ON LUSTERNIK-SCHNIRELMANN CATEGORY OF SO(10)
NORIO IWASE, KAI KIKUCHI, AND TOSHIYUKI MIYAUCHI

ABSTRACT. Let G be a compact connected Lie group and p : £ —
YA be a principal G-bundle with a characteristic map o : A — G,
where A = X Ag for some Agy. Let {K;—F,_1—=F;|1 <4i < m} with
Fy={x}, F1=XK; and F,;,~G be a cone-decomposition of G of length
m and F] = XK{ C Fy with K| C K; which satisfy F;F] C F;11 up to
homotopy for all . Then we have cat(E) < m+1, under some suitable
conditions, which is used to determine cat(SO(10)). A similar result is
obtained by Kono and the first author [9] to determine cat(Spin(9)),
while the result in [9] can not assert cat(E) < m+1.

1. INTRODUCTION

Throughout the paper, we work in the homotopy category of based CW -
complexes, and often identify a map with its homotopy class.

The Lusternik-Schnirelmann category of a connected space X, denoted
by cat(X), is the least integer n such that there is an open covering {U; | 0 <
i <n} of X with each U; contractible in X. If no such integer exists, we
write cat(X) = oo. Let R be a commutative ring with unit. The cup-length
of X w.r.t. R, denoted by cup(X; R), is the supremum of all non-negative
integers k such that there is a non-zero k-fold cup product in the ordinary
reduced cohomology H*(X; R).

In 1967, Ganea introduced in [3] a strong category Cat(X) by modifying
Fox’s strong category (see Fox [2]), which is characterized as follows: for a
connected space X, Cat(X) is 0 if X is contractible and, otherwise, is equal
to the smallest integer n such that there is a series of cofibre sequences
{K; = F;_1 — F; | 1 <i<m} with Fj = {«#} and F,, ~ X (a cone-
decomposition of length m). Cat(X) is often called the cone-length of X.

The following theorem is well-known.
Theorem 1.1 (Ganea [3]). cup(X; R) < cat(X) < Cat(X).

In 1968, Berstein and Hilton [1] gave a criterion for cat(Cy) = 2 in terms
of their Hopf invariant H(f) € [EX, QXY *QXY] for amap f: XX — XY,
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where AxB denotes the join of spaces A and B. In addition, its higher
version H,, is used to disprove the Ganea conjecture (see Iwase [6, 8]).

We summarize here known L-S categories of special orthogonal groups:

since SO(2) = S*, SO(3) = RP? and SO(4) = RP*x 53, we know
cat(SO(2)) =1, cat(SO(3)) =3 and cat(SO(4)) = 4.
In 1999, James and Singhof [12] gave the first non-trivial result.
cat(SO(5)) = 8.
In 2005, Mimura, Nishimoto and the first author [11] gave an alternative
proof of cat(SO(5)) = 8 and determine cat(SO(n)) up to n=9 as follows.
cat(SO(6)) =9, cat(SO(7)) = 11, cat(SO(8)) = 12 and cat(SO(9)) = 20.

Let G — E — YA be a principal bundle with a characteristic map
a: A — G, where A is a suspension space and G is a connected compact
Lie group with a cone-decomposition of length m, i.e., there is a series of
cofibre sequences {K; — F;_1 — F; |1 <i<m} with Fy = {x}, F} ~ XK,
and F,, ~ G. Then the multiplication of G is, up to homotopy, a map pu :
F,,xF,, — F,,, since G ~ F,,. The main result of this paper is as follows.

Theorem 1.2. Let F| = XK, where K} is a connected subspace of K; so
that Fy is simply-connected, and let ji|p,xpy @ Fy X F] — Fy, be compressible
into Fip1 C Fyy, as g 0 Fy x F{ = Fipq, 1<i<m, such that p;,

Y
F‘Z‘,1><F1

pi—11 i Fipq. Then the following three conditions imply cat(E) < m+1.

(1) « is compressible into F},
(2) Hi(a) =0 in [A, QF[xQF]],
(3) K,, = S with m>3 and £>3.

Remark. Under the conditions in Theorem 1.2, [9, Theorem 0.8] does not
imply cat(E) < m+1, but only does cat(E) < m+2, since its key lemma [9,

Lemma 1.1] can not properly manage the case when ima C Fj.

Theorem 1.2 yields the following result on L-S category of SO(10).
Theorem 5.1. cat(SO(10)) = cup(SO(10); Fs) = 21.

All these results on cat(SO(n)) with n <10 support the “folk conjecture”.
Conjecture 1. cat(SO(n)) = cup(SO(n); Fs).

Let us explain the method we employ in this paper. To study L-S cate-
gory, we must understand Ganea’s criterion of L-S category as a basic idea,

given in terms of a fibre-cofibre construction in [3]: let X be a connected
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space. Then there is a fibre sequence F,, X — G,X — X, natural with
respect to X, such that cat(X) <n if and only if the fibration G, X — X
has a cross-section.

However, four years before [3], a more understandable description of the
fibre sequence F,,(X) — G,(X) — X was already published by Stasheff
[15]: following [6, 7, 8], we may replace the inclusion F,, X — G, X with the
fibration pX : E"*10X — P"QX associated with the A, structure of QX
the based loop space of X in the sense of Stasheff, where E""1QX has the
homotopy type of (2X)*™*+1 the n-+1-fold join of QX and P"QX satisfies
PYQX = x, P'QX = 30X and P®QX ~ X. Let i}% : P"QX — P"QX
be the canonical inclusion, for m<n, and eX : P®QX ~ X be the natural
equivalence. Then the fibration G, X — X may be replaced with the map
en = eXous  P"QX — X, where ef : XQX — X equals the evaluation.

Thus, we may restate Ganea’s criterion as below: let X be a connected
space. Then cat(X) <n if and only if e : P"QX — X has a right homotopy
inverse. It is the reason why we use A..-structures to determine L-S category.

In this paper, instead of using [9, Lemma 1.1], we show Proposition 2.4,
Lemma 3.3 and Lemma 4.4. It is a key process to obtain Theorem 1.2. In
Sections 2 and 3, we construct a structure map associated to a given cone-
decomposition. In Section 4, we introduce a map ) from Fm—i—l = P"xYXOF]
to P™TQOF,,, which is the main tool to construct a complex D of Cat(D) <
m+1 dominating F. Finally in Section 5, we prove Theorem 5.1.

2. STRUCTURE MAP ASSOCIATED WITH CONE-DECOMPOSITION

In this section, we generalize the following well-known fact to a proposi-

tion for filtered spaces and maps.

Fact 2.1. Let K % A — C(a), L % B C(b) be cofibre sequences with

canonical co-pairings v : C(a) — C(a) VEK and v : C(b) — C(b) vV L. If

there are maps f : A — B and f°: K — L such that foa = bof°, then they

induce a map f': C(a) — C(b) satisfying (f'V X f%)ov = Dof’.

Definition 2.2. A space X with a series of subspaces {X,;n >0},
{x}=XoC---CX,CXyy1 C---CX,

is called a space filtered by {X,;n >0} and denoted by (X, {X,}). We also
denote by szm : Xon — X, m<n the canonical inclusion.

Definition 2.3. Let X and Y be spaces filtered by {X,,} and {Y},}, respec-
tively. A map f: X — Y is a filtered map if f(X,) C Y, for all n.
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Proposition 2.4. Let X and Y be filtered by { X, } and {Y,}, respectively,
and f: X — Y be a filtered map. If {X,} is a cone- decomposztzon of X,

i.e, there is a series of cofibre sequences { K, LN Xno1 ;) X, |n>1} with
Xo = *, then there exist families of maps {fn : X, — P"QY, |n >0} and
{ﬁ? : K, — E™QY, |n>0} such that they satisfy two conditions as follows.

