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Topological complexity Robot Motion Planning

Robot Arm

M. Farber raised the following question in 2003.

Let B be the configuration space of robot arms.

Then a motion of a robot arm is precisely giving a “path” in B.

Let π : P(B) → B×B be the Serre path fibration, which is given by

π(`) = (`(0), `(1)).

Remark
Then π is an epimorphism, if and only if B is path-connected.
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Topological complexity Robot Motion Planning

Motion Planning

A motion planning in the sense of Farber is a kind of machinery —
processing a pair of states of a robot arm as an input into a motion
between two given states of a robot arm as the output.

He makes one condition on the outputs — the robot motion must be
“continuous” with respect to the given pair of states of a robot arm.

How complex is the configuration space?

More precisely, for given two states of a robot arm,

Is there any algorithm to give a motion of a robot arm?
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Topological complexity Topological complexity and Schwartz genus

Topological Complexity and Schwartz Genus

For a fibration p : E → X , Schwartz defined a numerical invariant and named
as “genus”. It is later renamed as “sectional category” by I. James.

Definition (Schwartz)
The numerical invariant Genus(p) of a fibration p : E → X is the minimal
number m ≥ 1 such that there is a cover of X by m open subsets each of which
is a domain of a section of p. However we assume that sectional category is
normalised, and hence Genus(p) = secat(p)+1.

The topological complexity T C(B) of B is defined to be the Schwartz genus
Genus(π) of the Serre path fibration π : P(B) → B×B, π(`) = (`(0), `(1)).

Definition
T C(B) = Genus(π) = secat(π) + 1.
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Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21



. . . . . .

Topological complexity Symmetric motion planning

Symmetric motion planning

Later in 2006, Farber defined another motion planning called Symmetric Motion
Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

2. If we exchange the two states, then the motion is the inverse way.

Definition
For a space B, the ‘symmetric’ topological complexity T CS(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B
and si(b2, b1)(t) = si(b1, b2)(1−t).

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 6 / 21
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Topological complexity Monoidal motion planning

Monoidal motion planning

For technical reasons, we introduce here another motion planning called
Monoidal Motion Planning which is requiring a motion to satisfy

1. If the two states are the same, then the motion is stasis.

So, the section s must satisfy s(b, b) = cb the constant path at b for any b ∈ B:

Definition
For a space B, the ‘monoidal’ topological complexity T CM(B) is the minimal
number m ≥ 1 such that there exists a cover of B×B by m open subsets
Ui ⊃ ∆(B) each of which admits a continuous section si : Ui → P(B) for the
Serre path fibration π : P(B) → B×B satisfying si(b, b) = cb for any b ∈ B.
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Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Topological complexity Zero-divisors cup-length and TC weight

Zero-divisors cup-length and TC weight

Definition (Farber and Farber-Grant)
For a space B and a ring R 3 1, the zero-divisors cup-length ZR(B) and
the TC-weight wgtπ(u; R) for u ∈ I = ker ∆∗ : H∗(B×B, R) →
H∗(B; R) are defined as follows.

1. ZR(B) = Max {m≥0 H∗(B×B, R) ⊃ Im 6= 0}

2. wgtπ(u; R) = Max
©

m≥0 ∀f :Y →B×B, secat(f∗π)<m f∗(u) = 0
™

They give nice computable lower bounds for Topological Complexity.

However, the cone decomposition techniques, which gives a useful upper bound
for L-S category, do not give an upper-bound for Topological Complexity.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 8 / 21



. . . . . .

Fibrewise L-S category Fibrewise pointed space over B

Fibrewise pointed space over B

James has introduced a notion of a fibrewise space with a base point as a section
of the projection:

Definition

1. X is a fibrewise space over B, if there is a “projection” pX : X → B.
2. X is a fibrewise pointed space over B, if X is a fibrewise space with a

“section” sX : B → X .
3. X is a fibrewise well-pointed space over B, if X is a fibrewise pointed

space such that sX is a cofibration.
4. X is a fibrewise homotopy well-pointed space over B, if X is a fibrewise

pointed space which is fibre homotopy equivalent to a fibrewise
well-pointed space.
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Fibrewise L-S category Fibrewise (pointed) L-S category

Fibrewise (pointed) L-S category

James has also defined a fibrewise version of (pointed) L-S category of a pointed
space as follows.

