{ 1
2
}×K × {∗}, s ≥ 1

2
, t ≤ 1

2
,

((s∧x)∧(t∧y)) ∈
C≤ 1

2
K

{ 1
2
}×K ∧

C≤ 1
2
L

{ 1
2
}×L , s, t ≤ 1

2
,
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which coincides with Φ◦(νa×νb) which implies (1). (2) is clear by concrete

definitions of these maps, and we obtain the proposition. �

Proposition 3.5. Let νm : Fm → Fm ∨ ΣKm be the canonical co-pairing

and T1 : Fm,1
m+1 ∪F ′1 (ΣKm×F ′1)∨ΣKm,1

m+1 → (Fm,1
m+1 ∨ΣKm,1

m+1)∪F ′1 (ΣKm×F ′1)

be an appropriate homeomorphism. Then the following equation holds.

T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1 = (νm,1m+1 ∪ 1ΣKm×F ′1)◦(νm× 1F ′1).

Proof. First, Proposition 3.4 implies the following commutative diagram.

Fm×F ′1 Fm×F1 ∨ Σ(Km∗K ′1)

Fm×F ′1 ∪F ′1 ΣKm×F ′1
Fm×F ′1 ∪F ′1 ΣKm×F ′1 ∪Fm Fm×ΣK ′1

∪ΣKm×ΣK ′1.

//
νm,1
m+1

��

νm× 1F ′1

//1m×ν1

OO

Φ

Since Φ goes through (Fm×F ′1 ∪F ′1 ΣKm×F ′1) ∪ ΣKm×ΣK ′1/{∗}×ΣK ′1 as

Φ : (Fm×F ′1 ∪F ′1 ΣKm×F ′1 ∪Fm Fm×ΣK ′1) ∪ ΣKm×ΣK ′1

Φ′−→ (Fm×F ′1 ∪F ′1 ΣKm×F ′1) ∪ ΣKm×ΣK ′1
{∗}×ΣK ′1

pr′−→ Fm×F ′1 ∨ Σ(Km∗K ′1),

Figure 3

where Φ′ and pr′ are given by the following.

Φ′|Fm×F ′1 = 1Fm×F ′1 , Φ′|ΣKm×F ′1 = 1ΣKm×F ′1 , Φ′|Fm×ΣK′1
= proj1,

Φ′|ΣKm×ΣK′1
= (collapsing) : ΣKm×ΣK ′1 �

ΣKm×ΣK ′1
{∗}×ΣK ′1

pr′||Fm×F ′1 = 1Fm×F ′1 , pr′|ΣKm×F ′1 = proj2,

pr′|ΣKm×ΣK′1/{∗}×ΣK′1
= (collapsing) :

ΣKm×ΣK ′1
{∗}×ΣK ′1

� Σ(Km∗K ′1).
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Since there is a natural homotopy equivalence h : ΣKm×ΣK ′1/{∗}×ΣK ′1 '
ΣKm ∨ Σ(Km∗K ′1) such that h|ΣKm×{∗} = 1ΣKm , pr′ can be decomposed as

pr′ = pr′1◦pr′0,

where pr′0 and pr′1 are given by the following formulae.

pr′0|Fm×F ′1 = 1Fm×F ′1 , pr′0|ΣKm×F ′1 = 1ΣKm×F ′1 , pr′0|ΣKm×ΣK′1/{∗}×ΣK′1
= h,

pr′1|Fm×F ′1 = 1Fm×F ′1 , pr′1|ΣKm×F ′1 = proj2, pr′1|Σ(Km∗K′1) = 1Σ(Km∗K′1),

Figure 4

Hence Φ is decomposed as Φ = pr′◦Φ′ = pr′1◦pr′0◦Φ′ and pr′0◦Φ′ is given by

pr′0◦Φ′|Fm×F ′1 = 1Fm×F ′1 , pr′0◦Φ′|ΣKm×F ′1 = 1ΣKm×F ′1 ,

pr′0◦Φ′|Fm×ΣK′1
= proj1 and

pr′0◦Φ′|ΣKm×ΣK′1
= (retraction) : ΣKm×ΣK ′1 → ΣKm ∨ Σ(Km∗K ′1),

and hence pr′0◦Φ′◦(1m×ν1) is given by

pr′0◦Φ′◦(1m×ν1)|Fm×F ′1 = 1Fm×F ′1 ,

pr′0◦Φ′◦(1m×ν1)|ΣKm×F ′1 = ν ′ : ΣKm×F ′1 → ΣKm×F ′1 ∨ Σ(Km∗K ′1),

where ν ′ is the canonical co-pairing. Thus we obtain a commutative diagram

(3.5) Fm,1
m+1 = Fm×F ′1

νm× 1F ′1 //

νm,1
m+1

��

Fm×F ′1 ∪F ′1 (ΣKm×F ′1)

1Fm×F ′1
∪ν′

��
Fm×F ′1 ∨ ΣKm∗K ′1 Fm×F ′1 ∪F ′1 (ΣKm×F ′1) ∨ ΣKm∗K ′1.

p1oo

Therefore we have

T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1

= T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦p1◦(1Fm,1
m+1
∪ν ′)◦(νm× 1F ′1).