(1) The following diagram is commutative.

ha in_1n
Kn anl(—l) Xn
"
o P1QY, NG

P 1an 1,

n

E"QY, T>P" 1y, —— P"QY, —>Y

Pn_t L 1

(2) We denote by fi = (P"1QiY_| of,_1)UC(f2): X, — P"QY,, the
induced map from the commutativity of the left square in (1). Then
the middle square in (1) with fn replaced with fl is commutative.
The difference of fn and f is given by a map &) : LK, — P"71QY,
composed with the inclusion S P"1QY, < P"QY,, n>1.

n—1mn

Proof. First of all, we put fo = % the trivial map.

Next, we show the proposition by induction on n > 1. When n = 1,
we put f0 = ad(fly,) and fi = Sad(f|x,) = f{ to obtain the following
commutative diagram:

K1—>*—>ZK1

NG

QYy; * YO, € Y.

Y]
€1

Then (1) is clear and (2) is trivial in this case.

When n = k > 1, suppose we have already obtained {f;} and {f°} for
i < k, which satisfies the conditions (1) and (2).

Firstly, we define f,? : K, — E¥QY,, as follows: the homotopy class of a
map Pk_le'{_Lkofk,lohk - K, — P*1QY} can be described as

hieo(PP1Q0Y_ o fii) € [Ky, Vi) with PP1QiY oy € [Xj, Y

in the following ladder of exact sequences induced from a fibre sequence
EkQYk — Pkilﬁyk — Y
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pQYk Y},
Cr—1,
[Xi1, B*QY;] — (X1, POV [Xh1, Y]
h h h
Qyy, Y
(K, B*QY;] (K., PE1QY;) ——— K, Vi

Since We know that the naturality of e | at Z implies err 1oP"/’_lQi,CY Lk
=i 1koek 1, that the induction hypothesis implies ek 1 o fyq = = flx._,
and that the naturality of 47 , , at Z implies 4} ,0f |x,_, = flx, 0011
we obtain eky’c_l*(Pk_lﬂiz_Lkofk_l) = i{_Lker’“_*llofk_l = flx.0h_1x €
[X%_1, Yx]. On the other hand, since Ky — Xj;_1 — Xj is a cofibre se-

quence, we obtain
ext o, (hp (P o fi) = [fIx,06 1 0hi] = 0.

Thus we have ¢,* (PR kofk 1ohg) = 0 and there exists a map f? :
Ky — E*QYj, such that p% (f2) = P*'Qi}_, o fi_10hk, which implies
the commutativity of the left square in (1).

Secondly, let f] : Xj — P*QY} be the map induced from the commuta-
tivity of the left square in (1). By the induction hypothesis, we have

- X x (Y QY k— Y R
(Zkfl,k) (ekkoflg) [ Ofkozk 1 k] [ek Olp_ Ifkop 19%4 kofkfl]
. Vi .

= [Z:A,koekk—fofk—l] = [Zz;l,kof|Xk—1] = [f|XkoZAl§71,k] (Zk 1k) (flx)-
By a standard argument of homotopy theory on a cofibre sequence K, —
Xj_1 < X (see Hilton [5] or Oda [13]), there is a map 60 : ©K, — Y;
such that

flxe = Vpoleg o fi v 61%)ouy,
where Vy : Y VY — Y denotes the folding map for a space Y and vy :
X — X V XK}, denotes the canonical co-pairing.

Let 0] = (¥ 0% ad(d] 70) YKy, — EQYk P*1Q0Y,. Since e}t =
ezfiloLigil, we have 070 = el*oXad(6]%) = el* |od!. Hence, we obtain fj, =
Vpray,o(fi V i koéf)ovk satisfies the condition (2).

Thirdly, by using the above homotopy relations, we obtain the following.

f|Xk = va ( Ofk \% GYk o5f)oyk
= ekYkOkaQYko(fk Vv ng/likO(s]]:)OVk = eky’“ofk.
This implies the commutativity of the right triangle in (1).
Finally, since v is a co-pairing, we have

X X X X X
Priovkoty_yy, = lx, 05y p = Gy and proovpoiy = qoiy_y ;. = *,
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where pri - X VXK, — X, and pry 0 X VXK, — YK, are the first and
second projections, respectively. Then, we obtain the equation

D ¢ - / QY f - X
Jkotj_y k= kaQYko(fk Vg ko5 )OVkOZk—Lk

= fkolk 1Lk = Lgyﬁ &©° oP"” IQZ%:Lkofk—la
which implies the commutativity of the middle square in (1). This completes

the induction step for n = k, and we obtain the proposition for all n. 0

Corollary 2.4.1. Let v, : P"QY, — P"QY,VXE"QY, be the canonical co-
pairing. If K, is a co-H-space, then the following diagram is commutative.

X, VYK,

fl lfnvzfﬂ

PrQY, —2 PrQY, v SEQY,.
Proof. Let P and E denotes P"(1Y,, and E"(1Y,, respectively. By Proposi-
tion 2.4 (2), the difference of f, and fl is given by 1Y o6/ and hence

n—1n-""n>
(fa VEfDov, = {(Veo(fi vV i 05))ov,) V £ f o,
= (Vp V 1gg)o(fi vV i% 06l vV S0 (v, V 15k, )ov,.

n—1n
Since K, is a co-H-space, we have the following homotopy relations.
v, = Tov, and (v, V lsg,)ov, = (1x, Vu,)ov,,
where v, : YK, — YK, V XK, is the co-multiplication and T : ¥ K,, V
YK, = YK,V XK, is a switching map. So we can proceed as follows:

(fu VEov, = (Vp Vigg)o(f. Vi o6l v Ef%0(1x, Vu,)ov,

( ) n—1,n

= (Vp V1sp)o(fy V (275,000 V S f9))o(1x, VTov,)ov,

= (Vp Vilgg)o{f,VTo (Efo v noéf)} o(v, V 1k, )ov,
= ( )o

Ve Visg)o(lp VI')o{(fi V Ef2)ov, v i n 081 Youy,

where 77 : ¥E'V P — PV YFE is a switching map. Then we can easily
see that (Vp V 1sg)o(1p VI') = Vpyspoingg, where, for any space Y, we
denote by ingg : Y — Y V X F the first inclusion. So we proceed as follows.

(fo VEfOou, = Vpyspoinggo{ (f. V Ef)ov, V i o6l ou,

n—1,n
= Vpvseo{(f V Efo)oyn Vi lngEOLn 100 5f}oyn

Here, since the co-pairing 7, is associated to the cofibre sequence P"~1QY,,

QYp
n—1,n

— P"QY, — EE”QYn, we have the following equation up to homotopy:
Dpoun = ingpoi™n o PPTIOY, «—— PQY,, — P"QY, V XE"QY,,

n—1ln —
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Then by Theorem 2.1, we proceed further as follows:

(fa V ano)o’/n = VPVEEO{(frlz \4 Efg)oyn \4 ﬁnoé}f’inodrfz}oyn
= Vpysgo(Dnof, V ﬁnobgﬁ,kO(Sg)o’/ﬂ

= ﬁnovPo(ﬂz \% L2X7117n05£)oyn = Up0 fo.