Definition
Let X be a fibrewise pointed space over B. The numerical invariant catB

B(X) is
the minimal number m ≥ 0 such that there is a cover of X by m open subsets
each of which is fibrewise contractible.

We remark that each open set must be a fibrewise pointed subspace of X and the
contraction homotopy must leave the fibrewise base points fixed.
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Fibrewise L-S category Fibrewise unpointed L-S category

Fibrewise unpointed L-S category

For some technical reasons, we define a fibrewise version of unpointed L-S
category of a pointed space as follows.

Definition
Let X be a fibrewise pointed space over B. The numerical invariant cat*

B(X) is
the minimal number m ≥ 0 such that there is a cover of X by m open subsets
each of which is fibrewise null-homotopic to the fibrewise base point.

We remark that each open set is not necessary to be a fibrewise pointed subspace
of X and the null-homotopy is not necessary to leave the fibrewise base points
fixed.
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B(X) is
the minimal number m ≥ 0 such that there is a cover of X by m open subsets
each of which is fibrewise null-homotopic to the fibrewise base point.

We remark that each open set is not necessary to be a fibrewise pointed subspace
of X and the null-homotopy is not necessary to leave the fibrewise base points
fixed.
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. . . . . .

Fibrewise L-S category Fibrewise unpointed L-S category

Fibrewise A1 structure and fibrewise L-S category

The definition of a fibrewise A1 structure yields the following criterion.

Theorem (Sakai)
Let X be a fibrewise pointed space over B and m ≥ 0. Then

catB
B(X) ≤ m if and only if idX : X → X has a lift to P m

B (LB
B(X))

eX
m→ X.

Proof: If catB
B(X) ≤ m, then the fibrewise diagonal

∆m+1
B : X →

m+1
ΠB X is compressible into the fibrewise fat wedge

m+1
TB X ⊂

m+1
ΠB X. Hence there is a map σ : X → P m

B (LB
B(X)) such that

eX
m◦σ ∼B 1X . The converse is clear by the definition of P m

B (LB
B(X)).
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. . . . . .

Results Topological complexity and fibrewise L-S category

Topological complexity and fibrewise L-S category

Let T be the category of topological spaces and maps between them and T (2)
the category of maps and commutative diagrams.

Theorem

1. There is a functor d : T → T (2) such that T CM(B) = catB
B(d(B)) + 1.

2. There is a functor d : T → T (2) such that T C(B) = cat*
B(d(B)) + 1.

Proof: The functor d is given by

d(B) = B×B, pd(B) = pr2, sd(B) = ∆.

[Skip Proof]
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Results Topological complexity and fibrewise L-S category

Proof of part 1.

First, we show the equality T CM(B) = catB
B(d(B)) + 1:

assume T CM(B) = m + 1, m ≥ 0 and that there is an open coverSm
i=0 Ui = B×B and a series of sections si : Ui → P(B) of

π : P(B) → d(B) satisfying si(b, b) = cb for b ∈ B, since we are considering
monoidal topological complexity.

Then each Ui is fibrewise compressible relative ∆(B) into
∆(B) ⊂ B×B = d(B) by a homotopy Hi : Ui×[0, 1] → B×B given by

Hi(a, b; t) = (si(a, b)(t), b), (a, b) ∈ Ui, t ∈ [0, 1],

where we can easily check that Hi gives a fibrewise compression of Ui relative
∆(B) into ∆(B) ⊂ B×B.

Since
S

i=0 Ui = B×B = d(B), we obtain catB
B(d(B)) ≤ m, and hence we

have catB
B(d(B)) + 1 ≤ T CM(B).
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i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].
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bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity and fibrewise L-S category

Proof of part 1.

Conversely assume that catB
B(d(B)) = m, m ≥ 0 and there is an open coverSm

i=0 Ui = d(B) of π : P(B) → d(B) where Ui is fibrewise compressible
relative ∆(B) into ∆(B) ⊂ d(B) = B×B:

let us denote the compression homotopy of Ui by Hi(a, b; t) = (σi(a, b; t), b)
for (a, b) ∈ Ui and t ∈ [0, 1], where σi(a, b, 0) = a and σ(a, b, 1) = b. Hence
we can define a section si : Ui → P(B) by the formula

si(a, b)(t) = σi(a, b; t) t ∈ [0, 1].

Since
S

i=0
bUi = B×B, we obtain T CM(B) ≤ m+1 and hence we have

T CM(B) ≤ catB
B(d(B)) + 1.

