
GANEA’S CONJECTURE ON LUSTERNIK-SCHNIRELMANN CATEGORY

NORIO IWASE

It is my honour to give a talk in this topology seminar on my recent work on Lusternik-

Schnirelmann category, which I would like to abbreviate as LS category.

In Summer, a beautiful lecture by Ioan James on LS category forced me to consider Ganea’s

conjecture on LS category again, which was open for years.

1. LS category

I will begin my talk with defining the LS category. I have come to know very recently

that there are lots of variant notion such as Cat, cat, g-cat, w-cat, cone-length, etc. But

unfortunately, the only definition I know is what experts call the nomalised LS category:

catX = the least integer m so that X is covered by m + 1 closed subset contractible in X

So, I have to talk about mainly small cats without wiskers. For example, we know the following

basic facts:

(1) cat {∗} = 0

(2) cat Sn = 1 for n ≥ 0.

(3) cat (X×Y ) ≤ catX + catY

(4) cat X ≤ (the number of critical points of a Morse function of X)−1

(5) cat X ≤ (the dimension of X)

(6) catX ≥ (the number of elements in h̃∗(X) which give a non-zero product in h̃∗(X)),

for any multiplicative cohomology theory h̃∗.

2. The Ganea’s conjecture on LS category

An american mathematician Tudor Ganea contributed much in this area and died in 1971.

He left some problems some of which is known as Ganea’s conjecture, e.g., The problem 10
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which is often called the Ganea conjecture is a fundamental conjecture for co-H-spaces, or

spaces with normalised LS category 1.

The problem 2 is also a fundamental conjecture on LS category: catX×Sn = catX + 1?

This is the subject of this talk. There were some supporting evidences:

i) No counter examples found.

ii) (Jessup 1990 and Hess 1991) The rational version of the conjecture is true.

iii) (Singhof 1979 and Rudyak 1997) The conjecture is true for a large class of manifolds.

3. My approach to prove the conjecture

For over 10 years, my main interest area is Hopf spaces especially on its homotopy asso-

ciativity and its associated projective spaces. An An-space is studied by Masahiro Sugawara

and James Stasheff (1963) as a space with higher homotopy associativity: By Stasheff, an

Am-space M is defined to have projecitve spaces P 1(M) ⊂ P 2(M ) ⊂ P 3(M) ⊂ ... ⊂ Pm(M).

These projective spaces are characterised by Stasheff in terms of homotopy theory. When

m = ∞, P∞(M ) is often called the A∞-structure of M . In this case, M has the homotopy

type of a topological group by Stasheff and Milnor.

There looks nothing concerning about LS category. But this shows us another way to

compute LS categories: for any space X, we know that G = ΩX is an A∞-space, and hence

there exists a filration

P 1(G) ⊂ P 2(G) ⊂ P 3(G) ⊂ ... ⊂ P∞(G) ' X

There are some fundamental results:

Theorem 3.1. (Ganea) For any space X, catX ≤ m if and only if the canonical inclusion

eX
m : P mΩX ⊂ P∞ΩX ' X has a homotopy section, i.e., there is a map s : X → PmΩX

which satisfies eX
m◦s ' 1X .

Theorem 3.2. (Folk Theorem) For any spaces X and Y , catX×Y ≤ m if and only if the

canonical inclusion
⋃

i+j=m P iΩX×P jΩY ⊂ P∞ΩX×P∞ΩY ' X×Y has a homotopy sec-

tion.

Corollary 3.2.1. catX×Y ≤ catX + catY
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Corollary 3.2.2. catX×Sn = catX or catX + 1

Corollary 3.2.3. catX×Sn = catX if and only if the inclusion PmΩX×{∗}∪Pm−1ΩX×Sn

⊂ P∞ΩX×Sn ' X×Sn has a homotopy section.

This is the way I found to prove the conjecture.