It completes the proof of the corollary. O

3. CONE-DECOMPOSITION ASSOCIATED WITH PROJECTIVE SPACES

Let G be a compact Lie group of dimension ¢ with a cone-decomposition
of length m, that is, there is a series of cofibre sequences
(3.1) (K, F oy F|1<i<m}
with Fy = {x} and F},, ~ G. We also denote by zfi“ : F;_1 — F; the canon-
ical inclusion and by ¢/ it Fi = Fi/Fiy = YK its successive quotient.
Lemma 3.1. If K,, = S“~! with m>3 and (>3, then we obtain

(1) (E™QF,,, E™QF,, 1) is an {-connected pair.
(2) There exists an (-connected map ¢g : P = P"QF,_, UCST! —
P™QF,, extending the inclusion P™QF,, 1 — P™QF,,.

Proof. Let qp : §g — E™QF,,_1, qp : §p — P™QF,,_; and qr : §r —

F,n—1 be homotopy fibres of inclusion maps E™Q4), ., P14, and
if;_l,m, respectively, which fit in with the following commutative diagram

of fibre sequences. Thus we obtain a fibre sequence §g — §p — Sr:

SE Sp SF

dE jQP qF
QFy 1 Fm—1

EmQF, L pmoiqp TL g

m(y; F m—10,;F F
E szfl,m yp Q7‘771,71,777‘ lmfl,m
p2Fm Fm

E™QF,, ——~ pnlQF, " -~ F,.

Firstly, since the pair (F,, F,—1) is ((—1)-connected, (2F,,, 2F,,_1) is
(¢—2)-connected and (E™QF,,, E"QF,,_1) is ({+m—3)-connected. There-
fore, §r is ((—2)-connected and Fg is ({+m—4)-connected. We remark that
Sk is at least (£—1)-connected, since m > 3, Then, by using the homotopy

exact sequence for the fibre sequence §g — §p — §r, we obtain

T(§p) = mp(Sr), k < 0-1,

and hence §p is ((—2)-connected. Thus Fp is 1-connected, since ¢ > 3. By

a general version of Blakers-Massey Theorem (see [4, Corollary 16.27], for
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example) and the hypothesis that K, = S*7!, it follows that
T-1(8p) = w1 (§F) =2 mo(Foy Frn1) 2 m(SK,) & m(SY) 2 Z,
Thus, §p has the following homology decomposition, up to homotopy.
Fp=(S"tvS'Vv..-v S U (cells in dimension > ¢+1).

Secondly, P 'QF,,_1U,, CFp is described as the homotopy pushout of
qp : §p — P™'QF,,_; and the trivial map * : §p — {*}. Then we obtain

P IQOF,  x P"IOF,
UP™ 1QOF,, x{x}

(3.2) op HPB {

Pm_IQFm_l UQP Csp -

P IOF, < P OF, x P IOF,

(see [6, Lemma 2.1], for example, with (X, A) = (P™1QF,,, P"1QF,, ),
(Y, B) = (P™"'QF,,,{*}) and Z = P""'QF,,), where we denote by A the
diagonal map. Thus there is a map ¢p : P 'QF,, 1U,, C(F) = P"'QF,
as the left down arrow in the diagram (3.2). On the other hand, by the proof
of [6, Lemma 2.1], the subspace P™" 'QF,, ; C P"'QF,, 1 U,, CFp can
be described as the pull-back of A above and the inclusion map

Pt x1: P"IQOF,, 1 xP" 1QF,, — P" 'QF,,_xP" QF,,,

m—1,m
and hence we obtain
oplpm-iqr, . = Pl 0 PTTIQOF, o < PTTIQF,.
Thirdly, the homotopy fibre §% of ¢p is the homotopy pullback of the in-
clusion P 1QF,, | x P 1QF, UP™ 1QF,, x{x} — P"'QF, x P"'QF,,
and the trivial map {*} — P™ 1QF,,x P"'QF,,. Then we obtain

projg

FpxQP™OF, —= P™IOF,,

proj; HPO

3r r
(see [6, Lemma 2.1], for example, with (X, A) = (P™'QF,,, P"1QF,, 1),
(Y,B) = (P™'QF,,,{*}) and Z = {x}). Hence §% has the homotopy
type of the join Fp*xQP™ 1QF,, which is ({—1)-connected. Thus ¢p is /-
connected.
Finally, let g5 = qp|ge-1 : S*1 — P™'QF,,_;. Then the inclusion
j: P"IQF, Uy CST1— PPIOF,, 1 U, CFp is (-connected, since

P™IQF,. Uy C8p = Pm—lﬂFm_luqS C’Se_lu(cells in dimension > (+1).
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Then the composition ¢g = ¢poj : (P™1QF,, 1 U,, CSL P 1QF,, )
— (P™1QF,,, P""'QF,, 1) of {-connected maps is again ¢-connected.
Since m > 3, the pair (E™QF,,, E™QF,,_1) is {-connected, which im-
plies (1). Thus, the inclusion P"'QF,, U C(E™QF,, 1) — P™ 'QF,, U
C(E™QF,,) is f-connected, and we obtain an ¢-connected map

b5 1 P"QOF,,_,UCS" = P QF, U, CS™tU o1 C(E™QF, 1)

Pm—1

— P"QOF, UC(E™QFE,, 1) — P 'QF,, UC(E™QF,,) = P"QF,,
which implies (2). It completes the proof of Lemma 3.1. O
From now on, we assume K,, = S with m >3 and ¢ > 3. Thus, by
Lemma 3.1, we may assume that P = P"QF,,_; U CS~1 ¢ P™QOF,,
such that (P™QF,,, P™) is ¢-connected. In this section, we define cone-
decompositions of F,, x F], P and P'xYXQF].

Firstly, we give a cone-decomposition of F},, x F| of length m-+1 as follows.
(3.3) {K™ = —>F e EM1<i<m41}  with EISL = FxF,
where K™', F™! and w;"’l (1<i<m+1) are defined by

K™ =K/ VK],  EM={}, o =x: K" = F"",
K™ = K; v (Ki_1xK}),  F™ = F_1x{x}UF,_yxFl,
W™, = inclo(hyxx) : K; — Fi_y = Fy_yx{x} c F™!,

(2
m,1

w;

Kiaek] = [Xio1, 2 1gr]”

K+ K| = Fi_yx{x} U F,_yxSK, = F™,
in which K,,;1 = {*}, incl is the canonical inclusion and [y;, ¥ 1x:]" is
the relative Whitehead product of the characteristic map y; : (CK;, K;) —
(Fi, Fi—1) and the suspension of the identity map ¥ 1y : XK} — Y K.

Secondly, a cone-decomposition of P of length m is given as follows.
(( QF, 1 — {x} — XQF,, 1,

EiQFm_l — Pl;lQFm_l — PiQFm_l, 1<i<m,

L EmQFm_l V Km — Pm—lQFm_l — Px
Finally, a cone-decomposition of P"xY¥QF] of length m~+1 is given as
follows.