Let us denote by p2 : Fm,1
m+1 ∪F ′1 (ΣKm×F ′1) ∪F ′1 (ΣKm×F ′1) ∨ ΣKm,1

m+1 →
Fm,1
m+1 ∪F ′1 (ΣKm×F ′1) ∨ ΣKm,1

m+1 the map pinching the second ΣKm×F ′1 to
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F ′1, by p3 : Fm,1
m+1 ∪F ′1 ((ΣKm×F ′1) ∨ ΣKm,1

m+1) ∪F ′1 (ΣKm×F ′1) → (Fm,1
m+1 ∨

ΣKm,1
m+1) ∪F ′1 ΣKm,1

m+1 the map pinching the first ΣKm×F ′1 to one point, by

ν0 : ΣKm → ΣKm ∨ ΣKm the canonical co-multiplication and by T0 :

ΣKm ∨ ΣKm → ΣKm ∨ ΣKm the switching map. It is then easy to check

T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1

= T1◦p2◦((νm× 1F ′1) ∪ 1ΣKm×F ′1 ∨ 1ΣKm∗K′1)◦(1Fm,1
m+1
∪ν ′)◦(νm× 1F ′1)

= p3◦(1Fm,1
m+1
∪ν ′ ∪ 1ΣKm×F ′1)◦(1Fm,1

m+1
∪(T0× 1F ′1))

◦((νm× 1F ′1) ∪ 1ΣKm×F ′1)◦(νm× 1F ′1).

Using (1Fm ∨ν0)◦νm = (νm∨1ΣKm)◦νm and T0◦ν0 = ν0 from the assump-

tion that Km is a co-H-space together with Fm,1
m+1 = Fm×F ′1, we have

T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1

= p3◦(1Fm,1
m+1
∪ν ′ ∪ 1ΣKm×F ′1)◦(1Fm,1

m+1
∪(T0× 1F ′1))

◦(1Fm,1
m+1
∪(ν0× 1F ′1))◦(νm× 1F ′1)

= p3◦(1Fm,1
m+1
∪ν ′ ∪ 1ΣKm×F ′1)◦((1Fm ∨ν0)× 1F ′1))◦(νm× 1F ′1)

= p3◦(1Fm,1
m+1
∪ν ′ ∪ 1ΣKm×F ′1)◦((νm ∨ 1ΣKm)× 1F ′1)◦(νm× 1F ′1).

Using the diagram (3.5), we proceed further as follows:

T1◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1 = (νm,1m+1 ∪ 1ΣKm×F ′1)◦(νm× 1F ′1).

It completes the proof of Proposition 3.5. �

Proof of Lemma 3.3. The commutativity of the left square follows from [14,

Proposition 2.9] and the middle square is clearly commutative.

So we are left to show (σm×σ′ ∨ Σgm∗g′)◦νm,1m+1 = ν̂m+1◦(σm×σ′). Re-

call that σm = 1̂m which is given by Proposition 2.4 (1) for f = 1m. On

the other hand by Proposition 2.4 (2), we have σm = ∇PmΩFm◦((1m)′m ∨
ιΩFm
m−1,m◦δ1m

m )◦νm, and hence we obtain

(σm×σ′ ∨ Σgm∗g′)◦νm,1m+1

= {(∇PmΩFm◦((1m)′m ∨ (ιΩFm
m−1,m◦δ1m

m ))◦νm)×σ′ ∨ Σgm∗g′}◦νm,1m+1

= (∇PmΩFm× 1ΣΩF ′1
∨ 1ΣÊm+1

)

◦{((1m)′m×σ′) ∪ ((ιΩFm
m−1,m◦δm)×σ′) ∨ Σgm∗g′}

◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1

= (∇PmΩFm× 1ΣΩF ′1
∨ 1ΣÊm+1

)

◦T2◦{((1m)′m×σ′ ∨ Σgm∗g′) ∪ ((ιΩFm
m−1,m◦δ1m

m )×σ′)}◦T1

◦((νm× 1F ′1) ∨ 1ΣKm,1
m+1

)◦νm,1m+1,
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where T1 : Fm,1
m+1∪F ′1 (ΣKm×F ′1)∨ΣKm,1

m+1 → (Fm,1
m+1∨ΣKm,1

m+1)∪F ′1 (ΣKm×F ′1)

and T2 : (F̂m+1 ∨ ΣÊm+1) ∪ΣΩF ′1
F̂m+1 → (F̂m+1 ∪ΣΩF ′1

F̂m+1) ∨ ΣÊm+1 are

appropriate homeomorphisms. Then by Proposition 3.5, Proposition 3.4 (2)

and the definitions of (1m)′m and σ′, we proceed as follows.

(σm×σ′ ∨ Σgm∗g′)◦νm,1m+1

= (∇PmΩFm× 1ΣΩF ′1
∨ 1ΣÊm+1

)

◦T2◦{((1m)′m×σ′ ∨ Σgm∗g′) ∪ ((ιΩFm
m−1,m◦δ1m

m )×σ′)}
◦(νm,1m+1 ∪ 1ΣKm×F ′1)◦(νm× 1F ′1)

= (∇PmΩFm× 1ΣΩF ′1
∨ 1ΣÊm+1

)◦T2

◦{(((1m)′m×σ′ ∨ Σgm∗g′)◦νm,1m+1) ∪ ((ιΩFm
m−1,m◦δ1m

m )×σ′)}◦(νm× 1F ′1).

