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1 The Nelson model on static Lorentzian manifolds

1.1 The standard Nelson model

We are concerned with the Nelson model defined on static Lorentzian manifolds. Static
Lorentzian manifold is defined by a Lorentzian manifold with a metric depending on
position but independent of time. The Nelson model is a simple but non-trivial model
describing the strong interaction in quantum field theory. It is however assumed that
fermions are governed by Schrödinger operator. Then it is the so called non-relativistic
quantum field theory. From mathematical point of view the model is defined as a self-
adjoint operator acting on some tensor product of Hilbert spaces, and we are interested in
studying the spectrum of the self-adjoint operator rigorously. In particular the existence
and the absence of ground state, property of continuous spectrum and spectral scattering
theory are the main topics. For the Nelson model some physical folklore has been estab-
lished rigorously. E.g., the absence of ground state of the Nelson model under infrared
singular condition and the existence of ground state under the infrared regular condition
are established. In this note we extend the Nelson model to the model defined on static
Lorentzian manifold and study its spectrum.

The Hilbert space of the state vectors is defined by

H = L2(R3)⊗F , (1.1)

where F =
⊕∞

n=0 L
2
sym(R3n) denotes the boson Fock space over L2(R3). Then the stan-

dard Nelson model is defined by a self-adjoint operator of the form:

H =

(
−1

2
∆X + V (X)

)
⊗ 1l + 1l⊗ dΓ(ω) + φρ(X). (1.2)
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Here dΓ(ω)Φ(n)(x1, ..., xn) =

(
n∑
j=1

ω(−i∇xj)

)
Φ(n)(x1, ..., xn) is the free field Hamiltonian

defined by the second quantization of the dispersion relation ω = ω(−i∇x) =
√
−∆x +m2

with boson mass m ≥ 0. The scalar field is defined by

φ(f) =
1√
2

(a†(f̄) + a(f)), (1.3)

where a(f) and a†(f) denote the annihilation operator and the creation operator smeared
by cutoff function f ∈ L2(R3), respectively. In particular we set

φρ(X) = φ(ω−1/2ρ(· −X)), (1.4)

where 0 ≤ ρ ∈ S is an UV cutoff function and S the set of Schwartz test functions
on R3. The Hamiltonian H describes the energy of a particle linearly interacting with a
scalar field φρ. A relationships between the stability of ground state and boson mass is
also known. Let

IIR =

∫
R3

|ρ̂(k)|2

ω(k)3
dk. (1.5)

It is known that under some conditions on V there exists a ground state of H if and only
if IIR <∞. If ω(k) =

√
|k|2 +m2 and ρ̂(0) > 0, then IIR <∞ if and only if m > 0.

1.2 Klein-Gordon equation on static Lorentzian manifolds

In quantum field theory the dispersion relation ω =
√
−∆ +m2 can be derived from the

Klein-Gordon equation:
∂2

∂t2
φ(x, t) = (∆x −m2)φ(x, t). (1.6)

Let e−itHφ(f)eitH =
∫
φ(t, x)f(x)dx and e−itHXeitH = Xt. The standard Nelson model

satisfies that

(∂2
t −∆X +m2)φ(t, x) = ρ(x−Xt),

∂2
tXt = −∇V (Xt)−

∫
φ(t, x)∇Xρ(x−Xt)dx.

Now we consider the Klein-Gordon equation on Lorentzian manifolds. Let x = (t, x) =
(x0, x) ∈ R × R3. Suppose that g = (gµν), µ, ν = 0, 1, 2, 3, is a metric tensor on R4 such
that

(1) gµν(x) = gµν(x), i.e., it is independent of time t,
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(2) g0j(x) = gj0(x) = 0, j = 1, 2, 3,

(3) gij(x) = −γij(x), where γ = (γij) denotes a 3-dimensional Riemannian metric.