(3.4) (B, 2% Fiy s By |1<i<m+1} with F,,, = P"xSQF),
where Ei+1, FZ and w;;1, 0<7<m are defined by
El = QFm_l V QFI/, Fg = {*}, Wy = % : El — Fo,
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Eiyy = EQF,, Vv {EQF, _*QF/},
F; = PIQF,_1x{x} UP" ' QF, _xXQF],

QF,,_1 . 1<i<m—1,
UAJZ'_H EiH1QF, 1 - Ei+1QFm_1 L> PiQFm_1X{*} C .Fi,
| i1l piar,_ar = X} Isar]” : E'QF, _1#QF] — F,
(B, = {E™QOF, _VK,}V{E"'QF,, _+QF/},
Epy = P IQF,  x{x} UP"2QF, | xSQF!,
and

. P _ -
wm|EmQmevim . EmQFm_l V Km —S> pm 1QFm_1><{*} C Fm—la
A . -1 #

Wil gm—10F,,_sar, = [Xno1; Lear]" 1 EMTIQF, 1xQF] — Foy,

r -

Em+1 = {EmQFm_l\/Km}*QF{,
E, = P"x{x} U P"QF, 1 xSQOF],

L wm—i—l - [X;na 1EQF1’]T : Em+1 — Fmv
in which ply : E™QF,, VK,, — P™ 'QF,,  is given by pg|gmor, , =

pgfi”{’l and ps|k,, = gs, and x; is a relative homeomorphism given by

X; . (OEiQFm_l, ElQFm_l) — (PiQFm_l, Pi_lﬁFm_l), 1§i<m,
X, : (CEE') = (P™ P"'QF,,_), E' = E"QF,,_1V K.

1 1 1 .7 -
From now on, we denote by ¢/ : F;™" — F/' and i; : F; — F;;, the

canonical inclusions. Let us denote 1,, = 15, : F,, = F,.

Definition 3.2. The identity 1,, is filtered w.r.t. the filtration x = Fy C
Fy C --- C F,,. Then by Proposition 2.4 for f=1,,, we obtain ¢; = (1,,), :

. —0 .
F;, — PQF; for 1 <¢<m and (1m)j : K; — E'QF; for 1 <j <m. Let
— 0 A

9; = (In); + Kj — EIQF] for 1 < j <m. We also obtain ¢’ = ad(1s;) :
K] — QX K] =QF] and ¢/ = X¢' : F] — LQF].

Since K,, and F,, are of dimension ¢—1 and /¢, respectively, we may
assume that the images of g,,, and o, are in E™QF,,_; and P, respectively.

Lemma 3.3. Let v} : F/"' — F™' Vv SK™M and oy, : Fy, — F, vV XK}, be
the canonical co-pairings for 1 <k<m+1, and o™ = g, x{x} Uo,,_1x0":
Fml — E,.. Then the following diagram is commutative.

m,1 m,1
V’m+1

1
F:m,l W41 m,1 Dl m,1 m,1 Ffm’l
m—+1 Fm Fm+1 Fm+1 VY m—+1

lgm*g' la,ﬂrf’l lamxa’ lamxa’vzgm*g’

~ 'UA)'mel ﬁm«‘fl

o im o~ o ~
Em+1 Fm Ferl Fm+1 \ ZEerl-
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As a preparation for showing Lemma 3.3, let us recall the definition of
mapping cone C'(h) of a given map h : X — Z and its related spaces.
[0, 1]x X

CaX = {the e CX |t < %} ~ CX (natural homeo),
Cor ) = fine e eyt > 5. 2 ciny matural homeo)
1 (h) = {tAx -}, = = natural homeo
23 — 27 {3IxX ’

where tAz denotes the element in CX or C'(h), whose representative in
[0,1]x X is (t,x). Then we obtain the following propositions.

Proposition 3.4. Let K % A < C(a) and L > B < C(b) be cofibre
sequences and let v, : C(a) — C(a)V XK, v, : C(b) — C(b) VXL and
v=uv(a,b): C(a)xC(b) — C(a)xC(b)VEK*L be the canonical co-pairings.
(1) v is given by the following composition, natural w.r.t. a and b.
C(a)xC(b)
L Ola)xC(b) U Cla)xXL U SKxC(b) U BKxYL
Cla) C(b) L

YKV

2y Cla)xC(b) VSKXSL/(SK V EL) S Ca)xC(b) v S(K L),

where ® is given by Plowyxxr = Proj;, Plsixcew) = Proj, and
Olsxnr = (callpsing) : SK x L — SKxSL/(SKVEL).

(2) Let K' G A< C(d) and L’ 5B C(V') be cofibre sequences and
v=v(d,b):Cd)xCl)— Cd)xCW)VvI(K'«sL). If f*: K —
K,f:A—= A ¢ :L—L and g: B — B satisfy foa = a’of°
and gob = V'og®, then (f, f°) and (g,4°) induce f' : C(a) — C(d’)
and g’ : C(b) — C(V') as in Theorem 2.1, which satisfy vo(f'xg’) =
(f'xg" vV E(f%g°))ov : C(a)xC(b) = C(a')xC(V) Vv X(K'«L).

SEXC(b)|Cla)xC(b) Ha)xAb)

Vg XUy P

C(a)xC(b)

N(K+L)

Wi

LExSL | C(a)xSL

e

FIGURE 1

Proof. Firstly, we define a homeomorphism
&: (C(K«L), KxL) ~ (CKxCL,CKxLUKxCL)

by a(tA(sAz,y)) = ((ts)Ax,tAy) and &(tA(x,sAy)) = (tAx, (ts)Ay) for
(z,y) € KxL and s,t € [0,1] (see Figure 2).
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C(K+L) Cioxp, . CEXCL

CKxL \
/ 4, KxCL
/ KxCL j
j !

LA(K L) a(AA(K+L))

FIGURE 2

Since C([Xa, xp]) = C(a) x BUAXC(b)Upy, ,) C(K*L) and C(a)xC(b) =
(Cla)xB U AxC(D)) Upya,xy) CKXCL, ¢ induces a homeomorphism « :
C'([Xa, X)) = C(a)xC(b). Thus the canonical co-pairing v is given by

. Cla)xC(b) a(Cey (KxL))
v OO = e, e Y el < (KoL)
Since we can easily see that a(C_1(K*L))/a({3}x(K*L)) ~ X(K*L) and

Cl@)xC(0)/a({Coy(K+L)}) = Cla)xC)/Cey KxCuy L, v s given as

v:Cla)xC(b) — % Y (K«L).

Since C1 X is contractible, the inclusion (C(a), {*x})x(C(b),{*}) —
(C(a), Cc1 K)x(C(b), C<1L) is homotopy equivalence, and so is the inclu-
sion C'(a)x{x} U{x}xC(b) = C(a)xCci LU Coi KxC(b).

Hence, the following collapsing map is a homotopy equivalence.

C(a)XCS%LUCS%KXC(b) C>;(a) C>;(b)
Co KxCoiL T <K {IIxL

Finally, since C.1 KxCoiL = a({CS%(K*L)}), by taking push-out of
this collapsing with the inclusion
Co1KxC(b) C(a)xC(b)

C<1KXC %L a({CS%(K*L)})’
we obtain a homotopy equivalence:
C(a)xC(b) Cs1(a) y Cs1(b)
a({Cau(KxL)})  {3}xK ~ {3}xL
Therefore, v is homotopic to the map © which is given by

( CZ%(G) 02%(’3)

~ C(a) Vv C(b).