= (∇PmΩFm× 1ΣΩF ′1
∨ 1ΣÊm+1

)◦T2

◦{(ν̂m+1◦((1m)′m×σ′)) ∪ ((ιΩFm
m−1,m◦δ1m

m )×σ′)}◦(νm× 1F ′1)

= (∇PmΩFm× 1ΣΩF ′1
∨∇ΣÊm+1

)◦T3

◦{ν̂m+1◦((1m)′m×σ′) ∪ i1◦((ιΩFm
m−1,m◦δ1m

m )×σ′)}◦(νm× 1F ′1).

Here i1 : F̂m+1 → F̂m+1 ∨ ΣÊm+1 is the first inclusion and T3 : (F̂m+1 ∨
ΣÊm+1)∪ΣΩF ′1

(F̂m+1 ∨ΣÊm+1)→ (F̂m+1 ∪ΣΩF ′1
F̂m+1)∨ΣÊm+1 ∨ΣÊm+1 is

the appropriate homeomorphism. Thus we proceed further as follows.

(σm×σ′ ∨ Σgm∗g′)◦νm,1m+1

= (∇PmΩFm× 1ΣΩF ′1
∨∇ΣÊm+1

)◦T3

◦(ν̂m+1 ∪ ν̂m+1)◦{((1m)′m×σ′) ∪ ((ιΩFm
m−1,m◦δm)×σ′)}◦(νm× 1F ′1)

= ν̂m+1◦{∇PmΩFm◦((1m)′m ∨ (ιΩFm
m−1,m◦δ1m

m ))◦νm×σ′} = ν̂m+1◦(σ1m
m ×σ′).

It completes the proof of Lemma 3.3. �

4. Proof of Theorem 1.2

In the fibre sequence G ↪→ E → ΣA, by the James-Whitehead decom-

position (see Whitehead [17, VII. Theorem (1.15)]), the total space E has

the homotopy type of the space G ∪ψ G×CA. Here ψ is the following map.

ψ : G×A 1G×α−−−→ G×G µ−→ G.

Since G ' Fm and, by the condition (1) of Theorem 1.2, α is compressible

into F ′1. Hence we see that

ψ : G×A ' Fm×A
1Fm×α−−−→ Fm×F ′1 ⊂ Fm×F1 ⊂ Fm×Fm ' G×G µ−→ G ' Fm

and E is the homotopy pushout of the following sequence.

Fm Fm×A
pr1oo

1Fm ×α // Fm×F ′1
µm,1 // Fm.
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We construct spaces and maps such that the homotopy pushout of these

maps dominates E. Let e′ = e
F ′1
1 : ΩΣF ′1 → F ′1 and σA = Σ ad(1A) : A →

ΣΩA, since A is a suspended space. By the condition (2) of Theorem 1.2,

we have H1(α) = 0 in [A,ΩF ′1∗ΩF ′1], which immediately implies

(4.1) σ′◦α = Σ ad(α) = e′◦σA : A→ ΣΩF ′1.

By the condition (3) of Theorem 1.2, we have Km = S`−1 with m≥ 3 and

`≥3, and so (PmΩFm, P
m
m ) is `-connected by Lemma 3.1.

Proposition 4.1. The following diagram is commutative.

Fm

ιΩFm
m,m+1◦σm

��

Fm×A
σm×σA

��

pr1oo
1Fm ×α // Fm×F ′1

σm×σ′
��

µm,1 // Fm

ιΩFm
m,m+1◦σm
��

Pm+1ΩFm

eFm
m+1

��

Pm
m×ΣΩA

φoo

eFm
m ×eA1

��

χ // F̂m+1

eFm
m ×e′

��

Pm+1ΩFm

eFm
m+1

��
Fm Fm×Apr1
oo

1Fm ×α
// Fm×F ′1 µm,1

// Fm,

where φ = ιΩFm
m,m+1◦pr1 and χ = 1Pm

m
×ΣΩα.

Proof. The left upper square is clearly commutative. The equation eFm
m =

eFm
m+1◦ιΩFm

m,m+1 implies that the left lower square is commutative. The equation

α◦eA1 = e′◦ΣΩα implies the commutativity of the middle lower square.

The commutativity of the middle upper square is obtained by (4.1). By

Proposition 2.4 (2) for f = 1m and the fact e′◦σ′ = 1F ′1 imply that the right

rectangular is commutative. It completes the proof of the proposition. �

Definition 4.2. λ = µm,1◦{eFm
m ×e′} : F̂m+1 → Fm×F ′1 → Fm.

Then λ is a well-defined filtered map w.r.t. the filtration (3.4) of F̂m+1

and the trivial filtration ((Fm)i = Fm for all i) of Fm, where {eFm
m ×e′}(F̂k) =

{eFm−1

k ×∗ ∪ eFm−1

k−1 ×e′}(F̂k) ⊂ Fm−1×F ′1 for 0≤k<m, and {eFm
m ×e′}(F̂m) =

{eFm
m ×∗ ∪ eFm−1

m−1 ×e′}(F̂m) ⊂ Fm×{∗} ∪ Fm−1×F ′1 for k=m.