Namely

g =

(
g00 0
0 −γ

)
. (1.7)

Let M = (R4, g) be a Lorentzian manifold equipped with the metric tensor g satisfying
(1)-(3) above. Then the line element on M is given by

ds2 = g00(x)dt⊗ dt−
3∑

i,j=1

γij(x)dxi ⊗ dxj. (1.8)

Let g−1 = (gµν) denote the inverse of g. In particular 1/g00 = g00. We also denote the
inverse of γ by γ−1 = (γij). The Klein-Gordon equation on the static Lorentzian manifold
M is generally given by

�gφ+ (m2 + ηR)φ = 0, (1.9)

where η is a constant, R the scalar curvature of M , and �g the d’Alembertian operator
given by

�g =
3∑

µ,ν=0

1√
|detg|

∂µg
µν
√
|detg|∂ν . (1.10)

Let us assume that g00(x) > 0. Then (1.9) is rewritten as

∂2φ

∂t2
= Kφ, (1.11)

where

K = g00

(
1√
|detg|

3∑
i,j=1

∂j
√
|detg|γji∂i −m2 − ηR

)
. (1.12)

The operator K is symmetric on a weighted L2 space L2(R3; ρ(x)dx), where

ρ =

√
|detg|
g00

= g
−1/2
00

√
|detγ|. (1.13)

Now let us transform the operator K on L2(R3; ρ(x)dx) to the one on L2(R3; dx). Define
the unitary operator U : L2(R3; ρ(x)dx)→ L2(R3; dx) by

Uf = ρ1/2f. (1.14)
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Let ρi = ∂iρ and ∂i∂jρ = ρij for notational simplicity. Furthermore we set αij = g00γ
ij

and ∂kα
ij = αijk . Since U−1∂jU = ∂j +

ρj
2ρ

, we see that as an operator identity

U−1

(
3∑

i,j=1

∂ig00γ
ij∂j

)
U = g00

3∑
i,j=1

γij∂i∂j + V1 + V2, (1.15)

where

V1 =
3∑

i,j=1

(
αiji + αij

ρi
ρ

)
∂j,

V2 =
1

4

3∑
i,j=1

(
2αiji

ρj
ρ

+ 2αij
ρij
ρ
− αij ρi

ρ

ρj
ρ

)
.

Directly we can see that

g00
1√
|detg|

3∑
i,j=1

∂i
√
|detg|γij∂j = V1 + g00

3∑
i,j=1

γij∂i∂j. (1.16)

Comparing (1.15) with (1.16) we obtain that

U−1

(
3∑

i,j=1

∂ig00γ
ij∂j − V2

)
U = g00

1√
|detg|

3∑
i,j=1

∂i
√
|detg|γij∂j. (1.17)

Then we proved the lemma below.

Lemma 1.1 It follows that

UKU−1 =
3∑

i,j=1

∂ig00γ
ij∂j − v, (1.18)

where v = g00(m2 + ηR) + V2.

By Lemma 1.1, (1.11) is transformed to the equation:

∂2φ

∂t2
=

(
3∑

i,j=1

∂ig00γ
ij∂j − v

)
φ (1.19)

on L2(R3). Hence the dispersion relation on static Lorentzian manifold is given by

ω =

(
−

3∑
i,j=1

∂ig00γ
ij∂j + v

)1/2

. (1.20)

4



We here give an example of a Klein-Gordon equation defined on a static Lorentzian
manifold M such that a short range potential v(x) = O(〈x〉−β−2) appears. Let

g(x) = g(x) = (gij(x)) =


e−θ(x) 0 0 0

0 −e−θ(x) 0 0
0 0 −e−θ(x) 0
0 0 0 −e−θ(x)

 . (1.21)

We compute the scalar curvature R of the Lorentzian manifold M = (R4, g).

Lemma 1.2 It follows that R = eθ(−6∆θ + 11
4
|∇θ|2).