C( )XC<1LU

~ C(a)xC(b)

(s/\x,t/\y) S {1} K X {l}xL’ S,t > %7
10 1 1
. (* t/\y)E{*}X{}XL, S§§,t2§,
v(sAz, tAy) = Cora)
(sAz, %) € {>}K><{} s>1t< 4,
C K Oyl .
\((5/\33) (tAy)) € <K A i<’ st < 3,



L-S CATEGORY OF SO(10) 13

which coincides with ®o(v, x13,) which implies (1). (2) is clear by concrete

definitions of these maps, and we obtain the proposition. 0J

Proposition 3.5. Let v, : F,, — F,, V XK, be the canonical co-pairing
and Ty : Fjly Upy (SKnx F) vV SKL — (Fpsl vV EKL) Upy (SK < FY)
be an appropriate homeomorphism. Then the following equation holds.

m,1

Tvo((Vmx 1) V Lygema Jovpity = (Vs U Lsi, xry)o (VX 1)

Proof. First, Proposition 3.4 implies the following commutative diagram.

m,1
Vm+1

FmXFll FmXFl\/E(Km*Ki)

I/m><1F/ P
1

, ) xn FpyxF U SKpx Fl Up, FpxSK!
Fonx By Upy 2Bon x By —— USK, xSK].

Since ® goes through (F},, x F] Upy XK, x F) U XK, xS K| /{*}xXK] as
® : (Fpx F| Ups SKp X F| Up, FuxSK]) USK,, xSK]

o/ YK xXK]
— (F,xF U XK, xFYu —"""—"~2
(FnxFy Upy 2R F) {+}x2K]
P Fux FLV S(K*K)),
YK XF|| FnxF| o FrxFj
YK, xEK!| Fru x K M E(Km*K7)

\\{’; SKmxF|| FrxFl IV
HE
=

I W,

SKmxEK,/{+}xSK]

FIGURE 3

where ® and pr’ are given by the following.

/ / / .
P |meF1’ =lp,xr, @ |2Kme1/ = sk, xr, @ ’meEKg = Projy,
) YK, xXK]
|k, xzx; = (collapsing) : YK, x X K| — 1
{x}xXK]
/ / .
pr HmeF{ = lp,xm, Dpr \szxF{ = Projg;,

K, x 3K

P |s K, x5! /{x3xuk; = (collapsing) : o]
1

— S(KpxK}).
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Since there is a natural homotopy equivalence h : XK, x X K] /{*} XX K] ~
YK, V X(KynxK7) such that hlsk,, x{«} = lsk,,, pr’ can be decomposed as

/ / /
pr = pr;opry,
where prj, and pr} are given by the following formulae.
/ | _ 1 / | _ 1 / | _ h
PYo|FxF] = 1FxF]; PIo|SKnxF] = 1SKnxF;  PIo|SKnxSK|/{x}xZK] = I},

/ / : /
DUy | ) = L, xrys  DUi|sK,xF) = PI0ja,  PUi|s(k,«k)) = Is(Kmxk?)s

/

pr
YK xFl| FnxF! FonxFj

v
=
=
SKmxSK] /{x}x 2K}

/ /
w SKpxFl| FpxF| pr/(_>
—>
—
i ;—E(Km*K{)

FIGURE 4

Hence @ is decomposed as ® = pr'o®’ = prioprjo®’ and prjod’ is given by
prf)o‘bI’meF{ = 1p,xF pr60¢/|EKme{ = Ik, <,
PTBO‘I)/’meEKg = proj; and
proo®’|sk,, xux; = (retraction) : LK, x K] = LK, V X(KpxK7),
and hence pryo®’o(1,, x14) is given by
pryod’o(l,, XV1)| BBy = LExFys
proo®’o(1,, XU1) Sk Xl = V' YK, XF] = YK, xF V3(K,,xK/),

where 1/ is the canonical co-pairing. Thus we obtain a commutative diagram

VU X 1

(3.5) Em = F,xF > Fu X F| Upy (SK,, x FY)

1 /
Lun";;q llmeF{ Uv

FpXF{V SK % K <= F,x F{ Upy (SK,, xF{) V S K, x K.

Therefore we have
Tio((Vmx 1) V 12Km3:1)01/:”1i
= TlO((VmX 1F1/) vV 12K7rsil)oplo(1Frrrr;4—ll UV/)O(VmX 1F1/>
Let us denote by ps : ngl Up (BKpxFy) Upr (XK X F)) V SKL =
£l Upr (XK xFY) V YK, the map pinching the second LK, x F} to
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Fl, by ps : FM uF, (SKnxF)) V SKpl) U (SKyxF)) — (Fpi v
EKT,";;FII) Up BK,, 1 the map pinching the first ¥ K, x F] to one point, by
0 ¢ UK, - XK, V XK, the canonical co-multiplication and by Ty :
YK, VYK, — XK, VXK, the switching map. It is then easy to check

1
Tro((vmx Lpy) V dggema Jovy'y

= Tropao((Um X 1p) U lsk,, < V 12Km*K{)o(1F$jrll UV )o (VX 1p1)
= p30(1 .t UV Ulgg,, xF!)O (1F$,+11 U(Tox 1g7))
o((Vm X 1) U lsk,, xr)o(Vm X 15).
Using (1, Vig)ovy, = (Vm V 1sk,, )ovm and Toory = vy from the assump-
tion that K, is a co-H-space together with ngl = F,,x F|, we have

Tio((Vmx 1) V 12Km,1 )oymil

= pso(1, m UV Ulgg,, X F! )0 (1F:LL,+11 U(Tox 1g7))
(1F$331 U(rox 1pr))o(vmX 1g7)
= pgo(lFm,l UV U lsk,, «r)o((15, Vo)X 1pr))o(UmX 1)
= p3o(1, i U/ Ulgg,, «1)o((Um V 1sk,,) X 1pr)o(v X 1 ).
Using the diagram (3.5), we proceed further as follows:
Tro((Vm X 1F1’) v 12K$f1)0V$i1 = (stﬁrl1 U 12Kme{)o(Vm>< 1F1’)~
It completes the proof of Proposition 3.5. O

Proof of Lemma 3.3. The commutativity of the left square follows from [14,
Proposition 2.9] and the middle square is clearly commutative.

So we are left to show (0, X0 V Lgp*g Yo, = Dpy10(omxa’). Re-
call that o,, = 1,, which is given by Proposition 2.4 (1) for f=1,,. On
the other hand by Proposition 2.4 (2), we have o, = Vpmqr, o((1,),, V

m

SHm o 51m

L1 m©0p" )OV;,, and hence we obtain

(X0 V Egm*g )ouﬁjl

= {(Vemar,o((Ln), V (6027 1,005 ))ovm) X0 V Sgpxg' Fovii,
= (Vemar, X Isarm Vigg )

o{ (1) x0") U (43224, 00m) X 0') V Sgimxg'}

o((Vy % 1F{) Vv 12K$£1)oum+11
= (Vpmap, X Isor Vigg )

oToo{ (L), x0" V Bgm*g’ ) U (12 o6 ) xo') Yol

mlmm
1

O((me 1F{> \% 1EK$_’&1)OV:Z7+1’
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where T1 1 Finy Upy (S K x ) VEEK 0L — (Fni VEK ) Upy (S Ky < FY)
and T : (Fm+1 V EEmH) Usar Fm—i—l — (Fm+1 Usor Fm—i—l) V EEm+1 are
appropriate homeomorphisms. Then by Proposition 3.5, Proposition 3.4 (2)
and the definitions of (1,,)], and ¢’, we proceed as follows.

(Omxa' V Egm*g’)oufgfl

= (meQFm X 1EQF{ V 12E’m+1)
Tyo{ (L) X"V Sgmg') U (375 100, ) < 0')}
oV U sk )0 (Vi X 1)
= (vaQFm X ]-EQF{ V 12Em+1)OT2
o (L) x0" V gmrg Yovmin) U (675 10057 ) x0") YoV X Liy).
— (vaQFm X 1EQF{ V 12Em+1)OT2
A (Drm10((Ln)3 X)) U (tin 1 007" ) X 0") }o(V X 15y)
= (Vpmar, X Isar VVsp  )oT;

o Dr10((Lin )y x0") Urigo (g 06 ) X0 ) o (v X 1py).