4. Obstructions

Under some connectedness condition on X , there is a homology decomposition {X t} of X

satisfies that 0 = catX1 ≤ cat X2 ≤ ... ≤ catXk−1 = m− 1 < catXk = m ≤ ... ≤ catX with

k′-invariant αk : M (Hk(X), k − 1) → Xk−1 for some k, where M(Hk(X), k − 1) is the Moore

space of type (Hk(X), k − 1). In each stage, we can obtain the obstruction for Xk to satisfy

catXk ≤ m − 1, as a map from M(Hk(X), k − 1) to the total space of Stasheff’s fibration,

which is defined from αk:

ΩX EmΩX P m−1ΩX

M(Hk(X), k − 1).

z w w
u

βk

To prove the conjecture, I tried to show the non-triviality of the obstruction β ′
k+n for Xk×Sn

to satisfy catXk×Sn ≤ m using the above k′-invariant αk:

ΩX×ΩSn EmΩX∗ΩSn PmΩX×{∗}∪Pm−1ΩX×Sn

M(Hk+n(X×Sn), k + n − 1).

z w w
u

β′
k+n

At this moment, I thought I was wining to prove the conjecture. But it was just a dream. What

was found out is that β ′
k+n is essentially given by βk∗1Sn−1 ' ±Σnβk the n-fold suspension of

the map βk, while there are lots of maps whose higher suspension is trivial.

Theorem 4.1. There is a series of complexes Qp indexed by all primes p with catQp×Sn =

catQp = 2 for n ≥ 2.
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5. Proof of the theorem 4.1

Let p be an odd prime and Qp = S2 ∪ e4p−2 with the map α = η◦α2
1(3) : S4p−3 → S2 as the

only k′-invariant α : S4p−3 → S2.

Lemma 5.1. β = α2
1(3) is not a suspension map but a co-H-map of order p, whose iterated

suspensions Σtβ are trivial for t ≥ 2 while Σβ 6= 0.

Proof. The latter part is obtained by observing the table of homotopy groups by Toda [13]:

Since π4p−1(S
5) has no p-torsion element, we have that Σ2β = 0. Since S3 is a Hopf space, the

suspension homomorphism π4p−3(S
3) → π4p−2(S

4) is split injective. Thus it remains to show

the first part of the lemma: since π4p−4(S
2) ∼= π4p−4(S

3) has no p-torsion element, β is not a

suspension. Also one can easily compute that H(β) is in π(ΩS3∗ΩS3) which has no p-torsion

element, where H is the generalised Hopf invariant homomorphism H : [X, Y ] → [X,ΩY ∗ΩY ]

by Berstein-hilton [1] or Saito [8], for co-H-spaces X and Y .

Proposition 5.2. α = ηβ = ηα2
1(3) is not a co-H-map and the obstruction is described by

the 2nd James-Hopf invariant h2(α) = β, which is a generator of the p-part of π4p−3(S
3):

µ2α ' (α ∨ α)µ4p−3 +4p−3 [i1, i2]β

where we denote by µk : Sk → Sk ∨Sk the (unique) co-Hopf structure of the sphere Sk and by

+k the multiplication induced by the co-Hopf structure of sphere Sk.

Proof. There is a well-known formula for the Hopf map η:

µ2η ' (η ∨ η)µ3 +3 [i1, i2]

in π3(S
2 ∨ S2) by it : X → X ∨ X the inclusion to the t-th factor. Since α ' ηβ, we have, in

π4p−3(S
2 ∨ S2),

µ2α ' µ2ηβ ' {(η ∨ η)µ3 +3 [i1, i2]}β.

Since β is a co-Hopf map by Lemma 5.1, this is homotopy equivalent to

(η ∨ η)µ3β +4p−3 [i1, i2]β ' (ηβ ∨ ηβ)µ4p−3 +4p−3 [i1, i2]β ' (α ∨ α)µ4p−3 +4p−3 [i1, i2]β
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This implies that h2(α) ' β which gives the obstruction for α to be a co-Hopf map and

hk(α) = 0 for k ≥ 3.

Lemma 5.3. The following diagram without the dotted arrow commutes up to homotopy.

S4p−3 S2 Qp

S1∗S1

ΩQp∗ΩQp ΣΩQp Qp

P 2ΩQp

w
α

u
β

z w
i

y

u

ΣΩiΣj1

u

1Qp

i
i

i
i

i
i

i
ik

λy

u
(Ωi∗Ωi)(j1∗j1)

w
p

Qp
1

w

evQp

0'
'')

ι
Qp
1

[
[[]

e
Qp
2

where i : S2 → Qp and jt : St → ΩSt+1 give the bottom cell inclusions and p
Qp

1 denotes the

Hopf construction of the loop addition of ΩQp, ι
Qp

1 : ΣΩQp → P 2ΩQp denotes the inclusion to

the mapping cone of p
Qp

1 and e
Qp

t : P tΩQp ⊂ P∞ΩQp ' Qp denotes the canonical inclusion.