Proof: As usual we set g−1 = (gij). Set −θ(x) = Θ and Θj = ∂Θ
∂xj

. Directly we have

Γkij =
1

2

∑
l

gkl
(
∂glj
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
=


Γkkk = 3

2
Θk,

Γjkk(j 6= k) =

{
−1

2
Θj, k 6= 0,

1
2
Θj, k = 0,

Γkjk = Γkkj(j 6= k) = Θj,
ow = 0 .

The Riemann curvature tensor Rl
kij is defined by

Rl
kij =

∂Γlkj
∂xi
− ∂Γlki

∂xj
+
∑
a

(
ΓakjΓ

l
ai − ΓakiΓ

l
aj

)
and the Ricci tensor by Rji =

∑
l R

l
ilj. Thus the scalar curvature R is represented by

Riemann curvature tensor by

R =
∑
ij

gijRji =
∑
ijl

gijRl
jli = e−Θ

∑
l

(
Rl

0l0 −
3∑
j=1

Rl
jlj

)
.

Note that Θ0 = 0, since the metric g is static. We have

Rl
0l0 =

∂Γl00

∂xl
− ∂Γl0l
∂x0

+
∑
a

(
Γa00Γlal − Γa0lΓ

l
a0

)
=

1

2
Θll +

∑
a

(
1

2
Θ2
a

)
−Θ2

l , l 6= 0,

R0
000 = 0.

We also have for l 6= j,

Rl
jlj =

∂Γljj
∂xl
−
∂Γljl
∂xj

+
∑
a

{
ΓajjΓ

l
al − ΓajlΓ

l
aj

}
= −1

2
Θll −Θjj +

3

4
Θ2
j −

3

4
Θ2
l +

1

2
Θ2
l −Θ2

j

= −1

2
Θll −Θjj −

1

4
Θ2
j −

1

4
Θ2
l ,
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and Rl
lll = 0. Hence we see that

R = e−Θ
∑
l

(
1

2
Θll +

1

2

∑
a

Θ2
a −Θ2

l )− e−Θ
∑
l

3∑
j=1

(−1

2
Θll −Θjj −

1

4
Θ2
j −

1

4
Θ2
l )

= e−Θ(6∆Θ +
11

4
|∇Θ|2)

= eθ(−6∆θ +
11

4
|∇θ|2)

2

The Klein-Gordon equation on M is

�gφ+ (m2 + ηR)φ = 0, (1.22)

where the d’Alembertian operator is defined by

�g = eθ(x)∂2
t − e2θ(x)

∑
j

∂je
−θ(x)∂j. (1.23)

Thus the Klein-Gordon equation (1.22) is reduced to the equation

∂2φ

∂t2
= K0φ, (1.24)

where
K0 = eθ(x)

∑
j

∂je
−θ(x)∂j − e−θ(x)(m2 + ηR). (1.25)

The operator K0 is symmetric on the weighted L2 space L2(R3; e−θ(x)dx). Now we
transform the operator K0 to the one on L2(R3). This is done by the unitary map
U0 : L2(R3; e−θ(x)dx) → L2(R3), f 7→ e−(1/2)θf . Hence the Klein-Gordon equation (1.24)
is transformed to the equation

∂2φ

∂t2
−∆φ+ vφ = 0 (1.26)

on L2(R3), and the dispersion relation is given by
√
−∆ + v and

v = e−θ(m2 + ηR)− ∆θ

2
+
|∇θ|2

4
. (1.27)

Taking η = 0, m = 0, and θ(x) = 2a〈x〉−β, we obtain

v(x) = −a〈x〉−β−4(β(β − 1)|x|2 − 3β) + a2β2〈x〉−2β−4|x|2. (1.28)
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m(x) ≥ a〈x〉−1 m(x) ≤ a〈x〉−β, β > 1

ground state exist not exist

Figure 1: Existence and absence of ground state

In the case of 0 ≤ β ≤ 1 and a > 0, we see that v ≥ 0 and v = O(〈x〉−β−2). Furthermore
−∆ + v has no non-positive eigenvalues. In the case of β > 1 and a < 0, we see that
however v 6≥ 0. We can estimate the number of non-positive eigenvalues of −∆ + v by
the Lieb-Thirring inequality. This yields that −∆ + v has no non-positive eigenvalues for
sufficiently small a.