Here 4 : ﬁmﬂ — FmH \Y, ZEmH is the first inclusion and T3 : (ﬁ’mﬂ \Y,
YEmy1) Usar (Fmi1 VEER 1) = (Fg Usory Frg) V EE 1 VX E, g s
the appropriate homeomorphism. Thus we proceed further as follows.

(omXxa'V ng*g')oyzil
= (Vpmar, X Isor VVyp | )oT5
(D1 U Dmy1)o{ (L), X0") U (107 1,00 ) X 0") Yo (v X 1)
= Um10{Vpmar, o((1n),, V (127 o6t ))ov,, x o'} = Dyro(alm xa’).

m m—1m~"Ym

It completes the proof of Lemma 3.3. O

4. PROOF OF THEOREM 1.2

In the fibre sequence G — F — YA, by the James-Whitehead decom-
position (see Whitehead [17, VII. Theorem (1.15)]), the total space E has
the homotopy type of the space G' Uy, GXCA. Here 7 is the following map.

b GxA XS axG 5 G

Since G ~ F,, and, by the condition (1) of Theorem 1.2, « is compressible
into F}. Hence we see that

b Gx A~ Fryx A LSS B Fl € FuxFy C FyxFp~ GxG % G~ F,
and E is the homotopy pushout of the following sequence.

1Fm X

pri Hm,1

F, F,xA FxF| F,.
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We construct spaces and maps such that the homotopy pushout of these
maps dominates E. Let ¢ = efl cQXF] — Fl and 04 = Yad(1ls) : A —
YQA, since A is a suspended space. By the condition (2) of Theorem 1.2,
we have Hq(a) = 0 in [A, QF{*QF]], which immediately implies

(4.1) o'oa =Y ad(a) = ooy : A — LQF].

By the condition (3) of Theorem 1.2, we have K,, = S*~! with m >3 and
¢>3, and so (P™QF,,, P") is ¢-connected by Lemma 3.1.

Proposition 4.1. The following diagram is commutative.

1 X m,
B~ FoxA-CFp xF - L F
P j l l j P
Lm7m+1oa7n Om X0 A Om XOT Lm7m+100'm
PrHORE, <2 prxnoA X B PR,
65?11\ efz'”xef‘t eﬂ’"Xe’l jeiﬁh
/
F,, o Fnx A s Fog X | — = F}p,
_ QF, _
where ¢ =, ». opry and x = 1pm X3 Qa.
Proof. The left upper square is clearly commutative. The equation efm =
eﬂ*ﬁrlobgﬁg 41 implies that the left lower square is commutative. The equation
aoe! = €o¥Qa implies the commutativity of the middle lower square.

The commutativity of the middle upper square is obtained by (4.1). By
Proposition 2.4 (2) for f = 1,, and the fact ¢'o0’ = 1p; imply that the right
rectangular is commutative. It completes the proof of the proposition. [

Definition 4.2. A\ = p,,, j0{efmxe'} : ﬁmH — Fp X F — F,.

Then X is a well-defined filtered map w.r.t. the filtration (3.4) of F,4
and the trivial filtration ((F,,); = F,, for all i) of F,,, where {efm xe'}(F},) =
{efmtxxUem? xe’}A(Fk) C Fo_y1xF| for 0<k<m, and {efrmxe/}V(F,,) =
{efrxsxUelm e’} (F,) C Fpx{*}U E,_1XF] for k=m.

m—

Definition 4.3. By Proposition 2.4 for f = A\, we obtain a series of maps
A 0 F — P*QE,,, 0<k<m+1.

By the hypothesis of Theorem 1.2, we have py1 : FpxF] — Fjyq for
k<m, and fiy,1 : FinxF] — F,,, both of which are restrictions of p.

Lemma 4.4. There is a map A Fmﬂ — P™HIQF, which fits in with the

following commutative diagram obtained by dividing the right square of the
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diagram in Proposition 4.1 by \ into upper and lower squares.

MHm,1

F,, F,xA F.xF| F,,
Pm+1QFm 2 prxyoA X f,, 2 Pm+1QFm
enm \ efm xedt L efm e l jeml
F,, F,xA Fo < F| ’ F,..
Proof. Let u?’l = 1p Upg—11 : F}"" = Fpx{x} U F_1xF| — F}, ak

opX* Uop_1xo' : F,::q%’ll — PkQFkx{*} U PP IQF, 1 xSQF] and j, =
PinkF,m—lx * Upk_lgif_ljm_lx 1ZQF1’; O§k<m

Firstly, we show the following equation by induction on k <m.
(4.2) Lgiﬁlopkﬁiimoakoug’ = L?iﬁlo;\kojkoag’l : F,;"’l — PMIQF, .

The case k = 0 is clear, since both maps are constant maps. Assume the
k-th of (4.2). By Proposition 2.4 (1) for f=1,,, the diagram

k k+1 k+1 m—1

£ PkQFk<—> Pk QFk+1<—> PFQE,

. QF QF,,_1
Uk k1 e k1 Ukt 1
Fiut PHIQF, ) G PHIOF,
Th+1 kHQZkH 1
m—

is commutative for k+1<m, and hence we have

m,1
]k—i—loo'k_,_lobk

Pkl F R k) F F /
= (P Qlk+1,mf100k+102k,k+1)x * U(P Qlk,mqoakolkq,k)xg

_ (,QFm_1_pkoyF QFm_1_pkOF /
= (. 1 oP sz’m_loak)x * U(1, T oP Qlk_l’m_loak_l)xa

= LkOjkOO'k ’1.
By Proposition 2.4 (1) for f=\, we have ;\k+105k = ngiloj\k, and hence

3 . m,l _m,1 3 N m,1 _ QF N . m,1
/\k+lojk+1oak+1obk = )\kJrlO/ka.]koO'k =l kilo/\kojkoak

Then, by Proposition 2.4 (1) for f = 1,, and the induction hypothesis, we
proceed further as follows.

()" (Aer10s10047))
[L?Z%oP’“ﬂifmoakou?’l] = [P’““Qi5+1,moak+1oi5,k+1ou2”’l]

[PkHQZkH moakﬂoﬂkﬂobk = (LZM)*(PkHQikFH,moakHON?frﬁ)-
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By a standard argument of homotopy theory on a cofibre sequence K ,ﬁi —
F,Zn’l Fk+17 we obtain the difference map 0541 : EKZE — PHIQF. of
)\kﬂoijoakH and Pk“QikFH,moakHou?fp k+1l<m:

, 1 % , 1 1
(4.3) Pk+1QZ£+Lmoak+1oMZL+l = kaJﬁlQFmO(Ak_i_lojk_’_lOUZ:_l V 6k+1)07/]27:_1‘
Then, by Proposition 2.4 (1) for f = A, we have

{ Fon— Fon_
€£I10>\k+1 = Mm—l,lo{ekJrl "xxUe, ™ xe'},

and hence, by the commutative diagram

ag; . PiQisz—l - €;
F; —= P'QF,“—F— P'QF,, 4 Fnq

for i = k, k+1 < m—1, we obtain the equation

/ . m,l _ m,l
{ek U ey e Yojiyr00yy = bet1,mo

where Lk +1 o wiq < 1'is the canonical inclusion. Thus we have

+1

Fm o)\ 07100t o — o™t
€r110M+1CJk+190 11 = Hm—1,1 Lk:+1m Ut 1,mOM 11

F Frt k+1
= V41, MmOk OUkHONkH = €k+1 oP Q2k+1 m00k+1oﬂk+1v
and hence, by (4.3), we obtain
-F m,1 Fn 3 . m,1 Fn m,1
G 1Ot = meo(ek+lo)\k+1o]k+1oak+l Ve, 00k1)oV,
= Vp,0 (Zk+1 moﬂk+1 v ek+105k+1)oVk+1

Using [13 Theorem 2.7 (1)] and the multiplication pon G ~ F,,,, 651106k+1 :
K" +1 — F,, is null-homotopic. Hence by a standard argument of homotopy
theory on the fibre sequence E*2QF,, — P*1QF, — F,,, we obtain a lift

b1 ZKk+1 — E™TQF, of 0jp1 as pyiyody,, = 41, k+1 < m. Since

QF QF od!