Remark 5.4. The difference between the identity 1Qp and the map e
Qp

2 λ is given by an element

evQpγ ∈ π4p−2(Qp), where γ ∈ π4p−2(ΣΩQp), since π4p−2(ΣΩQp) → π4p−2(Qp) is a split

surjection.

This implies the following theorem.

Theorem 5.5. (Berstein-Hilton) catp Qp = catQp = 2 but catq Qp = 1 for q 6= p.

Proposition 5.6. The following diagram except the dotted arrow commutes up to homotopy.

S4p−3∗Sn−1 Qp×{∗} ∪ S2×Sn Qp×Sn

(S1∗S1)∗Sn−1

(ΩQp∗ΩQp)∗Sn−1 P 2ΩQp × {∗} ∪ ΣΩQp×Sn P 2ΩQp×Sn Qp×Sn

w
α̂

u

β∗1Sn−1

z w

y

u

λ×{∗}∪(ΣΩiΣj1)×1Sn

u

λ×1Sn

(
(
(
(
(
(
(
(
(
(
()

1Qp×1Sn

y

u

((Ωi∗Ωi)(j1∗j1))×1Sn−1

w
p̂

Qp
1

z w w
e
Qp
2 ×1Sn

Since β∗1Sn−1 ' ±Σ(β∧1Sn−1) ' ±Σnβ, we have established the following result.

Proposition 5.7. 1Qp×1Sn can be compressed into P 2ΩQp × {∗} ∪ ΣΩQp×Sn, for n ≥ 2.
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Proof. In the case when n ≥ 2, β∗1Sn−1 is trivial. Since the inclusion P 2ΩQp × {∗} ∪
ΣΩQp×Sn → P 2ΩQp×Sn induces a split epimorphism in the homotopy groups, a similar

argument to that used in the proof of Theorem 5.5 leads us the conclusion that there is a

compression δ of λ×1Sn to P 2ΩQp×{∗} ∪ ΣΩQp×Sn. Moreover, we may assume the com-

pression homotopy leaves the subspace Qp×{∗} ∪ S2×Sn fixed. By Remark 5.4, the identity

1Qp is given from e
Qp

2 λ by adding an element evQpγ, γ ∈ π4p−2(ΣΩQp). We define a map δ2 by

δ2 : Qp×Sn µ×1Sn→ (Qp ∨ S10)×Sn = Qp×Sn ∪ S10×Sn P 2ΩQp×{∗} ∪ ΣΩQp×Sn,w
δ∪(γ×1Sn )

where µ denotes the co-action of S4p−2. Since δ is homotopic to λ in P 2ΩQp×Sn with the

subspace {∗}×Sn left fixed, δ2 is homotopic to

(λ + γ)×1Sn : Qp×Sn (Qp ∨ S10)×Sn = Qp×Sn ∪ S10×Sn P 2ΩQp×Sn,w
µ×1Sn

w
(λ×1Sn )∪(γ×1Sn )

in P 2ΩQp×Sn which is a compression of 1Qp×1Sn. Thus δ2 : Qp×Sn → P 2ΩQp×{∗} ∪
ΣΩQp×Sn gives the compression of 1Qp×1Sn .

Thus we have 2 = catp Qp ≤ catp Qp×Sn ≤ catQp×Sn ≤ cat (P 2ΩQp×{∗} ∪ ΣΩQp×Sn) ≤
2, for n ≥ 2, and hence we have established our main theorem.

Theorem 5.8. catQp×Sn = catp Qp×Sn = 2, for n ≥ 2, while catQp×S1 = catp Qp×S1 =

3.

Also one can see that there is a two cell complex Q2 = S8 ∪ e30 which satisfies catQ2 =

catQ2×Sn = 2 for n ≥ 1. So the conjecture was a kind of folk-lore.

That’s all.
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