Definition 4.3. By Proposition 2.4 for f = λ, we obtain a series of maps

λ̂k : F̂k → P kΩFm, 0≤k≤m+1.

By the hypothesis of Theorem 1.2, we have µk,1 : Fk×F ′1 → Fk+1 for

k<m, and µm,1 : Fm×F ′1 → Fm, both of which are restrictions of µ.

Lemma 4.4. There is a map λ̂ : F̂m+1 → Pm+1ΩFm which fits in with the

following commutative diagram obtained by dividing the right square of the
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diagram in Proposition 4.1 by λ̂ into upper and lower squares.

Fm

ιΩFm
m,m+1◦σm

��

Fm×A
σm×σA

��

pr1oo 1×α // Fm×F ′1
σm×σ′

��

µm,1 // Fm

ιΩFm
m,m+1◦σm
��

Pm+1ΩFm

eFm
m+1

��

Pm
m×ΣΩA

φoo

eFm
m ×eA1

��

χ // F̂m+1

eFm
m ×e′

��

λ̂ // Pm+1ΩFm

eFm
m+1

��
Fm Fm×Apr1
oo

1×α
// Fm×F ′1 µm,1

// Fm.

Proof. Let µm,1k = 1Fk
∪µk−1,1 : Fm,1

k = Fk×{∗} ∪ Fk−1×F ′1 → Fk, σ
m,1
k =

σk×∗ ∪ σk−1×σ′ : Fm,1′

k → P kΩFk×{∗} ∪ P k−1ΩFk−1×ΣΩF ′1 and jk =

P kΩiFk,m−1× ∗ ∪P k−1ΩiFk−1,m−1× 1ΣΩF ′1
, 0≤k<m.

Firstly, we show the following equation by induction on k<m.

(4.2) ιΩFm
k,k+1◦P kΩiFk,m◦σk◦µm,1k = ιΩFm

k,k+1◦λ̂k◦jk◦σm,1k : Fm,1
k → P k+1ΩFm.

The case k = 0 is clear, since both maps are constant maps. Assume the

k-th of (4.2). By Proposition 2.4 (1) for f=1m, the diagram

Fk
σk //

iFk,k+1

��

P kΩFk
� �
PkΩiFk,k+1// P kΩFk+1

� �
PkΩiFk+1,m−1 //

� _

ι
ΩFk+1
k,k+1
��

P kΩFm−1� _

ι
ΩFm−1
k,k+1
��

Fk+1 σk+1

// P k+1ΩFk+1
� �

Pk+1ΩiFk+1,m−1

// P k+1ΩFm−1

is commutative for k+1<m, and hence we have

jk+1◦σm,1k+1◦ιm,1k

= (P k+1ΩiFk+1,m−1◦σk+1◦iFk,k+1)× ∗ ∪(P kΩiFk,m−1◦σk◦iFk−1,k)×σ′

= (ι
ΩFm−1

k,k+1 ◦P kΩiFk,m−1◦σk)× ∗ ∪(ι
ΩFm−1

k−1,k ◦P kΩiFk−1,m−1◦σk−1)×σ′

= ι̂k◦jk◦σm,1k .

By Proposition 2.4 (1) for f=λ, we have λ̂k+1◦ι̂k = ιΩFm
k,k+1◦λ̂k, and hence

λ̂k+1◦jk+1◦σm,1k+1◦ιm,1k = λ̂k+1◦ι̂k◦jk◦σm,1k = ιΩFm
k,k+1◦λ̂k◦jk◦σm,1k .

Then, by Proposition 2.4 (1) for f = 1m and the induction hypothesis, we

proceed further as follows.

(ιm,1k )∗(λ̂k+1◦jk+1◦σm,1k+1)

= [ιΩFm
k,k+1◦P kΩiFk,m◦σk◦µm,1k ] = [P k+1ΩiFk+1,m◦σk+1◦iFk,k+1◦µm,1k ]

= [P k+1ΩiFk+1,m◦σk+1◦µm,1k+1◦ιm,1k ] = (ιm,1k )∗(P k+1ΩiFk+1,m◦σk+1◦µm,1k+1).
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By a standard argument of homotopy theory on a cofibre sequence Km,1
k+1 →

Fm,1
k ↪→ Fm,1

k+1, we obtain the difference map δk+1 : ΣKm,1
k+1 → P k+1ΩFm of

λ̂k+1◦jk+1◦σm,1k+1 and P k+1ΩiFk+1,m◦σk+1◦µm,1k+1, k+1<m:

(4.3) P k+1ΩiFk+1,m◦σk+1◦µm,1k+1 = ∇Pk+1ΩFm
◦(λ̂k+1◦jk+1◦σm,1k+1 ∨ δk+1)◦νm,1k+1.