- . QF, _ QF, _
e ,€+2okarl = %, we obtain Lk+1’k+205k+1 = Ui 1 ke 2%Phat 41 = * and

LgfkarzOVPkHQFmo(j\kﬂ Ojk+10(712n4111 \ 5k+1)OV]Zr_L|111

= VPkHQFmO(LgfﬂHOS\kHOjk+1002111 N *)OVﬁll
Lgffmzo;\kﬂojkuog?fu
and hence, by (4.3), we obtain

QF,, k+1y; F m1l _ QFn ) , m,1
b1 k42° oP Qlk+1,m00k+1oﬂk+1 = Lk+1,k+2o>\k+1ojk+100k+1-

It completes the proof of the induction step and we obtain (4.2) for k<m.
Secondly, we show the following equation

Qp, m,1 QF, 3 m,1
(44> b, EHOUmOMm - Lm,rTrr:+1o/\moo-m .
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By Proposition 2.4 (1) for f = 1,,, we obtain
opoil’ 1= Z?Fft Pt_lQifll’toat_l for t=m—-1,m.
Hence we have

omtorny = ((omoip, m) X * U (Umfloifw—z,m—l)xal)

1 QF, m—1
- ( b nleOP QZm 1771007?’L*1)><>l<
QFm—1 m—2 /
U (Lm72,m 1OP sz 2,m— 1OO'm,1)XO'

_ 0 . m,1
= 1m—19Jm—1°90,,_1-

By Proposition 2.4 (1) for f = A\, we obtain MOl 1 = L&F”{ mojxm,l and
() Amoo) = [Amooir o] = [AmOim-10jm-1007"]
= [ S@Fq mo>\ 1ij_1oa‘:nn’_11] - [ 7S72’LFWI mOPmQZ OUm—loﬂnmlfﬂ

- 1 1 7
= (0Ot 1 Ot 1] = (1) (Tmopy )

using (4.2) for kK = m—1. Thus by a standard argument of homotopy theory
on the cofibre sequence K™ — F,, < F,, 1, we obtain a difference map
O : DK™ — PMQOF,, of \poo™! and o,,ou"!
(4.5) O™t = V pmop, 0(Amoa™ V 8, ) oL,
By Proposition 2.4 (1) for f =\, we have the equation
efmo) o0t = pmlofelm s Uel™ e Yo(om X % Ugp_1 X0') = pmt,

and hence, by (4.5), we obtain

L= Vi, 0(efohnoo ! V efnos,Jort = Vi, ol V efinos,)or.

Thus we obtain efmod,, = x. Then, by a standard argument in homo-
topy theory on the fibre sequence E™HQOF,, — P™QF,, — F,,, we ob-
tain a lift &/, : XK™! — E™QF,, which satisfies §,, = p$f™of! . Since
L%ngﬂop%Fm = %, we have me+105 = %Frj’gﬂopQFmoé’ = %. Then by
(4.5), we obtain (4.4) as follows:

QOF, QF, \ m,1 m,1

Ly ;;;Hoamoum = Ly 10V Pmap, o(Amoo, ™ V 6 )ov,,
_ QF, A m,1 m,1 __  QF, m, 1
- vaJrlQFmo([’m,TTnn-‘rlo)\moo_m \ *)Oym - Lm,#z—‘rlo)\ o0,

Finally, we construct a map M Fm+1 — P™HQOF,,. By Proposition 2.4

(1) for f=1,,, we have o,,0if | = =ilfm oPm™10iF | o0, 1, and hence
(omxa" Yot = (opx0’)o(1p, x x Uil 4, X 1)
m, 1

= lmo(omx x Uay,_1X0") = io0)

Also by Proposition 2.4 (1) for f=\, we obtain A0, = L%Fn”;+105\m and

1 QF,

~ ’ ml _ 3 ~ m,1l __ ml
Am10(0m X0 oL = Ay 10000, = 1y

o)\ oo,
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and hence, by (4.4), we obtain
(") Amr0(0mx0")) = i yoomopy = () (31100 mO 1),
By a standard argument of homotopy theory on a cofibre sequence Kzfl —
Frol ey ijrll, we obtain a map 0,41 : ZK:nn;ll — P™TIQF,, such that
(46) L%{?ﬂn_’_lOO’mOMm’l = VPm+1QFmO()\m+1O(UmXU/) \/ 5m+1)01/$_7:1.

To proceed further, let us consider the dotted map e : EEm+1 — LKM™H
induced from the commutativity of the lower left square, in the diagram

m,1
m,1 tm m,1 ar m,1
L — SK
lo{n”’l lamxo" Lng*g’
~ ’:m ~ qF ~
Pt Byt
|
\ ém l elim et e
1 Y
Fmilc b’ Fm’l apr Y
m m—+1 m )

where the map é, : F,, — F™!is efmx x Uel™ ' x¢/. Since é,00™! and
(eFmx€')o(0,,x0c’) are homotopy equivalences, €0%.g,,*g; is also a homotopy
equivalence (see [4, Lemma 16.24]). We denote by h : K™ — MK
the homotopy inverse of €0Xg,,*g;. Then, by (4.6), we obtain
L%I;Tg.i_loo'moﬂm,l = va+1QFmo()\m+1o(o'mX0'/) \ 5m+1)OV,TZLr11

3 / — ! m,1
= Vpmi10£, o(Am110(0m X0') V 6y 10hoeoXig,, g )OVm+1

N m,1

- va+1QFmo()\m+1 \% 5m+lohoé)o((0mxgl) \% Egm*g/)OVm+1,

and hence, by Lemma 3.3, we proceed further as

~

= me+1QFmO<)\m+1 \% 5m+lohoé)oﬁm+1o(amxal>~
This suggest us to define A by meHQFmo(;\mH V py10h0€)oly, 11 to obtain

(S 100 mOpm1 = Ao(ox0') : B, xF| — P™QF,,,

m,m-+
which gives the commutativity of the upper right square in Lemma 4.4. So
we are left to show the commutativity of the lower right square in Lemma
4.4: by Proposition 2.4 (1) for f=\, we have
eh 10 A 110(0mX0") = im0l €Yo (00X 0") = fim1,

and hence, by equations e/ ou52fm 00, = 15, and (4.6), we obtain

F A / m,l
Hm,1 = em+1ova+1QFmo<)‘m+lo(0mXU )V 5m+1)o’/m+1

_ F, m,1
= Vg, o(ftm1 V €m"i105m+1)01/m+1-
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Thus we obtain efn’iloémﬂ = *. Therefore, we obtain
Fom Fon -
e 10)\ = e, 10V pmiigp,, O(>\m+1 V Ot 10h0€) oy, 1
m 7 Fm \
= vaO(6m+10)\m+1 \ *)OI/m+1 = em—i-lo)‘m-i—la
and hence, by Proposition 2.4 (1) for f=A\, we proceed finally as
Fm 3 Fm N . r
e 10N = lm10{e,mxe'} 1 Fpn — Fy,.