Thus we have T CM(B) = catB
B(d(B)) + 1.

岩瀨 & 酒井 (九州大学 & 岐阜高専) Topological Complexity is a fibrewise L-S category Groups of Self-Equivalences 15 / 21



. . . . . .

Results Topological complexity is a fibrewise L-S category

Topological complexity is a fibrewise L-S category

Theorem (Main Result)
There is a functor d : T → T (2) such that T C(B) = catB

B(d(B)) + 1, if B
has the homotopy type of a locally finite simplicial complex.

Proof: If B has the homotopy type of a locally finite simplicial
complex, then we obtain that d(B) is a fibrewise well-pointed space over B by
using a lemma of Milnor which is showing that such B is locally equiconnected
in the sense of Fox.
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Results Fibrewise cup-length and categorical weight

Fibrewise cup-length and categorical weight

Definition
For a fibrewise pointed space X over B and a ring R 3 1 and
u ∈ I = H∗(X, B; R) ⊂ H∗(X; R), we define

1. cupB
B(X; R) = Max

©
m≥0 ∃{u1,···,um∈I} s.t. u1· · ·um 6= 0

™

2. wgtB
B(u; R) = Max

n
m≥0 ∀f :Y →X∈T B

B
, catB

B(f)<m f∗(u) = 0
o

3. MwgtB
B(X; R) = Max

Ω
m≥0 (eX

m)∗ is a split mono of modules over
unstable cohomology operations

æ

Theorem
wgtB

B(u; R) = Max
©

m≥0 (eX
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. . . . . .

Results Relationship among lower estimates

Relationship among lower estimates

We immediately obtains the following.

Theorem
For any space B and any ring R 3 1, we have ZR(B) = cupB

B(d(B); R).

Motivating by this equality, we could proceed to obtain the following equality.

Theorem
For any space B, any element u ∈ H∗(B×B, ∆(B); R) and any ring R 3 1,
we have wgtπ(u; R) = wgtB

B(u; R) ≤ MwgtB
B(d(B); R).
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Upper estimates Fibrewise cone decomposition

Fibrewise cone decomposition
From now on, we work in the category FB

B
of fibrewise well-pointed

quasi-fibrations with base space B and maps between them.

Definition
Let X be a fibrewise well-pointed space over B. The fibrewise strong category
CatB

B(X) is the least number m ≥ 0 such that there exists a sequence
{(Xi, hi) hi : Ai→Xi−1, 0≤i≤m} of pairs of a space and a map satisfying
X0 = B and Xm 'B X with the following homotopy push-out diagrams:

Ai B

Xi−1 Xi

//

pAi

≤≤

¬

¬

¬

¬

¬

¬

¬

¬

hi

_ƒ

≤≤

¬

¬

¬

¬

¬

¬

¬

¬

sXi

¬ ƒ
//
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. . . . . .

Upper estimates Fibrewise categorical sequence

Fibrewise categorical sequence

Definition
Let X be a fibrewise well-pointed space over B. The fibrewise categorical
length catlenB

B(X) is the least number m ≥ 0 such that there exists a sequence
{Xi hi : Ai→Xi−1, 0≤i≤m} of spaces satisfying X0 = B and Xm 'B X
and that ∆B : Xi → Xi×BXi is compressible into Xi×BXi−1 ∪ B×BXi in
Xm×BXm.

Using a version of Higher Hopf invariants, we can examine a cone
decompossition can be shortened as a categorical sequence or not.

In case B = {∗}, it is used as essential invariant to determine cat(Spin(9)) by
Kono and myself. But we don’t know whether Cat(Spin(9)) = 8 or 9.
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Concluding Remarks

Concluding Remarks

First, the construction of fibrewise projective spaces should be performed for
any fibrewise well-pointed spaces.

But, at this moment, Sakai and I am not quite confident on our construction
when the fibrewise space is not a quasi-fibration.

Second, in the definition of a fibrewise L-S category, the free loop space gives
the fibrewise loop space over B for d(B). We hope that this gives a useful
information to determine the fibrewise L-S category and especially the
topological complexity.

At least for me, the difference of the cohomology rings of ≠(S2n) and
≠(S2n+1) explains why T C(S2n) = 3 6= 2 = T C(S2n−1), for n ≥ 1:
≠(S2n+1) has no torsion in its homology, but it is not the case for ≠(S2n).
Actually, ≠(S2n) has lots of 2-torsions in its homology.
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