Then, by Proposition 2.4 (1) for f = λ, we have

eFm
k+1◦λ̂k+1 = µm−1,1◦{eFm−1

k+1 ×∗ ∪ e
Fm−1

k ×e′},
and hence, by the commutative diagram

Fi
σi //

1Fi ""

P iΩFi
� �

P iΩiFi,m−1 //

e
Fi
i
��

P iΩFm−1

e
Fm−1
i // Fm−1

Fi
% �

iFi,m−1

22

for i = k, k+1 ≤ m−1, we obtain the equation

{eFm−1

k+1 ×∗ ∪ e
Fm−1

k ×e′}◦jk+1◦σm,1k+1 = ιm,1k+1,m,

where ιm,1k+1,m : Fm,1
k+1 ↪→ Fm,1

m is the canonical inclusion. Thus we have

eFm
k+1◦λ̂k+1◦jk+1◦σm,1k+1 = µm−1,1◦ιm,1k+1,m = iFk+1,m◦µm,1k+1

= iFk+1,m◦e
Fk+1

k+1 ◦σk+1◦µm,1k+1 = eFm
k+1◦P k+1ΩiFk+1,m◦σk+1◦µm,1k+1,

and hence, by (4.3), we obtain

iFk+1,m◦µm,1k+1 = ∇Fm◦(eFm
k+1◦λ̂k+1◦jk+1◦σm,1k+1 ∨ eFm

k+1◦δk+1)◦νm,1k+1

= ∇Fm◦(iFk+1,m◦µm,1k+1 ∨ eFm
k+1◦δk+1)◦νm,1k+1.

Using [13, Theorem 2.7 (1)] and the multiplication µ on G ' Fm, eFm
k+1◦δk+1 :

ΣKm,1
k+1 → Fm is null-homotopic. Hence by a standard argument of homotopy

theory on the fibre sequence Ek+2ΩFm → P k+1ΩFm → Fm, we obtain a lift

δ′k+1 : ΣKm,1
k+1 → Em+1ΩFm of δk+1 as pΩFm

k+1 ◦δ′k+1 = δk+1, k+1 <m. Since

ιΩFm
k+1,k+2◦pΩFm

k+1 = ∗, we obtain ιΩFm
k+1,k+2◦δk+1 = ιΩFm

k+1,k+2◦pΩFm
k+1 ◦δ′k+1 = ∗ and

ιΩFm
k+1,k+2◦∇Pk+1ΩFm

◦(λ̂k+1◦jk+1◦σm,1k+1 ∨ δk+1)◦νm,1k+1

= ∇Pk+2ΩFm
◦(ιΩFm

k+1,k+2◦λ̂k+1◦jk+1◦σm,1k+1 ∨ ∗)◦νm,1k+1

= ιΩFm
k+1,k+2◦λ̂k+1◦jk+1◦σm,1k+1,

and hence, by (4.3), we obtain

ιΩFm
k+1,k+2◦P k+1ΩiFk+1,m◦σk+1◦µm,1k+1 = ιΩFm

k+1,k+2◦λ̂k+1◦jk+1◦σm,1k+1.

It completes the proof of the induction step and we obtain (4.2) for k<m.

Secondly, we show the following equation

(4.4) ι
ΩFm
m,m+1◦σm◦µm,1m = ι

ΩFm
m,m+1◦λ̂m◦σm,1m .
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By Proposition 2.4 (1) for f = 1m, we obtain

σt◦iFt−1,t = iΩFt
t−1,t◦P t−1ΩiFt−1,t◦σt−1 for t = m−1,m.

Hence we have

σm,1m ◦ιm,1m−1 = ((σm◦iFm−1,m)× ∗ ∪ (σm−1◦iFm−2,m−1)×σ′)
= (ιΩFm

m−1,m◦Pm−1ΩiFm−1,m◦σm−1)×∗
∪ (ι

ΩFm−1

m−2,m−1◦Pm−2ΩiFm−2,m−1◦σm−1)×σ′

= îm−1◦jm−1◦σm,1m−1.

By Proposition 2.4 (1) for f = λ, we obtain λ̂m◦ι̂m−1 = ιΩFm
m−1,m◦λ̂m−1 and

(ιm,1m−1)∗(λ̂m◦σm,1m ) = [λ̂m◦σm,1m ◦ιm,1m−1] = [λ̂m◦̂im−1◦jm−1◦σm,1m−1]

= [ιΩFm
m−1,m◦λ̂m−1◦jm−1◦σm,1m−1] = [ιΩFm

m−1,m◦PmΩiFm−1,m◦σm−1◦µm,1m−1]

= [σm◦iFm−1,m◦µm,1m−1] = (ιm,1m−1)∗(σm◦µm,1m )

using (4.2) for k = m−1. Thus by a standard argument of homotopy theory

on the cofibre sequence Km,1
m → Fm ↪→ Fm+1, we obtain a difference map

δm : ΣKm,1
m → PmΩFm of λ̂m◦σm,1m and σm◦µm,1m :

(4.5) σm◦µm,1m = ∇PmΩFm◦(λ̂m◦σm,1m ∨ δm)◦νm,1m .

By Proposition 2.4 (1) for f=λ, we have the equation

eFm
m ◦λ̂m◦σm,1m = µm,1m ◦{eFm

m ×∗ ∪ eFm−1

m−1 ×e′}◦(σm× ∗ ∪σm−1×σ′) = µm,1m ,

and hence, by (4.5), we obtain

µm,1m = ∇Fm◦(eFm
m ◦λ̂m◦σm,1m ∨ eFm

m ◦δm)◦νm,1m = ∇Fm◦(µm,1m ∨ eFm
m ◦δm)◦νm,1m .