It completes the proof of the lemma. O

@ A 7
.. A k—1
Now we are ready to define a cone-decomposition {E; —> F] | —

Fl|1<k<m+1} of P"xXQA of length m+1 by replacing F/ with A in
the cone-decomposition of P x¥QF]. The series of cofibre sequences

QFm QF

(EFQF,, =4 PF1QF,, <=1 PFQF, [1<k<m+1}

gives a cone-decomposition of P"QOF,, of length m + 1. Let D be the
2 opry and Aoy = j\o(lp;nn xXQa):

m,m-+1

homotopy pushout of ¢ = ¢

P"x¥QA — X prHOF,,

3 |

P™MIOF,, D.

We give a cone-decomposition of D as follows. Xo[m = Vpm+iq Fmo(S\mH \Y
Om+10ho€)oly, 100, = 5\m+102m, we may identify the restriction of \ on F’k
with Az and hence ;\OX is a filtered map up to homotopy, i.e., (Xox)b}z =

A . o . oY) 2y ~1
)\kOX|Fé for 1<k <m. Since X|F,;,1 = X|Fl;ozkf1 and #)_,ow) = *, we have

ef:"lo((j\ox)b}éilow;) = efmoj\koxbéo%flow; = efmo;\kox|p};o* = *.

By a standard argument of homotopy theory on a fibre sequence E*QF,, —
P*1QF,, — F,,, we have a lift x;, : Ej, — E*QF,, which fits in with the

following commutative diagrams:

@4n  E S By o (1<k<m),
Lnk Lj\kﬂ)xh%l lj\koxlﬁllC
QFm 2Fm
EFQF,, h- PR, Y pRQE
48 B, —— Jake I El., (k=m+1).
Lﬁm-ﬂ lj\moxpl lj\ox
SLEm, %Fﬁf 1
EmHOF, POF, " pmtiQR
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By definition of ¢, it is clear that there exists a map vy : EA,Q — E*QF,,
which fits in with the following commutative diagram:

~7 2
wy, k-1

(4.9) E; F_c Fy
lwk l‘f’hﬁ,;_l lqﬁlﬁlg
QFm LQFm
E*QF,, P pelp PN L pRQE

Let EP be a homotopy pushout of x; and ¢y, and F be a homotopy
pushout of (5\0)()|];ﬂlg and gb|pé, then using diagrams (4.7), (4.8) and (4.9)
and using the universal property of the homotopy pushouts, we obtain the
following commutative diagram such that the front column EP — FP, —
FP is a cofibre sequence:

nll
Ek

/ \
P

k

EFQF, Wiy FI_ ) EFQF,

/ P, W{C71

o P%f{”/ A’kal ) Kk \ p?f{n

P QF,, ¢l F E P QF,,
f\Q Fk/ k \ k (;ox)‘ﬁé "\Q
\
PFQF,, D PFQF,,

\F]]\l/
Fy

Thus we obtain a cone-decomposition {EP — FP | — FP|1<k<m+1}

of D of length m+1, which immediately implies the following inequalities.

cat(D) < Cat(D) < m+1.

The homotopy pushout of top and bottom rows in (4.4) are GU,, GxCA.
Also, since dimensions of F,, F; and A are less than or equal to ¢, all
composition of columns in (4.4) are homotopy equivalences. Thus, we obtain
a composite map D — G Uy, GXCA ~ E — D as a homotopy equivalence
(see [4, Lemma 16.24], for example). Thus D dominates E and we obtain

cat(F) < cat(D) < Cat(D) < m+1.

5. L-S CATEGORY OF SO(10)

In this section, we determine cat(SO(10)) and prove Theorem 5.1.
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To give a lower bound of cat(SO(10)), let us recall the algebra structure
of the well-known cohomology algebra H*(SO(10);Fs) as described below:

H*(So(lo)v FQ) = FZ[xla T3, L5, L, $9]/(x%67 xéa xga [L'?, 333)7
where z is a generator in dimension k. Then by Theorem 1.1, we obtain
(5.1) 21 = cup(SO(10); F) < cat(SO(10)).

On the other hand, to give the upper bound using Theorem 1.2, firstly
we recall the cone-decomposition of Spin(7) in [10] as follows:

x* C F{ =XCP® C Fj C F} C F; C F ~ Spin(7).

In [11], the cone-decomposition of SO(9) is given by using the above filtra-
tion F] of Spin(7) together with the principal bundle Spin(7) — SO(9) —
RP: let €* be a k-cell in SO(9) corresponding to the k-cell in RP'. The
cone-decomposition {F;} of SO(9) introduced in [11] is as follows.

Fo = {x}
Fy=FU(e'xF_)U---U (& 'xF)ue
Fy = FLU (e'xF) U (e2xF3) U (e!x Fy) U (e*x F)) U e®

F+5 =FUEXFHYU---U(eExXF)U(E<E)U---U (e xF)Ue™
F1; =Flu(e'xFHu---U (ew:ng) U(e"xF)U---U(e"xF))ue'®

Fm; =FU(e'xF)u---U (ew:“ng) U(e"xF)U---U(e®xF;_))
FQ(; =Flu(e'xF)u---uU (e15:><Fg) ~ SO(9)

where 0 <7 < 10 and 0 < j <5, which is given with a series of cofibre
sequences {K; — F;_1 — F; | 1<i<20}.
Secondly, a cofibre sequence S?° — F; — F; Ue*' (= F ~ Spin(9)) in
[10] induces a cofibre sequence Ky = S™ % S20 = 535 — Fig < Flyy.
Thirdly, since p/|p/xrr is compressible into £, for 1 < i < 5 by the
proof of [11, Theorem 2.9}, y|r,xp; is compressible into Fjy; for 1 <4 < 20,
where p and p/ are multiplications of SO(9) and Spin(7), respectively.
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Fourthly, let us consider two principal bundles p : SO(10) — S? and
p' :SU(B) — S, together with the following commutative diagram:

SCP3c— SU(4)— SO(9

N 7
\ /
N4 i
" | SU(5)~SO(10)
273 N \ !
\\\Q /\ l
B — A
The map « : S® — SO(9) in the above diagram is a characteristic map
of p: SO(10) — S?. By Steenrod [16], o is homotopic in SO(9) to a map
o' : S% — SU(4) the characteristic map of p’ : SU(5) — SY. Further by
Yokota [18], the suspension ¥vy; : S® — SCP? of the canonical projection
73 : ST — CP3 is the attaching map of the top cell of XCP* ¢ SU(5), which
is homotopic to . Therefore, the characteristic map « is compressible into
YCP3 C F). Since « is homotopic to a suspension map to YCP? in SO(9),
and hence we have H(a) = 0 € mg(QXCP?*%Q3CP?) when « is regarded to
be a map to XCP3.
Thus, finally by Theorem 1.2 with F] = YCP?, we obtain

(5.2) cat(SO(10)) < 20+1 = 21.

Combining (5.2) with (5.1), we obtain our desired result.
Theorem 5.1. cat(SO(10)) = 21 = cup(SO(10);Fy).
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