Proposition 1.3 [GHPS09] There exist functions θ and v such that U0K0U
−1
0 = ∆− v,

v(x) = O(〈x〉−β−2) for β ≥ 0, and −∆ + v has no non-positive eigenvalues.

1.3 Nelson model on static Lorentzian manifold

We define the Nelson model on a static Lorentzian manifold. Let

H = K ⊗ 1l + 1l⊗ dΓ(ω) + φρ(X), (1.29)

where

K = −
3∑

i,j=1

∂iA
ij(X)∂j + V (X) (1.30)

is a divergence form,

ω =

(
−

3∑
µ,ν=1

c(x)−1∂µaµν(x)∂νc(x)−1 +m2(x)

)1/2

(1.31)

denotes the dispersion relation with variable mass m(x) and the scalar field is given by

φ(X) = φ(ω−1/2ρ(· −X)). (1.32)

In the next section we review the absence and the existence of ground state of H.

2 Spectrum of the Nelson model

2.1 Existence of ground state

We introduce assumptions on dispersion relation ω and divergence form K:
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Assumption 2.1 We suppose that

(1)C01l ≤
[
aij(x)

]
≤ C11l,

(2)∂αaij(x) ∈ O(〈x〉−1), |α| ≤ 1,

(3)C0 ≤ c(x) ≤ C1, ∂αc(x) ∈ O(1), |α| ≤ 2,

(4)∂αm(x) ∈ O(1), |α| ≤ 1.

We also suppose that

(5)C01l ≤
[
Aij(X)

]
≤ C11l,

(6)V (X) ≥ C0〈X〉2δ − C1.

Theorem 2.2 [GHPS11] Suppose Assumption 2.1, m(x) ≥ a〈x〉−1 for some a > 0, and
δ > 3/2. Then H has a ground state.

The proof of Theorem 2.2 is based on the proposition below:

Proposition 2.3 [BD04] Suppose that

(1)ω ≥ 0 and Kerω = 0,

(2) sup
X
‖ω−1/2ρ(· −X)‖ <∞,

(3)(K + 1l)−1/2 is compact ,

(4)ω−1ρ(· −X)(K + 1l)−1/2 is compact,

(5)ω−3/2ρ(· −X)(K + 1l)−1/2 is compact .

Then K ⊗ 1l + 1l⊗ dΓ(ω) + φρ(X) has a ground state.

The condition (5) in Proposition 2.3 corresponds to the infrared regular condition IIR <∞
in the standard Nelson model.

Proof of Theorem 2.2: Assumptions (1)-(4) in Proposition 2.2 can be checked di-
rectly. We check (5). The key estimate is to show that ω−3/2〈x〉−3/2−ε is bounded, and
〈X〉3/2+ε(K + 1l)−1/2 is compact. Then we can see that

ω−3/2ρ(·−X)(K+ 1l)−1/2 = ω−3/2〈x〉−3/2−ε〈x〉3/2+ερ(x−X)〈X〉−3/2−ε〈X〉3/2+ε(K+ 1l)−1/2

is also compact. 2
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2.2 Absence of ground state

The standard way of showing the absence of ground state of the model in quantum field
theory is an application of the so called pull through formula. In our case however the pull
through formula can not be applied directly. Instead of it we apply functional integrations
developed in [LMS02].