Thus we obtain eFm
m ◦δm = ∗. Then, by a standard argument in homo-

topy theory on the fibre sequence Em+1ΩFm → PmΩFm → Fm, we ob-

tain a lift δ′m : ΣKm,1
m → Em+1ΩFm which satisfies δm = pΩFm

m ◦δ′m. Since

ιΩFm
m,m+1◦pΩFm

m = ∗, we have ιΩFm
m,m+1◦δm = ιΩFm

m,m+1◦pΩFm
m ◦δ′m = ∗. Then by

(4.5), we obtain (4.4) as follows:

ιΩFm
m,m+1◦σm◦µm,1m = ιΩFm

m,m+1◦∇PmΩFm◦(λ̂m◦σm,1m ∨ δm)◦νm,1m

= ∇Pm+1ΩFm
◦(ιΩFm

m,m+1◦λ̂m◦σm,1m ∨ ∗)◦νm,1m = ιΩFm
m,m+1◦λ̂m◦σm,1m .

Finally, we construct a map λ̂ : F̂m+1 → Pm+1ΩFm. By Proposition 2.4

(1) for f=1m, we have σm◦iFm−1,m = iΩFm
m−1,m◦Pm−1ΩiFm−1,m◦σm−1, and hence

(σm×σ′)◦ιm,1m = (σm×σ′)◦(1Fm × ∗ ∪ iFm−1,m× 1F ′1)

= ι̂m◦(σm× ∗ ∪ σm−1×σ′) = ι̂m◦σm,1m .

Also by Proposition 2.4 (1) for f=λ, we obtain λ̂m+1◦ι̂m = ιΩFm
m,m+1◦λ̂m and

λ̂m+1◦(σm×σ′)◦ιm,1m = λ̂m+1◦ι̂m◦σm,1m = ιΩFm
m,m+1◦λ̂m◦σm,1m ,
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and hence, by (4.4), we obtain

(ιm,1m )∗(λ̂m+1◦(σm×σ′)) = ιΩFm
m,m+1◦σm◦µm,1m = (ιm,1m )∗(ιΩFm

m,m+1◦σm◦µm,1).

By a standard argument of homotopy theory on a cofibre sequence Km,1
m+1 →

Fm,1
m ↪→ Fm,1

m+1, we obtain a map δm+1 : ΣKm,1
m+1 → Pm+1ΩFm such that

(4.6) ιΩFm
m,m+1◦σm◦µm,1 = ∇Pm+1ΩFm

◦(λ̂m+1◦(σm×σ′) ∨ δm+1)◦νm,1m+1.

To proceed further, let us consider the dotted map ē : ΣÊm+1 → ΣKm+1
m ,

induced from the commutativity of the lower left square, in the diagram

Fm,1
m
� � ιm,1

m //

σm,1
m
��

Fm,1
m+1

qP //

σm×σ′
��

ΣKm,1
m

Σgm∗g′
��

F̂m
� � ι̂m //

êm
��

F̂m+1
q̄F //

eFm
m ×e′
��

ΣÊm+1

ē

��
Fm,1
m
� � ιm,1

m // Fm,1
m+1

qP // ΣKm,1
m ,

where the map êm : F̂m → Fm,1
m is eFm

m × ∗ ∪ eFm−1

m−1 ×e′. Since êm◦σm,1m and

(eFm
m ×e′)◦(σm×σ′) are homotopy equivalences, ē◦Σgm∗g1 is also a homotopy

equivalence (see [4, Lemma 16.24]). We denote by h : ΣKm+1
m → ΣKm+1

m

the homotopy inverse of ē◦Σgm∗g1. Then, by (4.6), we obtain

ιΩFm
m,m+1◦σm◦µm,1 = ∇Pm+1ΩFm

◦(λ̂m+1◦(σm×σ′) ∨ δm+1)◦νm,1m+1

= ∇Pm+1ΩFm
◦(λ̂m+1◦(σm×σ′) ∨ δm+1◦h◦ē◦Σgm∗g′)◦νm,1m+1

= ∇Pm+1ΩFm
◦(λ̂m+1 ∨ δm+1◦h◦ē)◦((σm×σ′) ∨ Σgm∗g′)◦νm,1m+1,

and hence, by Lemma 3.3, we proceed further as

= ∇Pm+1ΩFm
◦(λ̂m+1 ∨ δm+1◦h◦ē)◦ν̂m+1◦(σm×σ′).

This suggest us to define λ̂ by ∇Pm+1ΩFm
◦(λ̂m+1∨δm+1◦h◦ē)◦ν̂m+1 to obtain

ιΩFm
m,m+1◦σm◦µm,1 = λ̂◦(σm×σ′) : Fm×F ′1 → Pm+1ΩFm,

which gives the commutativity of the upper right square in Lemma 4.4. So

we are left to show the commutativity of the lower right square in Lemma

4.4: by Proposition 2.4 (1) for f=λ, we have

eFm
m+1◦λ̂m+1◦(σm×σ′) = µm,1◦{eFm

m ×e′}◦(σm×σ′) = µm,1,

and hence, by equations eFm
m+1◦ιΩFm

m,m+1◦σm = 1Fm and (4.6), we obtain

µm,1 = eFm
m+1◦∇Pm+1ΩFm

◦(λ̂m+1◦(σm×σ′) ∨ δm+1)◦νm,1m+1

= ∇Fm◦(µm,1 ∨ eFm
m+1◦δm+1)◦νm,1m+1.
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Thus we obtain eFm
m+1◦δm+1 = ∗. Therefore, we obtain

eFm
m+1◦λ̂ = eFm

m+1◦∇Pm+1ΩFm
◦(λ̂m+1 ∨ δm+1◦h◦ē)◦ν̂m+1

= ∇Fm◦(eFm
m+1◦λ̂m+1 ∨ ∗)◦ν̂m+1 = eFm

m+1◦λ̂m+1,

and hence, by Proposition 2.4 (1) for f=λ, we proceed finally as

eFm
m+1◦λ̂ = µm,1◦{eFm

m ×e′} : F̂m+1 → Fm.

It completes the proof of the lemma. �

Now we are ready to define a cone-decomposition {Ê ′k
ŵ′k−→ F̂ ′k−1 ↪

î′k−1−−→
F̂ ′k | 1≤ k ≤m+1} of Pm

m×ΣΩA of length m+1 by replacing F ′1 with A in

the cone-decomposition of Pm
m×ΣΩF ′1. The series of cofibre sequences

{EkΩFm
pΩFm
k−1−−−→ P k−1ΩFm ↪

ιΩFm
k−1−−−→ P kΩFm | 1≤k≤m+1}

gives a cone-decomposition of Pm+1ΩFm of length m + 1. Let D be the

homotopy pushout of φ = ιΩFm
m,m+1◦pr1 and λ̂◦χ = λ̂◦(1Pm

m
×ΣΩα):

Pm
m×ΣΩA

φ
��

λ̂◦χ // Pm+1ΩFm

��
Pm+1ΩFm // D.

We give a cone-decomposition of D as follows. λ̂◦ι̂m = ∇Pm+1ΩFm
◦(λ̂m+1 ∨

δm+1◦h◦ē)◦ν̂m+1◦ι̂m = λ̂m+1◦ι̂m, we may identify the restriction of λ̂ on F̂k

with λ̂k and hence λ̂◦χ is a filtered map up to homotopy, i.e., (λ̂◦χ)|F̂ ′k =

λ̂k◦χ|F̂ ′k for 1≤k≤m. Since χ|F̂ ′k−1
= χ|F̂ ′k ◦̂i

′
k−1 and î′k−1◦ŵ′k = ∗, we have

eFm
k−1◦((λ̂◦χ)|F̂ ′k−1

◦ŵ′k) = eFm
k ◦λ̂k◦χ|F̂ ′k ◦̂i

′
k−1◦ŵ′k = eFm

k ◦λ̂k◦χ|F̂ ′k◦∗ = ∗.

By a standard argument of homotopy theory on a fibre sequence EkΩFm →
P k−1ΩFm → Fm, we have a lift κk : Ê ′k → EkΩFm which fits in with the

following commutative diagrams:

Ê ′k
ŵ′k //

κk

��

F̂ ′k−1
� �

î′k−1 //

λ̂k−1◦χ|F̂ ′
k−1

��

F̂ ′k
λ̂k◦χ|F̂ ′

k
��

EkΩFm
pΩFm
k−1 // P k−1ΩFm

� �
ιΩFm
k−1,k // P kΩFm

(1≤k≤m),(4.7)

Ê ′m+1

ŵ′m+1 //

κm+1

��

F̂ ′m
� � î′m //

λ̂m◦χ|F̂ ′m
��

F̂ ′m+1

λ̂◦χ
��

Em+1ΩFm
pΩFm
m // PmΩFm

� �
ιΩFm
m,m+1 // Pm+1ΩFm

(k=m+1).(4.8)
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By definition of φ, it is clear that there exists a map ψk : Ê ′k → EkΩFm

which fits in with the following commutative diagram:

(4.9) Ê ′k
ŵ′k //

ψk

��

F̂ ′k−1
� �

î′k−1 //

φ|F̂ ′
k−1

��

F̂ ′k

φ|F̂ ′
k

��
EkΩFm

pΩFm
k−1 // P k−1ΩFm

� �
ιΩFm
k−1,k // P kΩFm.

Let ED
k be a homotopy pushout of κk and ψk, and FD

k be a homotopy

pushout of (λ̂◦χ)|F̂ ′k and φ|F̂ ′k , then using diagrams (4.7), (4.8) and (4.9)

and using the universal property of the homotopy pushouts, we obtain the

following commutative diagram such that the front column ED
k → FD

k−1 →
FD
k is a cofibre sequence:

Ê ′kψk

vv
ŵ′k
��

κk

**
EkΩFm

pΩFm
k−1

��
**

F̂ ′k−1
φ|F̂ ′

k−1

vv

� _

î′k−1

��

(λ̂◦χ)|F̂ ′
k−1

**

EkΩFm

vv

pΩFm
k−1

��
P k−1ΩFm� _

ιΩFm
k−1,k
��

**

F̂ ′kφ|F̂ ′
k

vv

(λ̂◦χ)|F̂ ′
k

**

ED
k

��

P k−1ΩFm

vv

� _

ιΩFm
k−1,k
��

P kΩFm

**

FD
k−1� _

��

P kΩFm

vv
FD
k

Thus we obtain a cone-decomposition {ED
k → FD

k−1 ↪→ FD
k | 1≤ k≤m+1}

of D of length m+1, which immediately implies the following inequalities.

cat(D) ≤ Cat(D) ≤ m+1.