Let ϕp be the ground state of K. We know that the function ϕp is strictly positive

and ϕp ∈ D(e−C|x|
δ+1

) with some constant C1. We introduce the so-called ground state
transform by U : L2(ϕ2

pdx)→ L2(dx), f 7→ ϕpf , and set

L = U(K − inf σ(K))U−1. (2.1)

Thus L is a positive self-adjoint operator acting on L2-space over the probability space
(R3, ϕ2

pdx). We also see that F ∼= L2(S ′
R, dν) with a Gaussian measure ν on S ′

R such
that ∫

S ′R

eαφ(f)dν(φ) = e(α2/4)‖f‖2 .

Then the total Hilbert space and the Nelson Hamiltonian are given by

L2(R3)⊗F ∼= L2(R3 ×S ′
R, ϕ

2
pdx⊗ dν) (2.2)

and
H ∼= L⊗ 1l + 1l⊗ dΓ(ω) + φρ(X). (2.3)

Theorem 2.4 [GHPS12-a] Suppose m(x) ≤ a〈x〉−1−ε with some ε > 0 and δ > 0. Then
H has no ground state.

Proof: We show the outline of the proof. We show that e−TH is positivity improving. Then
ifH has a ground state ϕg, then ϕg > 0. Let 1l = 1lL2⊗Ω and define ϕTg = e−TH1l/‖e−TH1l‖.
Let

γ = lim
T→∞

(1l, ϕTg )2 = lim
T→∞

(1l, e−TH1l)2

(1l, e−2TH1l)
. (2.4)

It is a fundamental fact [LMS02] that H has a ground state if and only if γ > 0. Let X =
C(R,R3). There exists a diffusion process (Xt)t∈R on a probability space (X , B(X ), P x)
such that

(f, e−tLg)L2(ϕ2
gdx) = E

[
f(X0)g(Xt)

]
,

where E [· · · ] =
∫
ϕ2

p(x)dx
∫
· · · dP x. We have

(1l, e−TH1l)H = E
[
e
∫ T
0 dt

∫ T
0 dsW (Xt,Xs,|t−s|)

]
9



with the pair potential

W = W (X, Y, |t|) =
1

2
(ρ(· −X), ω−1e−|t|ωρ(· − Y )).

The denominator of γ is

(1l, e−2TH1l) = E
[
e
∫ 2T
0

∫ 2T
0 W

]
= E

[
e
∫ T
−T

∫ T
−T W

]
by the reflection symmetry and the numerator is estimated as

(1l, e−TH1l)2 ≤ E
[
e
∫ T
−T

∫ T
−T −2

∫ 0
−T

∫ T
0 W
]
.

Together with them we have

γ ≤ lim
T→∞

E
[
e
∫ T
−T

∫ T
−T −2

∫ 0
−T

∫ T
0 W
]

E
[
e
∫ T
−T

∫ T
−T W

] = lim
T→∞

EµT
[
e−2

∫ 0
−T

∫ T
0 W
]
.

Here the probability measure µT is defined by EµT [· · · ] = 1
ZT

E[· · · e−2
∫ 0
−T

∫ T
0 W ]. Let

EµT
[
e−2

∫ 0
−T

∫ T
0 W
]

= EµT [1lAT · · · ] + EµT
[
1lAcT · · ·

]
,

where AT = {(x,w) ∈ R3 × X | sup|s|≤T |Xs(w)| ≤ T λ, X0(w) = x}. When m(x) ≤
a〈x〉−1−ε, the Gaussian bound:

C1e
−C2tω2

∞(x, y) ≤ e−tω
2

(x, y) ≤ C3e
−C4tω2

∞(x, y)

can be derived, where ω2
∞ = −∆. Hence we can see that

C1W∞(x, y, C2|t|) ≤ W (x, t, |t|) ≤ C3W∞(x, y, C4|t|), (2.5)

W∞(X, Y, |t|) =
1

4π2

∫
ρ(x)ρ(y)

|x− y +X − Y |2 + t2
dxdy. (2.6)

Thus we have

1lAT

∫ 0

−T

∫ T

0

W ≥ 1lAT cons.

∫ ∫
dxdyρ(x)ρ(y) log

{
8T 2λ + 2|x− y|2 + cT 2

8T 2λ + 2|x− y|2

}
→∞

as T →∞. Next we have

EµT
[
1lAcT e

−
∫ 0
−T

∫ T
0 W
]
≤ CeTCE [AcT ] . (2.7)

It is established that E [AcT ] ≤ T−λ(a + bT )1/2e−T
λ(δ+1)

. Hence λ(δ + 1) > 1 implies that
EµT

[
1lAcT · · ·

]
→ 0 as T →∞. Then the proof is completed. 2
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2.3 Removal of UV cutoff

Finally we discuss the removal of UV cutoff of the Nelson model defined on a static
Lorentzian manifold. Let

ρ̂Λ(k) =

{
(2π)−3/2 |k| ≤ Λ
0 |k| > Λ

(2.8)

EΛ = −1

2
(2π)−3

∫ |1l|k|<Λ

|k|(|k|2/2 + |k|)
dk. (2.9)

We have lim
Λ→∞

ρ̂Λ(k) = (2π)−3/2. Let external potential V be vanished. Then H is com-

mutative with respect to the total momentum:

P = −i∇⊗ 1l + 1l⊗
∫
ka†(k)a(k)dk.

Thus H can be decomposed in the spectrum of P and we have H =
∫ ⊕
R3 H(p)dp, where

H(p) =
1

2

(
p−

∫
ka†(k)a(k)dk

)2

+ dΓ(ω).

The effective mass meff is defined by 1
meff

= −1
3
∆pE(p)dp=0, and thus

meff = 1 + g2EΛ +O(|g|3).

Proposition 2.5 [Nel64-a] There exists a self-adjoint operator H∞ bounded from below
such that s− lim

Λ→∞
e−t(HΛ−EΛ) = e−tH∞.

Another derivation of EΛ is seen in [GHL12]. In [GHL12] the existence of a self-adjoint op-
erator without UV cutoff is given by means of functional integrations. See also [Nel64-b].

Let ρΛ(·) = Λ3ρ(Λ·)

EΛ(X) = −1

2
(2π)−3

∫
(h0(X, ξ) + 1)−1/2 K(X, ξ)

(K(X, ξ) + 1)2
|ρ̂(ξ/Λ)2|dξ, (2.10)

h0(X, ξ) =
∑

ξia
ij(X)ξj, (2.11)

K(X, ξ) =
∑

ξiA
ij(X)ξj. (2.12)

Note that ρΛ(x − X) → δ(x − X)

∫
ρ(y)dy as Λ → ∞. The term (h0(X, ξ) + 1)−1/2 in

(2.11) corresponds to |k|−1 in (2.9) and K(X,ξ)
(K(X,ξ)+1)2 in (2.12) to (|k|2/2 + |k|)−1 in (2.9).
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Theorem 2.6 [GHPS12-b] There exists a self-adjoint operator Hren bounded from below
such that s− lim

Λ→∞
e−t(HΛ−EΛ(X)) → e−tHren.

The standard Nelson model without UV cutoff also has a ground state [HHS05]. How-
ever it is unknown the uniqueness of the ground state.
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RIMS Kôkyûroku Bessatsu B21 (2010) 15-24.

[GHPS11] C. Gérard, F. Hiroshima, A. Panati and A. Suzuki, Infrared problem for the Nelson
mode on a static space-times, Commun. Math. Phys. 308 (2011), 543-566.

[GHPS12-a] C. Gérard, F. Hiroshima, A. Panati and A. Suzuki, Absence of ground state for
the Nelson model on a static-space-times, J. Funct. Anal. 262 (2012), 273–299.

[GHPS12-b] C. Gérard, F. Hiroshima, A. Panati and A. Suzuki, Removal of UV cutoff for the
Nelson model with variable coefficients, preprint 2011
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