The homotopy pushout of top and bottom rows in (4.4) are G∪ψG×CA.

Also, since dimensions of Fm, F1 and A are less than or equal to `, all

composition of columns in (4.4) are homotopy equivalences. Thus, we obtain

a composite map D → G ∪ψ G×CA ' E → D as a homotopy equivalence

(see [4, Lemma 16.24], for example). Thus D dominates E and we obtain

cat(E) ≤ cat(D) ≤ Cat(D) ≤ m+1.

5. L-S Category of SO(10)

In this section, we determine cat(SO(10)) and prove Theorem 5.1.



24 N. IWASE, K. KIKUCHI, AND T. MIYAUCHI

To give a lower bound of cat(SO(10)), let us recall the algebra structure

of the well-known cohomology algebra H∗(SO(10);F2) as described below:

H∗(SO(10);F2) ∼= F2[x1, x3, x5, x7, x9]/(x16
1 , x

4
3, x

2
5, x

2
7, x

2
9),

where xk is a generator in dimension k. Then by Theorem 1.1, we obtain

(5.1) 21 = cup(SO(10);F2) ≤ cat(SO(10)).

On the other hand, to give the upper bound using Theorem 1.2, firstly

we recall the cone-decomposition of Spin(7) in [10] as follows:

∗ ⊂ F ′1 = ΣCP3 ⊂ F ′2 ⊂ F ′3 ⊂ F ′4 ⊂ F ′5 ' Spin(7).

In [11], the cone-decomposition of SO(9) is given by using the above filtra-

tion F ′i of Spin(7) together with the principal bundle Spin(7) ↪→ SO(9)→
RP15: let ek be a k-cell in SO(9) corresponding to the k-cell in RP15. The

cone-decomposition {Fi} of SO(9) introduced in [11] is as follows.

F0 = {∗}
...

. . .

Fj = F ′j ∪ (e1×F ′j−1) ∪ · · · ∪ (ej−1×F ′1) ∪ ej
...

. . .

F5 = F ′5 ∪ (e1×F ′4) ∪ (e2×F ′3) ∪ (e3×F ′2) ∪ (e4×F ′1) ∪ e5

...
. . .

Fi+5 = F ′5 ∪ (e1×F ′5) ∪ · · · ∪ (ei×F ′5) ∪ (ei+1×F ′4) ∪ · · · ∪ (ei+4×F ′1) ∪ ei+5

...
...

F15 = F ′5 ∪ (e1×F ′5) ∪ · · · ∪ (e10×F ′5) ∪ (e11×F ′4) ∪ · · · ∪ (e14×F ′1) ∪ e15

...
...

F15+j = F ′5 ∪ (e1×F ′5) ∪ · · · ∪ (e10+j×F ′5) ∪ (e11+j×F ′4) ∪ · · · ∪ (e15×F ′5−j)
...

...

F20 = F ′5 ∪ (e1×F ′5) ∪ · · · ∪ (e15×F ′5) ' SO(9)

where 0 ≤ i ≤ 10 and 0 ≤ j ≤ 5, which is given with a series of cofibre

sequences {Ki → Fi−1 → Fi | 1≤ i≤20}.
Secondly, a cofibre sequence S20 → F ′4 ↪→ F ′4 ∪ e21 (= F ′5 ' Spin(9)) in

[10] induces a cofibre sequence K20 = S14 ∗ S20 = S35 → F19 ↪→ F20.

Thirdly, since µ′|F ′i×F ′1 is compressible into F ′i+1 for 1 ≤ i < 5 by the

proof of [11, Theorem 2.9], µ|Fi×F ′1 is compressible into Fi+1 for 1 ≤ i < 20,

where µ and µ′ are multiplications of SO(9) and Spin(7), respectively.
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Fourthly, let us consider two principal bundles p : SO(10) → S9 and

p′ : SU(5)→ S9, together with the following commutative diagram:

ΣCP3 � � // SU(4) �
� //

� _

��

SO(9)
� _

��
SU(5) �

� //

p′

%%

SO(10)

p
��

S8 � � //

α

BB

α′

AA

Σγ3

SS

S9.

The map α : S8 → SO(9) in the above diagram is a characteristic map

of p : SO(10) → S9. By Steenrod [16], α is homotopic in SO(9) to a map

α′ : S8 → SU(4) the characteristic map of p′ : SU(5) → S9. Further by

Yokota [18], the suspension Σγ3 : S8 → ΣCP3 of the canonical projection

γ3 : S7 → CP3 is the attaching map of the top cell of ΣCP4 ⊂ SU(5), which

is homotopic to α′. Therefore, the characteristic map α is compressible into

ΣCP3 ⊂ F1. Since α is homotopic to a suspension map to ΣCP3 in SO(9),

and hence we have H1(α) = 0 ∈ π8(ΩΣCP3∗ΩΣCP3) when α is regarded to

be a map to ΣCP3.

Thus, finally by Theorem 1.2 with F ′1 = ΣCP3, we obtain

(5.2) cat(SO(10)) ≤ 20+1 = 21.

Combining (5.2) with (5.1), we obtain our desired result.

Theorem 5.1. cat(SO(10)) = 21 = cup(SO(10);F2).
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